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Abstract. A recent justification of the covering law by Jauch and Piron founded on the
existence of ideal measurements of the first kind is shown to contain a gap. This gap is
closed by an additional assumption about such measurements.

§ι
In a recent paper [1], Jauch and Piron tried to found the atomicity and

the validity of the covering law in the proposition systems of quantum-
mechanical objects onto a new concept of state and on the existence of
ideal measurements of the first kind. But their derivation of the covering
law contains a gap. In the present paper we show at first by means of a
counter-example that the assumptions of Jauch and Piron are not
sufficient to derive the covering law. Thereupon we introduce an addi-
tional plausible assumption about ideal measurements of the first kind
which enables — in conjunction with the assumptions of [1] — the
establishment of the covering law.

Remark. As in the present paper we simply presuppose the atomicity
of quantal proposition systems which Jauch and Piron justified on the
basis of a new concept of state, we can evade the problematic hypotheses
connected with this new state concept; consequently, our considerations
are independent of these hypotheses, and they concern only the depend-
ence of the covering law upon other more plausible properties of quantal
proposition systems.

§2

We start by compiling the assumptions from which Jauch and Piron
tried to derive the covering law. As the physical substantiation of these
assumptions is not the subject of the present paper, we immediately
combine a great many assumptions which are not at all trivial, to the
following axiom:

Axiom I. In the set L of the propositions of a quantum-mechanical
system there exist a partial order relation ^ and an orthocomplementa-
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tion ' such that the proposition system 0> = (L, rg , ') forms a complete,
atomic, orthomodular lattice.

As for the definition of the several notions, its physical interpretation
and for the justification of Axiom I, we refer to the literature [1-3].

In addition to Axiom I, Jauch and Piron suppose the existence of
ideal measurements of the first kind. In order to understand the signi-
ficance of this assumption for, and to be able to formulate it as a condition
on ̂ , we need some preliminary reflection. In the Hubert space formalism
of conventional quantum mechanics, homogeneous states (pure cases)
are represented by elementary projection operators. These elementary
projection operators can be characterized, in the language of lattice
theory, as atoms or, equivalently, as prime filters1. In this way the
homogeneous quantum states (and only these) can be incorporated into
the proposition calculus without the introduction of a notion of pro-
bability. Following Jauch and Piron we introduce:

Definition 1. By a pure state of a quantum system with the proposi-
tion system ̂  we understand a prime filter of & 2.

This definition characterizes a pure state by the set S of all propositions
(i.e. 0-1-observables) the measurement of which yields the result 1 with
certainty.

Notations. In accordance with [1], we use the term x is true if a
measurement of x will give the result 1 with certainty; hence x e S means
that x is true in the state S. We denote the set of atoms of a lattice ̂
by Ω(^) and the set of its prime filters by U(f\

From Axiom I and Definition 1 one immediately gets the following
properties of pure states:

S, l e S , (2.1)

xeS, x^y=>yeS, (2.2)

S l CS2 = > S l = S 2 j (2.3)

xeS, yeS=>xr\y<ES, (2.4)

(Vxe^\{0})(3Se/7(^)) x e S , (2.5)

where 0 and 1 are the first and last element of & respectively.
1 A principal filter of a lattice 1T is a subset H of iΓ of the form H = {xeΫ"\b^x}for SL

certain element b e f . A principal filter S of V is said to be a prime filter, if every principal
filter H with ScHis either equal to S or to TΓ.

2 Definition 1 implies the existence of a bijection g : Ω(^) κ> Π(^} of the set Ω(^) of all
atoms of £P onto the set Π (&) of all pure states of the system, g being uniquely defined by
each of the equations

In the following we use the more suggestive notation Sx instead of g(x).
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In quantum mechanics [2], a measurement of a proposition x
is called of the first kind if the result 1 implies that x is true immediately
after the measurement. By virtue of the interpretation of x' it follows in
particular that a measurement of the first kind of x can not yield the
result 1 if xf was true before the measurement. The measurement of a
proposition x is said to be ideal if every proposition compatible with x
and true before the measurement is still true after the measurement. In
order to see the consequences of the existence of ideal measurements of
the first kind on the structure of ̂  we remember that quantum mechanics
describes these consequences by the projection postulate according to
which an ideal measurement of the first kind of the proposition x
(corresponding to the projection operator Px) with positive result changes
the state W before the measurement into the state

W+ - PxWPxfTr(WPx) (2.6)

after the measurement. In particular, every ideal measurement of the first
kind changes pure states into pure states, and the correspondence
W->W+, given by (2.6), characterizes the proposition x uniquely even
if restricted to homogeneous states.

Accordingly, to every ideal measurement of the first kind there
corresponds a one-to-one transformation in the set Π(£?} of all pure
states which enables us to characterize these measurements also within
the proposition calculus.

Definition 2. An ideal measurement of the first kind of the proposition
x e ̂ \{0,1} with positive result (IMFK) is a transformation τx in Π(^)
with the properties

(i) the domain D(τx) is equal to {S e Π(0>) \ x f φ S } , (2.7)

(ii) (VS) xeτ x(S), (2.8)

(iii) (Vz)(VS) z<->x, zeS=>zeτx(S), (2.9)

where x<-»z denotes x and z are compatible and means that, in the frame
of the proposition calculus, x, x', z and z' generate a distributive sublattice
of .̂ The Eqs. (2.7) and (2.8) characterize measurements of the first kind
with a positive outcome, and Eq. (2.9) requires the IMFK to be ideal.

Following Jauch and Piron, we postulate:

Axiom II. To all non-trivial propositions (i.e. to all xe^\{0,1})
there exist at least one IMFK.

In [1] Jauch and Piron have asserted and - according to them -
proved that the Axioms I and II imply the covering law, i.e.

b^x or i>-xvjα. (2.10)
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But this assertion is incorrect as the following example shows.
Consider a lattice i^ with the diagram of Fig. 1.

Fig. 1. By the definitions 0' = 1 and (x')' = x, the correspondance x-
complementation of "V

' x' becomes an ortho-

1^ has the atoms α,6,c,/ and /' and the prime filters Sa = {a, b'9 c', 1},
Sb = {a', b, c', 1}, Sc = {a1, V, c, 1}, Sf = {/,!} and SΓ = {/', 1}. Using the
notations A = {α, b, c, α', b', c', /,/'}, B = {a, b, c} and F = {/,/'}, we
associate to every element x e A a transformation τx in Π(i^) with the
properties

(α) the domain D(τx) of τx is equal to {S e Π(τΓ) | x' £ 5},

(JS) (Vx e Ω(τT)) (VS e D(τ J) τx(S) = Sx,

(γ) (V x, y £ F) (V Sy e D(τx)) τx(Sv) = S y,

( δ ) ( V x e B ) ( V y e F ) τx,(Sy) = Sx,

where x denotes the successor of x in the cycle (α, b, c).

The following facts are easily checked:

Lemma 1. (a) i/" is a complete, atomic, orthomodular lattice.

(b) i^ does not satisfy the covering law.

(c) The conditions (α) to (δ) determine to each element x e A exactly
one transformation τx in Π(i^\ and these transformations have the pro-
perties (2.7) to (2.9).

Thus, if we interpret 1^ as a proposition system then the above model
satisfies the Axioms I and II but violates the covering law. This means
that the assertion of Jauch and Piron cited above is incorrect and that
their proof contains a gap3.

3 The gap in the derivation of [I] lies in the unfounded deduction from
Sa D {x | (e u a') n a C x} to the relation Sa = {x \ (e u a') n a C x} which is needed for the proof
(original notations from [1], p. 848).
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§3

In this section we will deduce the covering law from the Axioms I
and II with the help of an additional assumption on ideal measurements
of the first kind. For this purpose we quote at first some attributes of
orthomodular lattices which are proved in the appendix or in [1].

Lemma 2. (a) In an atomic, orthomodular lattice i^, every element
φ ί2(i^)u{0} is preceded by at least two different atoms.

(b) In an orthomodular lattice, the conjunction of (2.8) and (2.9) is
equivalent to

S,). (3.1)

(c) In an orthomodular lattice ,̂ the covering law is equivalent to

(Vx e TΓ) (Vα 6 Ω(Ή) (x'uα)nx e Ω(Ήu {0} - (3.2)

According to Lemma (2b), the properties of Definition 2 determine
the atom corresponding to the state τx(Sy) after the measurement only
up to the majorant (x'uy)nx, where (x'*uy)r\x is different from 0 in the
domain D(τx) of τx. If this majorant is no atom, then it is, in view of
Lemma (2 a), preceded by at least two atoms; hence there exist at least
two different IMFKs associated to x. The covering law on the other hand
prohibits, by Lemma (2c), that (x'uy)nx is preceded by two different
atoms. These considerations lead directly to the additional postulate
which must be imposed on a proposition system so that the covering
law is valid.

Axiom III. The IMFK τx is uniquely determined by the properties
(2.7) to (2.9).

This axiom means that the state resulting from an ideal measurement
of the first kind on an object in a pure state depends only on the previous
state and on the outcome of the measurement and has no general proper-
ties independent of the characteristics (2.7) to (2.9). This assumption
conforms to the fact that in the Hubert space formalism of quantum
mechanics the projection postulate for pure states can be derived from the
properties (2.7) to (2.9), and Axiom III is, in the authors opinion, physically
meaningful and justified.

Theorem. In an atomic, orthomodular lattice the covering law is
equivalent to the conjunction of the Axioms II and III.

Proof. 1) Let 1^ be an atomic, orthomodular lattice satisfying the
Axioms II and III. We consider two elements z e i^ and b e Ω(i^) with
the property

u{0}. (3 3)
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By Lemma (2a) and Eq. (3.3), Ω(if) contains two different atoms c1 ? c2

with ct ^(z'ufr)nz and this implies, because of

(z'uy)nz = Ooz' ̂  yoz' e Sy ,

the existence of two different mappings

with the properties

eτ^S) and

By Lemma (2b), these τ^ are IMFKs, which amounts to a contradiction
to Axiom III. Thus the assumption (3.3) proves incompatible with our
premises, and hence the covering law holds according to Lemma (2 c).

2) Let if be an atomic, orthomodular lattice satisfying the covering
law. We introduce the function t by

D(t) = {(x,y)ei^xΩ(i^)\x'^y} and t(x,y) = (x'vy)nx. (3.4)

Owing to Eq. (3.4) and Lemma (2c), the range of t is contained in Ω(if\
and Lemma (2b) implies that the transformations τx in ΐl(if\ defined by
D(τx) = {Sz I (x, z) E D(t)} and τx(Sy) : = St(Xty), are IMFKs. Now let κx be
an arbitrary transformation in Π(if) with the properties (2.7) to (2.9).
From Lemma (2b) it follows that

(*' u y) n x e κx(

and Lemma (2c) yields

This implies τx = κx and hence the Axioms II and III are satisfied. Π

This theorem supplies a necessary and sufficient condition for the
validity of the covering law in quantal proposition systems and thus
closes the gap in the derivation of [1].

Appendix

Proof of Lemma (2 a). All atomic, orthomodular lattices without
any nontrivial element φ Ω(i^) have one of the diagrams of Fig. 2 and
obviously satisfy Lemma (2 a).

Let if be an atomic, orthomodular lattice with a nontrivial element z
exterior to Ω(i^}. Hence if includes a nonzero element b with b $ z so
that the sublattice Vbz generated by b, b', z and z' is boolean. By b φ 0,
z φ 1 and b ̂  z, Vbz has the diagram of Fig. 3 and z takes one of the
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, αι

Fig. 2

places 1, 2, 3. Without loss of generality let z be equal to xί where we
denote the element on place n by xn; then z is preceded by x4 and x5.
Because of x 4nx 5 = 0, x4 and x5 are not preceded by a common atom
and hence the atomicity of 1^ implies that z is preceded by at least two
different atoms. Π

Proof of Lemma (2b). 1) Let i^ be an orthomodular lattice and
let τ be a transformation in Π(i^) with the property

(3 x e TT \{0, 1}) (V 3; e Ά(1T\ y ί x') (x'u^nx e τ(Sy) . (1)

From x ̂  x n (x' u y) and the Eqs. (1), (2.2) we obtain

(Vy) xeτ(Sy).

Next we consider two elements fcef^, yeί2(^) with the properties
fc<-».x, y ̂  x' and fc ̂  j;. From fc<->x it follows that

(xf u fc) n x = (xf n x) u (k n x) = fc n x ,

and from fe ̂  y we get
(x' u fc) n x ̂  (x7 u y) n x .

Both equations together yield

k ̂  fc n x — (x' u k) n x ̂  (x' u y] n x ,

and owing to Eq. (1), this means fceτ(Sy). Thus Eq. (3.1) implies the
Eqs. (2.8) and (2.9).
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2) We now conversely assume that τ has the properties (2.8) and (2.9).
From .x 'rgx'uy it follows that x'u;y<->x' and x'uy<->x, and from
y ̂  x'u y we get x'uy e Syι hence the assumption (2.9) yields

x'uyeτ(Sy). (2)

From (2), (2.8) and (2.4) we finally arrive at (x'uy)nxeτ(S y) which
proves the second half of Lemma (2 b). Π

Lemma (2c) is proved in [1].
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