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On Discontinuity of the Pressure

M I C H A E L E. F I S H E R

Baker Laboratory, Cornell University Ithaca, New York, USA

Received December 20, 1971

Abstract. A class of one-dimensional classical lattice gas models with translationally
invariant, stable and strongly tempered many-body interactions, is constructed for which
the limiting thermodynamic pressure is a discontinuous function of the density (at fixed
temperature). This demonstrates that an apparently "mild" restriction on the potential
("supersummability") employed by Griffiths and Ruelle in proving the continuity of the
pressure in lattice systems, plays, in fact, a crucial role.

I. Introduction

Following the earliest result by Ruelle [1] (for a classical gas with
bounded, strongly tempered, and stable pair interactions) the question
of proving the continuity of the pressure p, as a function of the density ρ,
at fixed temperature T, has been considered by a number of authors
[2—5]. Of course, such continuity has, so far, always been observed
experimentally: nevertheless, it is not demanded by thermodynamics
and, indeed, the existing proofs require certain restrictions on the
potentials over and above those needed for the existence of a proper
thermodynamic limit. The strongest result to date was obtained recently
by Griffiths and Ruelle [5], and concerns classical and quantum lattice
gases. Under restrictions to be mentioned shortly, they established the
strict convexity of the limiting thermodynamic potential p, as a function
of any parameter entering the Hamiltonian linearly. The chemical
potential μ, is such a parameter; the graph of p versus μ thus has no
straight segments; hence the graph of ρ = (dp/dμ) versus μ has no level
(constant) sections; finally, therefore p is a continuous function of ρ.

To state the conditions employed by Griffiths and Ruelle let U(X)
denote the (real) total potential energy of a set X of N(X) (distinct)
occupied lattice sites r1,..., rN e X. (Two particles may not occupy the
same site.) We will eventually consider a one-dimensional lattice, for
which r = r = na (n = 0, ± 1, ± 2 , . . . ) ; for the present, however, the
lattice i f need not be specified beyond its translational invariance and
local fmiteness. For the existence of the thermodynamic limit the following
conditions are known to be sufficient [1, 6, 7]:
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T Translatίonal Inυarίance

U(X + ro)=U{X), allroe^, (1.1)

which is a natural requirement;
A Stability

U(X) •> - wAN(X\ for all X (wA < oo), (1.2)

which restricts the attractive (negative) parts of the potential; and
β* Strong Tempering

U(XvX')SU(X)+U(X') whenever R(X9 X) ^ Ro < oo , (1.3)

where R(X,X') = min\r — r'\, denotes the shortest distance between
lattice sites r e X and r' e X'. This tempering condition restricts the total
repulsive (positive) interaction between separated groups of particles;
less restrictive, weak tempering, conditions also suffice [6, 7].

In terms of the many-body potentials Φ{Y\ with

= Φι(rί...rι) when Y = {r 1 ?... r j , and Φ1(r) = μ, (1.4)

we have

U(X)= X Φ(Y). (1.5)
YCX

It is then easy to see [6, 7], that the condition
Ao Summability

\\Φ\\= Σ \Φ(Y)\/N(Y)<+°°, (1.6)
Ysi o

implies stability. (The sum without the modulus signs merely represents
the energy per site of a fully occupied lattice.) On the other hand, Griffiths
and Ruelle imposed, what they termed, the "mild" additional condition

AQ Super summability

| | Φ | | + = X \Φ(Y)\<+oc. (1.7)

Evidently, this condition represents a stronger restriction on the high
order many-body interactions than does simple summability. (The sum
in (1.7) represents a bound on the total interaction of one particle with all
the others.)

The purpose of this note is to demonstrate that, despite its apparent
"mildness", this supersummability condition, AQ, plays a crucial role in
the Griffiths-Ruelle proof and, thence, in the continuity of the pressure.
This will be achieved by constructing a class of exactly soluble one-
dimensional lattice gas models (generalizing somewhat a type previously
studied [8-10]) in which the potentials satisfy the conditions Γ, β*, and
Ao but do not satisfy AQ . For these models the pressure exhibits a dis-
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continuity as a function of the density at finite density for a range of
temperatures, even when the sum defining | | Φ | | + diverges only loga-
rithmically.

II. Cluster Interaction Models

In Ref. [8] a class of exactly soluble one-dimensional continuum
classical gas models was defined in which many-body potentials were
introduced through a clustering mechanism. In particular, if two adjacent
particles, located at rt and ri + l i were closer than the clustering distance c,
that is \ri + ί — rt\ < c, then the two particle belonged to the same cluster.
Conversely, particles in the same cluster of / particles experienced a
supplementary many-body potential depending on /. For suitable
potentials such a gas exhibits a wide variety of phase transitions, [8-10].
As pointed out in Ref. [8], one can extend the definition of a cluster by
also requiring that two adjacent particles belonging to the same cluster
should not be closer together than some lower clustering distance d < c.
All these models are easily adapted to a lattice rather than a continuum.
It then turns out, as will be shown, that the introduction of a (nontrivial)
lower clustering distance is sufficient to generate discontinuities in the
(p, ρ) isotherms.

Without further ado, the lattice gas models to be considered are
defined on the linear lattice

r = na with n = 0, ± 1 , ± 2 , . . . , (2.1)

and have a pair interaction potential

r1\) (2.2)2 ( i , 2 )

with

φ2(0) = +oo, φ2(a) = —v, and φ2(r) = 0, for r>a. (2.3)

The clustering distance is taken as c = 3 a and the lower clustering
distance as c! = 2α; thus, in an /-cluster the particle spacing is fixed at
A r = 2a. The /-body interaction for / ̂  3 is thence defined by

Φι(rι,...,r^=—vι provided rj+ί — rj = 2a for j = 1,2,... / — 1,

= 0, otherwise. (2.4)

These potentials are clearly translationally invariant and satisfy the
strong tempering condition B* for any Ro > c. The norms entering the
conditions Ao and ΛQ are easily seen to be
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and

| |Φ|Γ=|μ| + 2|i;|+ £ l\υt\. (2.6)
1 = 3

To ensure stability we will choose the υι so that

| | Φ | | < + o o . (2.7)

The total energy of an isolated /-cluster can now be written as

where the "bulk" contribution per particle is

00

-Ψΰ0 = W(2) = X vk, (2.9)
k=3

whence the effective "surface" energy is given by

W(l)= £ min{k-2,l-l}vk, W(l) = 0, (2.10)
fc=3

the sums being convergent by (2.7). This relation can be inverted to yield

Vι=- W(l) + 2W(l-l)- W(l- 2) (2.11)

for / ̂  3, and

(2.12)
k=3

From these expressions one finds that the surface energy W(ΐ) satisfies

W(l)/l-*0, as ί-> oo. (2.13)

On the other hand, to achieve a pressure discontinuity, we will require
W(l)-+co. To see the significance of this, suppose, for simplicity, that

vk^0 all k>2. (2.14)

Then from (2.10) we obtain

VS -2W(2) S W{1) S V+ S +oo . (2.15)

It follows that W(l)-+co, as l-+co, if and only if V* = +oo, which by
(2.12) and (2.6) is equivalent to the violation of the supersummability
condition AQ. Finally, note that through (2.3), (2.9), and (2.11), the model
is fully defined by specifying v and the function W(l) for / ̂  2.
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III. Analysis of the Models

The grand partition function for a finite segment A of the lattice, of
length L = N(A) sites, at inverse temperature

β = VkBT9 (3.1)
and activity

z = eβ" = exp(-βΦ1), (3.2)

is defined by

Ξ t ( z ) = X expC-jJl/tJO], (3.3)
XCΛ

and, by (2.7) and (2.5), has the bound

~ L (z)^2 L exp(Lβ | |Φ| | ) . (3.4)

The limiting thermodynamic pressure p(z) is defined through

βp(z)a= Um(l/L)ln2L(z), (3.5)
L-xχ>

which limit exists by previous results [1, 6, 7]. Following the treatment
of Refs. [8-10], but replacing Laplace transforms by lattice generating
functions, we introduce

Ψ(x,z)= Σ * L Ξ L ( Z ) , (3-6)
L=0

which, by the bound (3.4) is analytic for x < ^exp( — β||Φ||). Then, if xo(z)
is the radius of convergence of the series defining Ψ{x) (which, of necessity,
is determined by a singularity of Ψ(x) on the real positive axis), we have

βp(z)a=-\nxo(z). (3.7)

To construct the generating function Ψ(x, z) we introduce, following
Refs [8] and [9], the inter-cluster generating function

K(x)= Σ'xnexpt-βφ2(na)-], (3.8)
n = l

where the prime denotes omission of distances, r = na, satisfying the
cluster conditions. For the present model we thus have

K(x) = wx + x3/(l -x) = x[w(l - x) + x 2] (1 - x Γ 1 (3.9)
where

w = cxp[-βφ2(a)~] = eβv. (3.10)

From (2.8) we see, similarly, that the generating function for a single
cluster is

H{x9z)= Σ z ' ί x 2 ^ - ^ - ^ ^ , (3.11)
1 = 1
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where, by (2.9),

On summing over all possible clusters we find

£ ] m - 1 . (3.13)

The radius of convergence xo(z\ is now determined either by the

Exterior Condition H{x0, z) K{x0) = 1 (3.14)

or, from (3.11) using (2.13), by the

Interior Condition u = zx2y = 1. (3.15)

As in Ref. [8] it is convenient at this point to reexpress these formulae
for the thermodynamics by setting

x = e-βpa, (3.16)

and defining a real function u(x) ^ 1, through the implicit equation

(3.17)
where

r ( u ) = ^ « l e " W I ) and Q{x) = x2y/K{x). (3.18)
1 = 1

The thermodynamics then follow from

βμip) = lnz = lnw(z) — 21nx — lny,
(3.19)

= lnu(x) 2β β

Now Γ(M) is clearly a monotonic increasing functions of u which, as
u -> 1 —, approaches the value

If Γ(l)<oo, and if

£ (3.20)
1 = 1

for

then the root w(x) "sticks" at the value 1 in the stated x-interval. In that
case the density must remain constant at

= 1 ' for * ^ * > (3 22)
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Fig. 1. Schematic discontinuous pressure-density isotherms. For the logarithmic model
[defined by (3.26)] the various cases arise from (a) \<βε<\\, (b)βε= 1|, (c) l^</?ε<2,

and (d) βε > 2. Note the horizontal "two phase" regions in case (d)

Evidently, the pressure p(ρ) then exhibits a discontinuity at ρ = ρ0 of
magnitude

^P = Pi ~Vi = iβaYl ln(x2Ai)>0. (3.23)

(see Fig. 1).
Provided wφO, which is ensured if v is finite, we see from the explicit

expression in (3.21) that

<2(x)-»0 as x->0 (or p->oo),

and as x —• 1 (or p —> 0 ) .

By continuity Q(x) exhibits a maximum satisfying

(3.25)

To demonstrate the existence of a pressure discontinuity it hence suffices
to show that W(l) can be chosen to satisfy:

X Discontinuity Condition

Y(ί) = 2w),
1 = 2

where we have used (3.12). For simplicity, we choose
Logarithmic Model

W(l) = ω + ε\nl for / ̂  2, with ω , ε > 0 ,

(3.26)

(3.27)



Discontinuity of Pressure 13

so that

ϋ3 = ω + εln(4/3), vι = e ln{l + [/(/- 2)] - 1}, ( ί>3) , (3.28)

although many other choices are possible. If, in addition, we have

βε-l>e-βω>0, (3.29)

and
eβω>ί + 2w = ί+2eβΌ

9 (3.30)

we can construct the chain of inequalities

1 = 2

< 1 + e~βω J dl/lβε = 1 + e-βω/{βε -1), (3.31)
i

< 2 < 2βεeβω/{l + 2w) - eβW{2)/{l + 2w).

Finally then, we conclude that by choosing ω large enough, one can
satisfy the discontinuity condition with the logarithmic model for any
j8ε>l.

IV. Concluding Remarks

The above argument completes the proof of the existence of a pressure
discontinuity in a class of lattice gases which satisfy the general conditions
T,A0, and β*. Conversely, since W(l)-*ao as Z-»oo, the supersumm-
ability condition i j i s necessarily violated. In the logarithmic model
(3.27), however, it follows from (2.15) and (2.6) that the sum defining the
norm | | Φ | | + diverges only logarithmically fast. It is also interesting to
enquire more closely into the possible shapes of the isotherm in the
vicinity of the points of discontinuity. These may be found by noting
that for the logarithmic models with βε>l the expression (3.17) yields,

Y(u) α Γ(l) - 0(1 - u)σ as w - > l - , (4.1)

where g{>ϋ) depends only on βω and βε, and

σ = βε-l, for l
(4.2)

= 1, for βε>2.

On using this in (3.16) to solve for u(x) with small A x = |x — Xj\ (j = 1 or 2),
we find

-hjΔx 1 / σ , as Δx-+0, (4.3)

where hj is a constant. Substituting in (3.17) and differentiating to
calculate ρ(p) finally yields, for p>p1 or p<p2,

jΛp\ as Δp = | p - p 7 | - > 0 , (j = lor2), (4.4)
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where fj depends on βω and βε, while the exponent is given by

τ = (2-j8ε)/(j8ε-l), for ί<βε<2,

= 0, for βε>2.

This result shows that the ρ(p) isotherm is continuous through the p(ρ)
discontinuity for βε < 2, as indicated schematically for various cases in
Fig. 1. On the other hand, when βε>2 both ρ(p) and p(ρ) are discon-
tinuous functions (see Fig. 1 d).

The physical mechanism of the pressure discontinuity in the models
discussed is evidently the "condensation" of the gas into a "rigid" crystal
of fixed density. Only when the pressure is increased sufficiently to
"crush" the crystal does the isotherm resume its continuous variation.
In the present, simple models the crystal is essentially completely rigid
and has no internal degrees of freedom. However, at the cost of some-
what more elaborate cluster interaction forces one could produce a
pressure discontinuity associated with a crystal of constant limiting
density but which, more realistically, allowed local internal density
fluctuations. Along the same lines it seems likely that one could produce
analogous, one-dimensional continuum models with a pressure dis-
continuity.
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