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Abstract. The algebra of observables for the renormalized φ4 interaction in 3-di-
mensional space-time is constructed. It is shown that the von Neumann algebras associated
with observables in a bounded region B are independent of the space cutoff which is used
in the construction of a Hamiltonian for this interaction. This result is shown to be useful in
the construction of a translation invariant φ4 theory in three dimensions. It also gives a
physical criterion for the equivalence of non-Fock representations of the canonical com-
mutation relations.

I. Introduction

Recently, there has been some interest in a certain class of non-Fock
representations of the canonical commutation relations (CCR) which
occurs in a natural way in the construction of a dense domain for a
Hamiltonian for the :φ4: interaction in 2 + 1 dimensional space-time.

This construction was initiated by Glimm [10], who considered an
interaction

HM = # o + I ̂  (x)g(x) d2x + Mσ + Eσ (1.1)

with a momentum cutoff σ (the momenta occurring in the interaction are
bounded in absolute value by σ) and with a space cutoff g which is a
smooth function with compact support. H0 is the free Hamiltonian and
φσ(x) is the cutoff free boson field at time zero:

φσ(x) = J jkx(k2 + m%Γίl4(a*(k) + a(--k))d2k, m 0 >0.
|fc|£σ

Mσ and Eσ are the mass and the additive counterterms respectively
whose definitions are suggested by perturbation theory. In order to
define a Hamiltonian H^(g) in the limit σ—> oo, Glimm used a modified,
truncated version of the formal wave operator. This operator Tσ(g) is
called a dressing transformation. His construction is summarized in the
following

Theorem 1.1 (Glimm [10]). Let Λσ(g) = ||#o x f : < # : ( x ) g ( x ) d 2 x Ω \ \ 2 ,
where Ω is the Fock vacuum. There exists a family Tρσ(g) of dressing
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transformations satisfying for ψ, ψ' e ̂ 0

 1 :

(1.2)

exists for all ρ, ρ'^0.

II. 77z£ expression (1.2) defines a positive definite scalar product (. , .)0

on ίtoe /wear /ιw// 3>(g) of (Tρoo(g) ψ\ψ e @0, all ρ^O). <2>(g) together with
(. , .)g is a prehilbert space whose completion ^(g) is a separable Hilbert
space.

III. II Hσ(g) Tρσ(g) ψ \\ 2 exp — Aσ(g) is uniformly bounded in 0 :g σ g GO
and lim(T (0)φ, Hσ(g)Tυlσ(g}\p') e\p-Aσ(g) exists and de/mes α sym-

σ-> GO

metric operator H^(g] with domain @(g).

It is easy to show that the multiplicative "renormalization" exp + Λσ(g)
is infinite in the limit σ-^oo; indeed Aσ(g) = Θ(lnσ). This fact plays an
important role in the following construction.

Consider the algebra ^0(B) generated by {exp ί </>(/), expi π(/),
/ e 2>B} where <3)E is the set of all smooth functions with support contained
in B C 1R2, and where π(/) is the time derivative of the free field, at
time zero. There exists a natural representation Πg of V10(B) on ^(g)
obtained by defining Πg(C\ Ce^0(β) by (TρoQ(g)ιp,Πg(C)Tρlao(g)ιp')g

= \im(Tρσ(g)ιp,CTρ,σ(g)ψ')exp — Aσ(g). The existence of this limit is

proved in Theorem 4.3. Fabrey [8] and Hepp [16] have shown that such
representations are inequivalent to the Fock representation. Let 2I(J3, g)
be the weak closure in ^(g) of /7g(2I0(jB)); 2I(JB, 0) is a von Neumann
algebra. It is natural to ask under which conditions are the two algebras
51(5, g) and 2I(£, g') unitarily equivalent, which in turn would signify that
the representation does not depend on the space cutoff g.

Similar problems have been treated in the literature. Chaiken [3] has
developed necessary and sufficient criteria for representations of the CCR
(in fact, Weyl systems) to be equivalent to the Fock representation. In
addition, necessary and sufficient conditions for the equivalence of quasi-
free representations of the CCR have been given by van Daele, Verbeure
[20] and Araki [1]. No such general results have been found for our case
of representations which appear not to be quasifree (and are thus not
Fock representations). Fabrey [8] has shown that two representations
are not disjoint if essentially \Aσ — Λ'σ\ is bounded uniformly in σ. Oster-
walder and the author [7] have shown that the representations obtained
from different truncations in the definition of Tρσ(g) are all unitarily
equivalent.

1 ^o is the set of all vectors in Fock space whose rc-particle component is zero for n
large and which have compact support in momentum space.
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In this paper, we analyze the effects of a change of g to another
function g'. If g is not equal to g' on a set whose volume is not zero, then
ΛM- Λσ(g'}\ = (9 (In σ). The representations 91 (B, g) and 91 (£, g') are

both non-Fock if g Φ 0, g' φ 0 on B and so none of the above criteria will
apply. One can, however, make use of the geometrical relations between
g, g' and B, to establish unitary equivalence. This is expressed in our
main result:

Theorem. Let B be a bounded, open, convex2 region in 1R2. Let
BdQ = {XE IR2, dist (x, B) ̂  d0}. Ifg(x) = g'(x) on Bdofor some d0 > 0, then
9ί (B, g) and 91 (B, g') are unίtarily equivalent. The equivalence φ is natural
in the sense that φ (Πg(Q) = Πq,(C) for all C e 9I0(£).

Such a result does not come really unexpectedly. It signifies that the
'local observables" derived from expi </>(/) and e x p i π ( / ) can in fact
not "see" a change of the space cutoff g if this change takes place outside
of the support of/. We shall see below what this implies in terms of the
dynamics of the :(/>4: model in 3 space-time dimensions.

The above theorem allows the construction of the time zero quasi-
local (C* —) algebra 91Λ for the coupling constant λ (see e.g. Haag [15]
for a definition of quasi-local algebras). Indeed, let 9Iλ(£) be the equiva-
lence class of all algebras 9ί(B, g(Bίλ}), d(B,λ) being smooth with compact
support, g(B,λ) — λ on Bd for some d > 0. 9Iλ(β) is an (abstract) C*-algebra.
For BcBf there is a natural injection 9I;(jB)->9lλ(β;) defined on any
representative 91 (£, 0(fΓ ;))e 9lλ(#). Therefore the inductive limit
u {9iA(B); B bounded} is defined, and is a normed *-algebra whose
uniform closure we denote by 9ί;, the quasi-local algebra for the coupling
constant λ.

A more important application of the main theorem is its connection
with the program of Glimm and Jaffe to construct a :φ4: theory in
2 space-dimensions. The program can be visualized in the following
diagram:3 (see Fig. 1).

We give some explanations:
Point (1) is the construction of a domain for a symmetric operator

H^(g\ with a fixed space cutoff #. This construction, whose results we
have summarized in Theorem 1.1, has been done by Glimm in [10]. In
point (2) and point (3) important properties of the Hamiltonian H^(g)
are derived. Point (2) is a proof of the semiboundedness of the Hamiltonian
Hac(g). This problem, and point (3) are under investigation by Glimm
and Jaffe. Point (3) is the construction of a unique selfadjoint limit of the

The convexity of B is inessential and we have restricted ourselves to this case for
convenience.

3 The program, conjectures and allusions to techniques being used in proofs which are
still under work have been kindly communicated to me by Prof. Glimm in private dis-
cussions.

i*
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Properties of the
v Neumann algebras
(Independence of
space cutoff)

Intersection property

(J\ Construction of a symmetric operator
hUg) on a domain J) (g) c,Γ(g)

Selfαdjointness of HJg) (Resolvent
convergence)

Finite propagation speed for half
planes with cutoff in one direction only

j Finite propagation speed in all directions,
construction of fields

Fig. 1

operators Hθ σ(g). The limit must be independent of the parameter θ of
point (4). Point (4) is the following conjecture: Choose a cartesian
coordinate system θ in 1R2 and let (/q, k2) be the two components of k in
this frame. By σ we denote the momentum cutoff which restricts only the
/q-component to values \k1 :g σ, the other component being unrestricted.
For fixed g and finite σ, one can expect Hδ(g) to be "local" in the "2"
direction, and H^(g) should have "finite propagation speed" in the "2"
direction such results can be proved using ideas which go back to Guenin
[14] and Segal [19], and which have been applied by Glimm and Jaffe in
[11], By "finite propagation speed" we understand the following: Let B
be a bounded, convex region, and for ε > 0 and a given cartesian co-
ordinate system f3, let S\^+ε be the narrowest strip with boundaries
parallel to the x^direction which contains B\t\ + ε. For every σ, one
constructs an appropriate truncation H0^ of the free Hamiltonian H0

and we define Hβ σ(g] = H0(T — H0 + Hσ(g), where Θ is the angle between
the x^axis and some fixed coordinate system. Then "finite prop-
agation speed" in the "2" direction means: For A e 5I(J3, g), one
has αr? θ^ σ5 ^ (A) = exp i (t Hθ σ (g)) A exp i( — t Hθ σ (g)) e 5ί (Sffi+ ε, g), and
αr θ σ g(A) is independent of g in the 2-direction if g is held fixed on S\t\ + ε

(cf.Fig.2).
The "independence" of g is really nothing else than an application of

our main theorem (5). Indeed, by the main theorem, 51 (B, g) is unitarily
equivalent to the algebra on Fock space, 51 (B), whenever supp gr\BdQ = 0
for some d0 > 0. Therefore 5ί (Sθ\t\ + ε, g) is really defined and is, for example,
equal to

2I((supp0nS^+β)
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-Result is independent of
changes of g in shaded
region

supp

Fig. 2

But (supp gnS$+t)e is a convex bounded region if supp g is, and for such
regions the main theorem gives the required equivalence criteria. With
this result, one can easily go to the limit σ-> oo. In point (6), one would
like to prove that the intersection 21 (βl5 0)n(β2, 0) is equal to
2ί (#! nB2, 9\ We sketch the ideas of the proof of the "finite propagation
speed" asserted in step (7) as a consequence of steps (3) — (6), which
should show their respective roles in proving this result. The statements
should be understood as conjectures.

Let B be a bounded open convex region in IR2. Let g (x) — λ on B\t\ +ε,
let g have compact support. For any cartesian coordinate system
Θ=(x l 5 x2), tet S(θ) be the narrowest strip with boundaries parallel to x^
which contains B. It should follow at once from the selfadjointness of
H^ (g) and from the "finite propagation speed in half-planes" (steps (3)
and (4)) that expi (t H^(g)) 21 (β, g) exp i (- tH^(g}}t 21 (Sffi, g). One now
rotates the cartesian frame and thus finds

expί (ί H^g)) 21 (β, g) expi (- t H^g))C f| 2ί(Sf?,), g)
β

where the intersection runs over all frames. By (6) one will find
Π 9l(Sίf?,0) = 9I (Γ\S$,g}=W(BM,g). So finite propagation speed is

proved for each fixed g, and by the above remarks, the automorphism

α ( :Λ-+exp/ (ί HJg)) A expi (- t Hx(g)), AeK(B, g)

is independent of g if g = λ on BM + ε for some ε>0.
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This paper is divided into two parts. In Part 1 we set up the definitions
and state the results; Part 2 is devoted to the technical aspects of the
proofs. Sect. II contains the definitions and Sect. Ill contains the statement
of the main result and its proof as a consequence of the fact that a certain
functional is normal on both algebras $ί (B, g) and 2ί (#, g'}. This normality
follows from the fact that a sequence of functionals approximating the
above functional is norm convergent. These functionals are given in
Sect. IV, where we also state the corresponding theorem. The sections of
Part 2 deal with an approximation of operators in ^Q(B) in terms of
Wick monomials with creation-annihilation operators in the complement
of a region containing B, (Sects. V and VI). It is one of the main problems
to show that this approximation converges weakly, whereas such a
result cannot be expected to hold for the usual Wick expansion due to
the non-Fock character of the representation of the canonical commuta-
tion relations induced on ̂  (g). In Sect. VII we prove the norm con-
vergence of the sequence of functionals defined in Sect. IV. Sect. VIII
contains some purely technical estimates.

Part 1. Definitions and Results

II. Notations and Definitions

In this section, we introduce some notation. For the definition of
Fock space 3F, the reader is referred to the literature (e.g. in [16]).

The expression ^ : φ ^ : ( x ) h ( x ) d 2 x has an expansion

Σ Wίβ= XJα*(/c 1 ) . . .α*(/c ί )α(/c ί + 1 ) . . .α(/c 4 )w, f f Λ (/c 1 , . . . , /c 4 )d/c 1 . . .d fc 4 .

(2.1)
Here,

' ί / j = 1

0 , otherwise (2.2)

~ denotes Fourier transform, μ (k) = (k2 + m^)1'2, m0 > 0. In modifying
Friedrich's perturbation theory, Glimm has defined "dressing transforma-
tions" [10, 16] which are defined on ^0C-^ (the set of all vectors whose
^-particle component equals 0 if n > N, some JV, and which have compact
support in momentum space). These dressing transformations map into
the domain of HQ + §:φ4:(x)h(x)dx-\- counter terms, and their limits
σ—>oo define a domain for the renormalized :φ4: interaction with space
cutoff in 3 dimensional space-time. We define a simplified version of this
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dressing transformation, which gives rise to the same representation of
the CCR as the transformation given by Glimm (see [7]). It is defined by

j •= r j

where

F J.σ=F,»=-|χ j(/c 1,...,/c 4)(χμ(/c i)) w 4 < τ Λ (/c , , . . . , fe 4 )
\ i = l /

(2.4)
4

i = 1

Furthermore χj(kl,..., fe4) is the characteristic function of

[2J, 2 j '+ 1)l, if / = 1 , 2 , . . . , (2.5)

;2J , (2.6)

j
and exp v4 = Σ y4π/w! .

J « = o
Whenever the truncation is not specified, we shall write Kfor an operator
with four creators.

We finally define

Λjσ(h) = || Vjσ(h) Ω \ \ 2 = 4 l \ \ vjσ(h) |12

2 , and Λσ(h) = £ ^jσ(/ι) (2.7)
j = o

where Ω is the Fock vacuum. We also set, for σ ̂  2j+1,

w4σ, = Vj(h)

(2.8)
/ 4 x - 1

and ι (Λ) = - Σ ^(
\ i = l

Let ^β be the set of all functions in ̂  = y (CR2) whose support is con-
tained in B. Then 9ί0(^)ιs defined as the *-algebra generated by

{exp z φ (/), exp i π(/), / 6 $B}. (2.9)

Here φ and π are the time-zero free field and its time derivative re-
spectively:

φ(x)=;2-ί/2$eίkxμ(kΓί/2(a*(k) + a(-k))d2k, (2.10)

π(x) - 2~1/2 i J eίkxμ(k) + 1/2 (a*(k) - a(-k))d2k . (2.11)
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The following result is standard [7] :
Lemma 2.1. Let \pl, ψ2 e ̂ 05 r l 5 r2 eN, ft e 5^ C e $ί0(£

ω(C) = ω(C\\pί,ιp2,ri,r29h)
(2.12)

= lim (V l, Γ* f f(ft) C T r2σ(/ι)φ2)exP-^σ(/ι)
σ-> co

exists and defines a linear functional on $ί0(^) The expression
/φ2>

rι>r2>ti) defines a positive definite scalar product (. , .)h on

< Troo(h) ιp\ιp e ®0, r e N > - 0 (ft) , (2.13)

where < > denotes the linear hull.
The scalar product is given by

(2.14)

Q) (ft), together with (. , .)h is a pre-Hilbert space whose completion, a
separable Hubert space, will be called ̂  (h).

We defer the proof of Lemma 2.1 to the end of this section. The
remainder of this section is not needed in order to follow the statements
which shall be made in Sects. Ill and IV. An expression of the form

^m« = f0*(fc l ) a * ( U α ( f c m + J ^ ^

is called Wick monomial, wmn is called its (numerical) kernel. We define
\Wmn as the Wick monomial with kernel wmπ |. We shall frequently use
creation and annihilation operators in position space and we shall
denote them by A*(x) and A(x). We define the Wick expansions. Let
Wmn and Wm,n, be two Wick monomials as above (with kernels wmn and
w'm.n,). The product Wmn Wm,n. can be expanded as follows:

Wmn Wm.n, =
min(n.m')

X
r = 0 Pr,π i=ί

q=ί

Here, ^ extends over all partitions of {!,... ,n} into two ordered sets
Pr,π

{i1 ?... , ir}, {/!,... , /n-r}, and of {1 ...m'} into two ordered sets { i [ 9 . . . , ΐr}9

{/i,... , /,'„'- r}» an(^ over all permutations π of {i l 5 ..., ir}. This expansion
is the Wick expansion and each term in the sum£ £ is called a Wick term

r FΓ,π
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with numerical kernel { }. We extend this definition in the natural
fashion to Wick polynomials.

It is customary [16] to represent Wick monomials and Wick terms
as graphs. Each Wick monomial Wmn is drawn as

m lines

and each Wick term is represented by connecting the lines whose vaή-
r

ables have been identified by Y[ <5(. . . ) in (2.15). These lines are called
« = ι

internal lines, the others external lines. A skeleton graph is a graph which
does not contain the graph

£Σ^ , corresponding to Λσ9 as a subgraph.

We introduce the notation Wmn^\V'm,n, to denote the r-th term in

the sum (2.15), i.e. the sum of all Wick terms of Wmn W'm,n, with r δ-ϊunc-
tions. We also define Wma^JV^n, = Σ Wmn^JV'm.n, .

r > 0 r

A factor in a Wick term is sometimes called a vertex.
This ends our definitions.
Proof of Lemma 2.1. (We only sketch the proof for the case C = 1. The

general case can be found in [8].) This proof is identical to proofs in [7],
and [8], except for a minor modification we wish to include in order to
make the proof more flexible with regard to changes of the space cutoff
h or of the definition of T. Such changes will be needed in later sections.
Glimm's analysis shows that, since

expΛjσe\p(-Λjσ)^l and Λjσ^λQ, for all j , (2.16)

^ Σ Σ ( | V ι , S p q \ \ ψ 2 \ ) . (2.17)
p,q = ϋ -Spq

Here ]Γ runs over all Wick terms Spq in the expansion of (V*)pVq whose
e
°pq

graph is a skeleton graph. Let spq(pίnί, pext) be the numerical kernel of
Spq; pext (pint) stands for all the variables belonging to the external (in-
ternal) lines of the graph of Spq. The following lemma is the basic estimate
towards the proof of Lemma 2.1.

Lemma 2.2 (Glimm [10, Theorem 2.2.1]; [5]; [7]; [8]). Let xf,
i= 1,... , π, j e l N be a family of symmetric functions (ΪR2)4— »C and let
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X(j) = ̂ dkί...dk4 a*(kl)...a*(k4)xij}(kl,...k4). Suppose that there exist
constants a, λ0 < co and y > 1 such that the following inequalities hold for
all i, i 'e {!,... , n} ;7 ,/eN:

lμ-a(kl)χV\\2<λQy-j (2.18)

2.19)

where r = 1, 2, 3; α, α' ̂  4 — r and every vertex x(jh } is contracted to Xj or
Xj'. Then there exists a constant K = K(λ0) such that for all Wick terms

whose graph is a skeleton graph one has

(221)ext \£.ΔL)

Proof. [8]. We may suppose that the graph G of the Wick term is
connected, since both sides of (2.21) are products of similar expressions
involving connected components only. We proceed by induction on
p + q. For p + q = 1 the assertion follows from (2.18), the case p + q = 2
follows from (2.19). Let p + q ̂  3. The graph may be written as a disjoint
union of subgraphs of one of four types: A central vertex connected to
1 ̂  r ̂  4 other vertices. The decomposition of G into these subgraphs is
defined recursively as follows. For p + q = 3, there will be one subgraph.
Suppose the decomposition for 3^p + q^Nis given. Let p + q = N + 1.
Since G is connected, we may choose a subgraph HcG of type r = 1. Then
G — H is a disjoint union of connected components /f'; . Let H' be the
union of H with all those H'j which consist of a single vertex. If H'^G
we apply the decomposition prescription to the components of G — H'.
We now apply (2.19) to each of the components to get (2.21).

We now return to the proof of Lemma 2.1, and we apply Lemma 2.2
with

Inequalities (2.18) and (2.19) are known in this case, they follow from
Weinberg's theorem [5, 22].
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By the Schwarz inequality, we get as a bound on (2.17)

Σ (2.22)

max
Jl Jp,Jl •• 2. ext

where J is the set of allowed sequences jΊ .jp, j [ . . J ' q if one takes into
account the truncation f] exp Vj (2.3)4. The maximum is over all Wick

j j
terms Xpq with kernel xpq of (2.20) whose graph is a skeleton graph. It is
known [7] that j^,.. .JPJ[ ,...J'qmJ satisfies j,- > i1/2, j{ > iί/2 and therefore
we get as bound on (2.17)

(2.23)

This proves a uniform bound in σ for (2.12).
The existence of the limit follows then by the fact that the kernels

converge pointwise and by the bounded convergence theorem. The
proof of the positive definiteness can be found in [10], [7]. The essential
ingredient is the fact that

lim lim Γf exp A itτ(h) exp -Λίσ(h) = 1. (2.24)
.. v ,~- ~ _». ~ ϊ •*••*- - -* ^

III. Main Theorem

In this section, we formulate in a precise manner the main result
which we mentioned already in the introduction.

Let B be a bounded open region in R2. Let ^B be the space of all
functions in $f (IR2) whose support is contained in B and define 9I0(5) to
be the *-algebra which is (algebraically) generated by

{expiφ(/) 5 e x p z π ( / ) ; / e &B}.

Let he@ be a (space cutoff) function. The construction of Lemma 2.1
defines a representation Πh of 9I0(B) on the space ^(h) in the natural way:

Let Ce 310(5), then/J^Qis defined by

(T r ι o o (Λ) V l ,Π Λ (C)T Γ 2 α > (h)φ 2 ) f c = l im( V l ,T* f f (h) C ΓΓ2,(fc) v>2)<Γ^ ( Λ ),
(T •—̂  oo

(3.1)

with φ^ ψ2e^0, r 1 ? r 2 e N . We define 21(5, /?) as the weak closure in
of nh(M0(B)); the algebra 21(5, h) is a v. Neumann algebra.

4 Explicitly, in π exp Vj, the term K; appears at most) times.
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We note the following result which was proved in [7] and which
justifies the particular choice of Troo(h) in (3.1).

Theorem [7, Theorem 7.1, Theorem 4.1]. The space 3F (h) contains a
dense domain for the renormalized Hamiltonian H^(h] (with space cutoff )
of the :φ4: boson interaction in 3 dimensional space-time.

This means that although T r ι G C(/ι) is not known to map into the
domain of H^(h\ it defines the correct Hubert space and [7, Theorem 6.1]
a representation of the commutation relations (in the Weyl form) which
is the same as the one defined by a limit as in (1.2), where Γwas some
dressing transformation which maps into the domain of H^h). Since
Troo(h) is a much simpler expression than T9 these facts will make the
ensuing definitions (in Sect. IV) simpler.

We shall distinguish between the following notations. If

\pΛ = r ^ ) t/>α, ψa e 09

we write

(ιp[,Πh(C)ψf

2}h = (TnJh)ψ^Πh(C)Tr2m(h)ψ2)hy (3.2)

which we consider in general as a functional over $1 (B, h). But we can
view it also as a functional over W0(B) only> *n which case we write

ωΛ(C) - ωh(C\ψί9ψ29 rί9r2) = (ιp\ , Πh(C) ιp'2)h . (3.3)

coh(C) in turn, may be viewed as a functional over any other representa-
tion of tyt0(B), and if continuity allows, this functional will extend to
closures of such representations. For any set Sc IR2 we define Sd to be the
set of points in ΪR2 within distance d of 5, d ̂  0, and we define ~ S to be
the complement of S in IR2.

We now formulate our main result.
Theorem 3.1. Let g,g'e^(lR2) and let #ClR2 be a bounded, open

convex region. Suppose that for some d0>0, g(x) = g'(x) for all xeBdo.
Then the von Neumann algebras $ί (B, g} and 21 (B, g') are unitarily
equivalent.

The major step towards the proof of Theorem 3.1 is the following
continuity statement about functionals. Let Πg and Πg, denote the
representations on ^(g) and ^(Q'\ respectively.

Theorem 3.2. Let g, g' and B satisfy the assumptions of Theorem 3.1.
For any φ l 5 t/;2e®0, r 1 ? r 2 eN, the functional a ) g > ( ' \ i p l , t p 2 , r 1 , r 2 ) is
continuous on $10(B) in the ultraweak topology from the representation Πg.

We postpone the proof of Theorem 3.2. and prove now Theorem 3.1.
This proof is purely algebraical. We suppose a certain familiarity with
von Neumann algebra terminology. Since Πg(ί) = l&(g), Πg'(i] = 1 &(g>),
by construction of the representations, it follows that the representations
are not identically zero.
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We next show that the kernel of the two representations Πg and Πg,
is zero. Let 9JΪ be any finite dimensional subspace of ^β, the space of
smooth functions with support contained in B. We define 2I(2R) to be the
von Neumann algebra of fields over ΪR, acting in Fock space ^:

2I(9W)= {expi </>(/), expi π(/),/e 2R-}"

where { }" denotes the bicommutant.
By v. Neumann's theorem [21], since 9JΪ is finite dimensional and

since ̂  is separable, we know that Πg(^Ά (Wί)) is unitarily equivalent to
a direct sum of copies of 2ί (SIR). It follows from this and from the proof
of v. Neumann's theorem that 2l(9Jΐ) is a factor of type 1^. One can
extend the representation Πg to a C*-algebra 211(£) defined by

U
,dim(2R)<

where ( )~ indicates uniform closure.
This algebra has been discussed by Segal [18], it is sometimes called

the Weyl algebra (over ®B) [3]. Evidently, one has 2^(5) D 2ί0(£). In [9],
Glimm has shown that <Ά1(B) is simple; i.e. that every nontrivial repre-
sentation of 2I1(£) is faithful. Therefore ng:M0(B)-+ng(M0(B)) is a
*-isomorρhism.

In order to show the unitary equivalence of the weak closures 2Ϊ (J3, g)
(of JΠg(2ί0(5)) or, what is the same, of JI^ai^B))) and 21(5, g'\ we need the
continuity properties established in Theorem 3.2 and general properties
of 2Ϊ1(J3). We first prove that the natural *-homomorphism

U-.n^B))-*!!^^)), defined by U(Πg(A)) = Πg.(A)

for all ^4 e 21 (̂5), extends to a normal homomorphism Ό from 21 (5, g)
onto 21 (£, 0').

The assertion of Theorem 3.2. holds for every vector of the form
Trao(g') ψ, r EN, ψ e @Q. Note that every element in the linear hull of the
Trao(gf) ip is again of the form Tr,^(g'} ψ' for some r'eN,ψ' e@09 and hence
Theorem 3.2. holds for a dense set of vectors in 3F (Q'\ Since the norm
limit of normal functionals is normal, Theorem 3.2. holds on all of ^(g'\

The normality of U follows: Let {An} be a sequence of operators in
2I0(£). If Πg(An)-*Q, ultraweakly on & (g\ then (ψ, Πg,(AJ\pr)g,-+Q
since (ψ, - ψ')g> is ultraweakly continuous on 2I0(£) with the topology
of Πg by Theorem 3.2. Since ψ, ψ' run over all of ̂  (g') by the above
remarks, it follows that Πg,(An)-+Q weakly on ^(gf). By going to in-
finite linear combinations of such functionals, it follows that U: 17^(2I0(jB))
-»J7g/(2I0(B)) is ultraweakly-ultraweakly continuous, in the topologies
defined by Πg and Πg, respectively. Define now U(A) for A e 9I(B,gf) by con-
tinuous extension of 17: U I lim An] = lim U (An), where An e Uβ(9I0(β)),

\ n - * o o / n — > o o y
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An-^A weakly in the topology of Πg. U is onto: If A' e 9I(£, g') then
let A'neΠg,($l0(B))ι A'n-+A'. Since U~ί is ultraweakly continuous,
An=U~lA'n is weakly convergent, and has a limit A. By definition
U(A)= lim L7(^4M)= lim A'=A', so C7 is onto. Thus U is a normal

H-»00 H-> 00

homomorphism 17 : 21 (β, 0) -> 91 (β, #')• _ _
We now show that U is an isomorphism. Since U and U ~ 1 are normal

U U ~ l and U ~ 1 (7 are normal homomorphisms which equal identity
on the dense subalgebras /7^(9I0(£)) and /I^(9I0(J3)); hence £7 ί/"1 -1
everywhere and £/ ~ 1 — (U)~ 1 : (7 is an isomorphism.

We show that 9ί (B, g) has a cyclic vector and a separating vector. We
note that by construction, 2F (g) is a separable Hubert space. By con-
struction 2l(β,0):>7Ifl(2l1(β)) and since the 91 (SR) are of infinite type,
so is Hr^(9I1(β)) and hence 91 (£, 0) is of infinite type. It is known [4, III. 8,
Corollaire 11], that the (separable) commutant 9I(β, g)' of the algebra
9ί (B, g) which is of infinite type has a separating vector, and this implies
that 91 (B, g) has a cyclic vector. The argument which proves the existence
of a separating vector for 91 (B, g) is similar: Let B' be a bounded open
region which is contained in the complement of B. Now

by the locality of the free field and by weak limits. So by the argument
above 91 (B, g)' is of infinite type and so 91 (B, g) = (91 (B, g)')f has a
separating vector. By [4, III.l, Theoreme 3] it is known that every
normal isomorphism between two von Neumann algebras with cyclic
and separating vector is unitarily implemented. Hence Theorem 3.1 is
proved.

We now return to Theorem 3.2, and reduce it to the following technical
theorem, whose proof will take up the remainder of this paper.

Theorem 3.3. Let g, gf, and B satisfy the assumption of Theorem 3.1.
To every ψί,ψ2£ @Q; r l 5 r2 eN, there exists a sequence ω(n} of ultraweakly
continuous functional^ on 91 (B, g) such that for all ε > 0 there exists an
N (ε) such that for all n> N (ε) one has

\ω(Λ\Πg(Q)-'ωgt(C\ψl9ψ2,ri9r2)\<ε\\C\\9 (3.4)

/orί///Ce9ί 0 (β).
One says that G)g>('\ψl9ψ2,r1,r2) is the norm limit of the ω(n\ We

shall choose functionals of the form

ω(n} = ωg( \ Θ(ψl9rl9 n, g'), Θ(ψ2,r2,n, g')9 r^n), r2(n))

in the proof of (3.4).
Proof of Theorem 3.2 as a consequence of Theorem 3.3: By

Theorem 3.3, \\ω(n} -ω(n'}\Πg(^o(B})\\ <ε for n,n' large. By Kaplansky's
density Theorem, since the ω(n} are ultraweakly continuous on 91 (B, g)
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and since ng(^0(B)) is ultraweakly dense in 21 (£, g\ we have that
|| ω(n} — ω(n>} || < ε. The norm limit of normal states is normal, and therefore
the limit ω of the ω(n) is ultraweakly continuous. Since, by Theorem 3.3,
ω\π («no(B)) = αV' we frttd that ωg' is ultraweakly continuous on 2X0(£)
in the topology of the representation Πg; Theorem 3.2 is proved.

IV. The Approximating Sequence of Functionals

We motivate first our choice of the functionals ω(n) which approximate
u>g'( -1 Ψι>Ψ2>rι>r2) °f Theorem 3.3. We shall choose a first sequence
ω(n) of the form

ω(")(Q = (θlπ,Π,(QΘ2π),, (4.1)

# i n > $2*e ®to) ( ? )0 is Λe scalar product on ^(g) as defined by Lemma 2.1.
As a second approximation, we shall choose functionals ωmn(C)
= (θ(mn,Πg(QΘ'2mn)g,θ

f

lmn,θ'2mne@(g). Both families of functionals
are ultraweakly continuous on 2l(J3,0), by construction. Note that,
although the functionals ω(n} and ωmn will be seen to converge in norm
as n-»oo, we cannot expect convergence of $αn or θ'αmn, as n-»oo, α = 1,2.

We recall that

αv(C|φ l 9 v>2, r l 5 r2) - (Γrι00(^)tpι, ̂ '(Q^oo^O VzV

Our first approximation of ω^ is by construction of vectors whose low-
momentum part coincides with the low-momentum part of
More explicitly, we define for n > rα

θα™ = Π exp ̂ f f(gf) "Π
j = n J j — r x

j

= ^naVa, « = 1, 2 .

We let ω?>(Q = (θln(Γ) CΘ2H(T) exp - ^nff (4.3)

{
« -1 oo

Σ I I ^jσto') I I 2+ Σ H^σ
j = 0 j=«

Finally we denote by ω(n)(C) the limit lim ω(

σ

π)(C), if it exists.
σ~* oo

For technical reasons, we are forced to define below a more sophisti-
cated approximation. Namely this approximation must be made in a
way to allow the application of two major facts. The first fact is that any
C e ^o(B) creates or annihilates smooth, exponentially decaying functions
in the region localized outside of Bd, d>0. This follows essentially from
the support properties of the test functions in @B and from the fact that
the μ±1/2-factors which occur in φ(x) or π(x) destroy localization only by
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exponential tails. The second fact is a materialization of the hypothesis
that g = g' on Bdo. This implies that

<oo ,

uniformly in σ, where P(£do/2) is the projection of at least one of the four
created variables onto BdQJ2. It has been shown by Fabrey [8] that for
such finite changes in norm between vjσ(g) and vjσ(g'\ say,

<GQ- vjσ(g'}}

there is a natural unitary map between ^(g) and 3?(g') which, under
simple additional conditions, intertwines the natural exponential Weyl
systems on these spaces.

We shall not be able to separate completely the two arguments
related to those two facts. This problem is due to the non-Fock character
of the total representation. But we define now a second sequence of
approximations to ωg.(.} in.which the two effects are better separated
than in ω(n). The approximating functional ωmnσ will be constructed by
replacing each Vjσ(g) by a sum VRj + VQj which is almost equal to Vjσ(g)
for large j but in which VR and VQ have special supports in position
space. Furthermore in the definition of ωmnσ, each ex.p(VRj -h VQj) will be
replaced by expV R . expV0..

i J j J

We now start the explicit definitions. By the assumptions of
Theorem 3.1, g(x) = gr(x) on Bdo and since B is convex, there exists a
polygonally bounded region QclR2 such that g(x) = g'(x) on Qd and
Q 3 Bd for some d > 0. Throughout the remainder of this paper, d will
denote this fixed number and Q will denote this fixed region, ~ Q its
complement.

Let l < v < 2 ; we shall fix v in Sect.VIII. We define space cutoff
functions g+j and g _ j 9 derived from g. Let j be large so that 4v~j<d.
We define

' g(x) for dist(x, β)^4v~ j

0 for

smooth interpolation by scaling of a smooth
function for 3v~ J <dist(x, 2)<4v~ J ;

g(x) for dist(x,-Q)^4v" J ' ,

0 for dist(x,-Q)^3v~ j ,

smooth interpolation by scaling of a smooth
function for 3v~ J <dist(x, ~Q)<4v~ J ' .

(4.4)

(4.5)
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Let gΔj(x) = g(x) — g+j(x) — g~j(x). Similar functions are derived from
#', we denote them by g'±j and g'Δj. We define furthermore a smooth
version of χjf Let φ be a function in 5^(1R2) satisfying

(x) = 0 if x | ^ l 2 ,

We let ψj(k) = v ~ 2 j φ(v~jk\ and we define

C/fc1? . . .,fe 4)= ί Π (dln<Pj(kn-ln))Xj(k> .
n = l

χ7- was defined in (2.5).
Let finally χ^Q be the characteristic function of

{ ( x l 9 . . . , x 4 ) \ X i Φ Q , f o r a l l ί , l ^ i ^ 4 } and let

With ):

we set «Ό, = χ(Q)Cy)«{ί-y)

% = X~sCf%+J.) (4.8)

^ = ^QCf%'+J.).

Note that by the assumption of Theorem 3.1,

In these definitions and later,/(λ) will denote the operator "multiplication
by/ in position space" and/(/7) will denote the operator "multiplication
b y / in momentum space". We let VRj = jd/q ... dk4α*(fc1) ... α*(/c4)
• ^R/fcu - - - j M an(i we define in an analogous way the operators V&. and
VQj. Let furthermore

and we set

. (4.9)
j j

b

We always set Y[ Aj = l'ύa>b.
j=<*

2 Commun. math. Phys, Vol. 25
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Finally, our second approximation to ωg,(.\ ψι,ψ2,
 rι> ^2) is defined

for n>m> max(r l5 r2) and is given by

ωmπ,(Q = (TMΠSΓΓlΠT(00v^ (4.10)

where τ = 2m, σ = 2s; ra, w, 5 e N, and we recall that
m - l

T r ι Λ T(0')= Π expW),
j = rι J

and does not depend on n since w > m. Explicitly,

ωmnσ(Q = (θ(rι> m> n> s> Ψi), Cθ(r2, m, n, s, γ>2)) exp - Λnσ ,

and for s > n, 0(r, m, π, 5, ψ) is given by
s-l n-l

θ(r, m, n, s, ip) = Π (ex.P FK; ex.P VQ\ Π ίexP F^ exp V^
j = n \ J J ) j = m \ J J

The ideas behind the construction of θ(r, m, n, s, φ) are the following.
This vector approximates the "low momentum" part of the vectors

θrψ = Π QXPVjσ(9')ψ usec^ m trιe definition of ω^( 1 1/)1? v;2,r1,r2).
j = r J

Indeed, the factors expFjσ(^') coincide exactly with those of θrψ up to

j = m — l and approximately with those of θrψ up to j = n — 1. The
product expF^ exp FA approximates e\pViσ(g') up to the "strips" at the

j J j j
boundary of Q and up to the fact that exp(F£ + VQ) is replaced by

^ expFg . For j ^ n, the factors in θ(r, m, w, s, φ) are approximations

to expFί(gf), making thus lim 0(r, m, n, 5, φ) exp( — yl /2)a vector in
j J s-*oo

Before going into boundedness and existence proofs for the limit
σ— »oo, let us give the proof of Theorem 3. 3., assuming these results. By
construction of ω(n\ it is evident that ω(co) = ωg>. It follows from
Theorem 4.4, which is our main technical estimate, that for Ce2I0(#),

(4.11)

provided that n, n' > N(ε, m), since Trnτψ e ̂ 0 if ψ e ®0, τ < oo. On the
other hand, we show in Lemma 4.5 that

\\TmnsTrnτιp-Trnσψ\\2πp-Λnσ<ε (4.12)

for m > M(ε), uniformly in n > m and s>m. Eq. (4.12) has nothing to do
with the algebra 9I0(^)> but simply expresses the fact that θ(r, m, n, 5, ψ)
approximates Trnσψ if m is large enough. It is immediate that (4.11) and
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(4.12) prove \ω(n>(Q-ω(n'\C)\ <s\\C\\ ,

provided n, n' > N(ε), since

\ω(n}(C) - ω(n'}(C)\ ^ \ω(n)(C) - ωmπoo(C)| + |ωmnoo(C) - ωmπίQO(C)|

One first chooses m so large that the L.H.S. of (4.12) is very small, such
that the first and the third term in (4.13) are bounded by ε/3||C|| each,
by the Schwarz inequality. The second term in (4.13) is then bounded
using (4.11), and so this proves Theorem 3.3.

We now state the facts we have used in the derivation of (4.13).

Lemma 4.1. For every ψ e £^0, there exists a constant C(φ) such that
uniformly in m, π, s eN

(4.14)

(4.15)

where σ = 2\τ = 2m

We defer the proof of this lemma to the end of this section.

Lemma 4.2. The limit σ-κx) of ω(

σ

n) exists and defines for each n eN
an ultraweakly continuous functional on 9ί(B, g\

The proof of this lemma can be found essentially in [8], or [7], The
technical changes due to the fact that Trnσ depends on two space cutoffs
g and g' are trivial, see also Lemma 2.2.

Theorem 4.3. The limit σ-~>oo of ωmnσ exists and defines a functional
on 910(B).

At the end of this section, we shall only prove the existence of
lim ωmnσ(\\ The general assertion will then follow from the proof of

(Γ~* 00

Theorem 6.3.

Theorem 4.4. For every θa e 3>0, mα eN, α = 1, 2, and for every ε> 0
there is an N = N(ε, Θl9 Θ2, m1? m2) such that for all n, n' > N and for
every Ce 2Ϊ0C% uniformly in s > max^, m2), σ = 2s, one has

\(Tmίnsθ1,CTm2nsθ2)Q\p-Anσ-(fmιn.sθί9Cfm2^

In the proof of Theorem 3.3. we used this theorem with m1 — nι2 = m,

The second part of this paper will be devoted to the proof of
Theorem 4.4.

The vector approximation is described in

Lemma 4.5. Far every φe^0, reN and every ε>0 there exists an
M = M (ε, φ, r) < oo such that for all m > M (ε), s, n > m, τ = 2m, σ = 2s,



20 J.-P. Eckmann:

one has

\\Trnσψ-fmnsTrnτψ\\2exp-Λnσ<£.

This lemma will be proved at the end of this section.

Proof of Lemma 4.1. Inequality (4.14) follows from inequality (4.15)
for m = 5. The proof of (4.15) follows, at least in spirit, the proof of
Lemma 2.1. We call /L-component any Wick term whose graph has the

form <33. Let ( )skel denote the sum over all Wick terms whose graph

is a skeleton graph, i.e. which contains no /[-components as subgraphs.
A simple combinatorial argument shows that, as a formal power series,
(4.15) can be written as

Σ [ί^Π1J^π(4ΐ
6 F ( s ) L \ j = r rj j = m\ Pj'/e

s-1 (4 16)

r s - 1 9 AklJt

• Σ Π Π-T
G(s,/) U,j = l α = l Nj.α

We have used the following notation:

Vj=Vjσ(g'l

Aijt 7 = 4! (

Aίj,s = 4\(vQι, Vj), ί ̂  m,; < m

yi0 9 = 4 ! (^-, t;Q</), ί<mj^m.

We let /ί^ α = 0, if ij are not in the ranges indicated above. (Small letters
indicate kernels of operators with same capital letters.) Finally, the sums
extend over

{/ = (p ί , ί ί , r £ ,pU; , r ί | r^ i^s- l ) | 0^p ί ^i ,Ogq i ^ί ,

0 ̂  rf ^ i 0 ̂  p; ̂  i, 0 ̂  ̂  ^ i, 0 ̂  rί ̂  /}
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and for f e F ( s ) over

s-l m - 1

Σ kij,l + kiJA+ Σ kij,6^i-Pi'>

Σ

s- l m-1

Σ
, τ <r—\ , , .
Iζ _ _[_ h _ _l_ \ Is <^ T *y _

i j , 1 i j , 5 £^ ίj, 7 = J rj '

s-l m-1

Σ , , ^—1 J „ . I

i i 2 ~' ί ΐ 4- ""' / *^Ί j Q —- / Q. i t

Σ lf _ _ _[_ \ K" . . —ί— [ f . . <!~^. j
ij, 3 Z-r i j, 6 ij, 8 = J

ί = r ί = m

By construction, Λ.ί7 4 = Λj ; 5 5 — 0, for all ij ^ m and yl^ 3 = 0 if i φ j,
i,j< m.

In order to prove (4.15) we have to prove the analogues of (2.23) and
of the fact that γ[ exp/ly exp — Λj ^ 1. Note that the rcth-order contribution

to frts is not a truncation of Vn/n\ in the usual sense that its kernel equals
the kernel of Vn/n\, multiplied by a characteristic function. But frts is
constructed in such a way that "up to" a square integrable "error" it is
indeed such a truncation.

We start our estimates by bounding the ΛijtΛ.
To this aim we relate VR. and υQ. to vfy), as defined in Sect. II, Eq. (2.8).

Lemma 4.6. There exist constants λ0 <oo and γ>i such that the
following inequalities hold.

\\vj(g±j)\\2<λ0, (4.20)

\\VRJ-Vj(θ+j)\\2+ \\v(lj-Vj(g.j)\\2<λ0y~ i, (4.21)

\\vj(β) - Vj(g+j) - vj(g_J}\\2< λ0y -
j. (4.22)

// i Φj then

Σ
α = 1.2,6,7,8,9
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We shall prove this Lemma in Sect. VIII.
We now use the inequalities (4.20)-(4.23) to prove (4.15). We first

bound Λiitl and Λiit2 as follows, using (4.21) and (4.22): Namely one
finds

\Λntl-4l\W(g + i)\\2

2\<λ2γ;i for some y 2 > l ,
and _ . (4.24)

Also,

\Aii.i+Aiit2-4l\\vi(g)\\2\<^73~i, for some y3 > 1, (4.25)

if ί ̂  n, and the analogous relation holds with g' if z > n.
We now prove that Σ { } in (4.16) is bounded by a constant, uniformly

G
in m < n, s and feF. Note that for .4^0, exp^l exp( — A) ̂  1, and that for

j

B < 0, expβ exp(-B) ̂  exp|β| exp|£| ̂  exp2|£|. (4.26)
j j

Using these facts, and replacing all Aij)OL, zφj, α = 1, ...,9 by Mi j?a|,
we get

Σ { } ^ Cy,,0 - Π expJ2 Σ Maall ̂  const, (4.27)
G i φ j I a=l J

by (4.26) and (4.23), uniformly in

m, n, 5, PJ, q^ rh p'h q'h r j .

Our next step is to prove the uniform boundedness of Σ Op» ¥>)Skeι

in (4.16), and we repeat the considerations of Sect. II. It follows at once
from Lemma 4.6 that the set of functions xj υ = v("\ x f } = vQj satisfies
(2.18) and (2.19) since Vj(g+J), Vj(g _j\ Vj(g) and the corresponding primed
quantities do. Let Spq be a Wick term of (V*)p(V)q whose graph is a
skeleton graph. We apply Lemma 2.2 with the above choice of x^ 1} and
x< 2) and get

Σ ΣdVιUSp β | |φ 2

(4.28)

p β 2
q = 0 Spq

^ Σ Cv,1>V2((4p)!(4^)!)1/244<^^(y-l)-^+«>y j γ J <oo.
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- Σ "1/2 -I Σ »1 / 2

The factor \y ^n = 1 ' y ^n = 1 '/ comes from the fact that the set cor-
responding to J in Sect. II (after Eq. (2.22)) is now a subset of {/f > (z'/3)1/2,
j!>(z/3)1/2} since Tis the product of three truncated exponentials. This
completes the proof of Lemma 4.1.

Proof of Theorem 4.3. We prove here only the existence of lim ωmπσ(l).
<T— •*• oo

The existence of lim ωmnσ(C\ Ce W0(B) will then follow in a similar way
(J— * 00

from Theorem 6.3. Usually, the existence of limits of this kind is proven
by using the pointwise convergence of the kernels of Trσ and the bounded
convergence theorem. We are forced, due to the more complicated
structure of ωmnσ, to prove the convergence directly. This is easy if we
use the explicit formula (4.16). We write

A(s)=
feF(s)

) Σ
G ( s , f )

in short for (4.16). We now assume that s1 > s2, and we want to show that
\A(sλ) — A(s2)\ < ε if s2 is large enough. To this aim, we exhibit A(s1) as a
sum of two expressions A1(slίs2) and ^42(sl5

 S2\ where A1(sl9s2) "almost"
cancels ^4(s2) term by term and where |A2(s1, s2)| is small.

Let Fί(s1,s2) be that subset of F(sί) for which pj = q*3 — rj = p'j
— q'. — r'j = 0 for j ^ s2. We have

If fe F(s2\ we let / be the corresponding element of Fί(sί,s2). We set

/eFι(sι,s 2) G(sι,/)

and ^2(s1,52)-^(:s1)-A1(51>5_2). If/eF1(s1,s2), it follows from the
definition of S ( s l 9 f ) that S(s l5/) = S(s2,/), and therefore

^ι(sι,s2)= Σ
/ef(s

We have thus prepared the cancellation in

Σ ife
G(sι,/)

Σ \s(s2j)i Σ
f e F ( s 2 ) [ lG(sι,

^ Σ \S(s2,f)\ sup
feF(s2) feF(s2

By the proof of Lemma 4.1,

Σ
/eF(s 2)

Σ
G(s2,/)

Σ L(s2J)
G(s2,/)

uniformly in s2 .

(4.29)
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We now argue that the sup in (4.29) goes to zero as s2-»oo.

G'(s1,s2,/) = G(s2,/)x{fc ί j. t β = 0 if i φ j and (ί ̂  s2 or j^s2)}.

Obviously, G((si,s2,f)CG(si,f) and we set

In G', the Λiii<κ α = 1, 2, 3, will occur in all powers in the range 0, 1, ..., i,
if i ̂  s2. Thus, for any ε > 0, we find

Σ £(*!,/)= Σ £(*2,
G ( s l t f ) G(s2,f) \i = S2 l \α

= Σ L(52> /) ' (1 ± 4 for 52 large .

We have used σ{ = 2Sl, and we used the fact that for A > 0,

0^1- exp^l Qxp(-A) ^ A j + ί / ( j + 1)! ,

and the estimates of Lemma 4.6.
Therefore, for large s2,

\Al(sί9s2)-A(s2)

sup
/6F(S 2 )

sup 130)

The first term in (4.30) is bounded uniformly in s2 by the argument given
in the proof of Lemma 4.1. The second term goes to zero as s2— >oo
because every term in Σ contains at least one small factor ΛijίΛ

G"(sίts2,n

iΦj, i or;^s 2, and these factors go uniformly to zero as s2-κx), by
Lemma 4.6. So we have shown that \Al(si9s2) — A(s2)\<ε for s2 large.

In each term of >42(s l 5s2) there occurs at least one Vfn)(*\ V^*} or
KQ*} with j ^ s2. We use Eq. (2.22) and we apply the argument which led
to (4.28) to get a bound \A2(sί, s2)\ <const./y~S2, for some y > l . Thus
|y42(s l5s2)|->0 as s2->oo: the assertion "limωw w σ(l) exists" is proved.

σ-» oo

Proof of Lemma 4.5. We want to bound the expression

Λnσ, (τ = 2») (4.31)

for n > m, m large, and we want to show that this bound goes to zero
as w-»oo. The proof goes along lines described in [7, Lemma 4.1] with
some new estimates.
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We break (4.31) into two parts, writing

\\T w — f T w\\e~Λnσ/2

\ \ J rnσΨ * mns *• rnτ Ψ II c

<\\j w— T TΔ

= II λrnσΨ mns l rnτ λm
~Λnσ/2

(4321)\-r.j t*.±)

4 - I I T T TΔ w — T w\\e~Λnσl2 (4322)Γ II λmns λrnτ λmnsΨ λ mns λ r nτ Ψ II ^ \^'~>^ ^<)

Here
m"rf

j = n J

(4.33)

We show that the assertion of Lemma 4.5 holds for each of (4.32.1),
(4.32.2) separately.

To bound (4.32.1), we write

ηπ _ y1 πp πrΔ __ ηr . (ΊΓ _ f "T^ \ — ] . ΠΓ
rnσ mns •*• rnτ mns rnτ v m π σ mns mns/ m n s rnτ '

Suppose for simplicity of notation that s > n\ the proof of the case s^n
is similar. We let

L s =

if ;•

Qj + (V}^")) - VI* - VQ))

Π

Γ
- f] exp(Vf}) exp(FQ ) exp(^(0(fl)) - V}n) -VQ)\ L

j = m [ J J J JvJ

where [ ]y indicates "y-th order term". By definition of

exp(F/">+Fe j

^)) - V^ - VQ)

(4.35)

if y e {0,1, 2,... j}. Therefore a term in the sum (4.34) is zero unless for at
least one j ^ m one has y, >j.

This implies that all contributions from
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are cancelled in (4.34). We rewrite (4.32.1):

l(4.32.1)|2 = Lmns Π
2

exp - Λnσ (4.36)

- (φ, 7;*τL* n sLm n s T r n τφ) exp - Λπ σ - /! + I2 .

We describe the decomposition /x -h/2, which is obtained by distin-
guishing different Wick terms, cf. also the decomposition of (4.16) in the
proof of Lemma 4.3. lλ is the sum of all those terms in which VR or
VQj, j^m and their adjoints occur only as V^4yRj or VQ^^QJ com-
ponents resp., 72 is the sum over the remaining terms.

|/2| is bounded by a standard argument, which we used already in the
bound of \A2(sl, s2)\ in the proof of Theorem 4.3. Each Wick term in J2

has either a V^\ V^} with j^m in its skeleton, or a V^*\ j ^ m in a
skeleton or a A component of the form ΛljΛ,Λiji2, i φ j, i or j ^ m. Thus
it follows from (4.28) and Lemma4.6 that |/2|->Ό as m-»oo; the uni-
formity in n follows at once from the fact that the bounds in Lemma 4.6
can all be given with the same constants for g and g'.

To estimate 71? we use the representation (4.34) and the cancellation
due to (4.35). We write

where Cmns = e\p(-Λnσ + Λnτ) (Ω, L* ΛSLmnsΩ)Λ .

Ω is the Fock vacuum and ( )Λ denotes the sum over those Wick terms
whose graph consists of ΛiiΛ and Λii>2 components only.

By Lemma 4.1, \\Trnτιp\\2 exp — Λnτ is uniformly bounded in n and τ.
It remains to show Cmns-+Q as m->oo, uniformly in n and s. By definition

5-1

where ^Δ extends over the set {7/^7, for at least one j } . We bound

Σ Π
i = m j—m

by Lemma 4.6; note also that C(m)-»l as m->oo.
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Now for A > 0, ίexp/1 — exp/l] exp — ,4 < A j + ί / ( j -f 1)!, so we finally

find, for large m,

s-l Λ i + 1

1C I <2 V — - _
1 mnsl= £(' + !)!

oo i y

<2 y — ,
== ^ v ty = m + l X

and this goes to zero as m— >oo. We have used \At\ ^ A0, Eq. (2.16). The
uniformity in rc follows as before. This completes the proof that
(4.32.1)2-»0 as m— >oo, uniformly in n.

In order to bound (4.32.2), we proceed similarly.

There is no exact cancellation of the type (4.35), but instead each V(gΔj)
has a kernel with small L2-norm, by Lemma 4.6. We do not present the
detailed arguments. If one writes T*ns = 1 -f 7 ,̂, then all contributions
from Tήns are small for large m, whether their vertices occur in Λ-com-
ponents or in skeletons, by Lemma 4.6. The 1 cancels, and we get the
assertion for (4.32.2); the proof of Lemma 4.5 is complete.

Part 2. Proof of the Main Theorem

In this second part, we shall prove Theorem 4.4. The proof given is
rather technical but the main ideas are fairly simple. We want to use an
expansion of C e $ί0C^) m terms of creation and annihilation operators,
and we require that this expansion of C should converge inside the
functionals ωmπs. By Fabrey [8], one knows that lim ωmnΰ(N\ where N

σ—» GO

is the number operator, is infinite. This suggests that the usual expansion
of C in terms of creation and annihilation operators, as given e.g. in
[12, Eq. (4.17)], cannot converge inside ωmnσ as σ->oo. However, if
K = J/l*(x) A(y) k(x, y) dx ay, where k is smooth and falls off at infinity,
one can show that ωmnσ(K) stays bounded as σ—»oo (Theorem 8.9). We
take advantage of this fact by using a more specialized expansion of C in
which smooth kernels similar to k will occur; indeed we shall expand C
only in the region (~Q\ and it will be seen that such an expansion
converges because B C β. This construction induces the following com-
plication in our bounds for functionals: We shall see that one can use
the Wick expansion of the functional only in variables which are "local-
ized" (in the Newton-Wigner sense) outside of Q. This has made necessary
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our choice of ωmnσ in Sect. IV. We shall now describe the expansion
(Sect. V), prove its convergence (Sect. VI) and then prove Theorem 4.4
(Sect. VII). Sect. VIII contains two main estimates: An analysis of the
behaviour of v4(g) outside the support of g and bounds for ωmnσ on
operators with smooth kernels.

V. The Particle Expansion of Operators in $10(#)

In this section, we use an expansion of operators C e ^o(B) in order
to exhibit the fact that such operators, considered as sums of Newton-
Wigner localized Wick monomials, have smooth kernels which rapidly
decay outside the region Q D B in position space.

We first describe an approximation construction which is similar
to one devised by Glimm and Jaffe in [12].

+ π(hj)). (5.1)

The test functions fj and hj are smooth and their support is contained
in B; αjeC. We want to go to Wick-ordered quantities. We define, for
τ e 1R, / e ̂  (IR2), an operator μτ : ̂  (1R2) -> SS (1R2), by

( μ τ f ) (x) = (2 πΓ 1 jμW (k)e~ikxdk , (5.2)

where ~ denotes Fourier transform. Now, for real /e 5^(IR2),

φ(f) = 2 - V 2 $ d x A * ( x ) ( μ _ l l 2 f ) ( x ) + 2-V2$dxA(x)(μ_1/2f)(x) (5.3)

and

π(f) = i2-ll2$dxA*(x)(μ+1/2f)(x)-i2-1ί2$dxA(x)(μ+l/2f)(x).(5A)

Using the commutation relations, we find that the general element of
tyi0(B) can be written as

C= X α7.expA*(c j+) exp^(C j_), (5.5)

where α7 e C and

cj+ (x) = i(2- 1/2(μ_ 1/2 /;) (x) + i2- 1/2(μ+ ίl2hj) (x)) , (5.6)

Cj._ (x) = i(2- Il2(μ-ll2fj) (x) - i2'ί/2(μ+ 1 / 2Λj) (x)) - (5.7)

One can invert the relations between cj± and fj and hjy

- 1/ 2(μ+ 1 / 2c J._)(x), (5.8)

+ i2- 1 ' 2(μ_ 1 / 2c j_)(x). (5.9)
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It is at this point that we make use of the fact that the functions fj and hj

have support contained in B. We introduce a function £:IR2-»1R with
the following properties :

ξeC°° ,0^ξ(x)^ l ,ξ(x)=l if xeB,ξ(x) = Q if xφBd/4. (5.10)

We can rewrite (5.8) and (5.9):

2cj+)(x) + 2-ί'2ξ(x)(μ+1/2cj^(x), (5.11)

_1/2cj+)(x) + i2-ί'2ξ(x)(μ_ll2cj^(x}. (5.12)

Inserting (5.11/12) into (5.6/7) we get

cj+(x) = K + cj+(x) + K_Cj_(x), (5.13)

Cj_ (x) = K_ cj+ (x) + K+ c, _ (x) , (5.14)

where X± - 1/2 μ-1/2ξμ+1/2 ± 1/2 μ+1/2ξμ-1/2 . (5.15)

We shall denote by fe±(x, z) the distribution kernels of K±

k±(x,z)

_ 1/2(x - y)ξ (y)μ+ 1/2(y - 2) ± l/2$dyμ+ 1/2(x - yK(y)μ_ 1/2(y - z).

Let Q be the polygonally bounded region defined in Sect. IV, Q^Bd

for some d > 0. We define an expansion

™ > (5.16)

in which, loosely speaking, Cmm, is that term of C which creates and
annihilates m and m; particles respectively in the region (~β), and an
indefinite number of particles in Q. It is convenient to consider first the
special case

C - exp A*(c + ) exp A (c_) . (5.17)

In that case,

cwm,= f dx1...dxm£/χ/

1...dχ;^*(χ1).

ι...dyΛdy(...dy'Λ, f] (^*(^ )c + (yj
j=ι j=ι

(5.18)
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The bracket { } is an operator valued kernel cmm.(x, x')> and the operator
acts on x

^Q=€Θ ®£2(β)®" , (5.19)
\n=l I

where (x) denotes the symmetrized tensor product.
s

Let now χQ be the characteristic function of Q in IR2 in one variable.
We define

k±i(x9y) = k ± ( x 9 y ) χ Q ( y ) 9 (5.20)

k±0(x9y) = k±(x9y)(l-χQ(y)). (5.21)

The subscripts i and o stand for "inside" and "outside" respectively. Let
K±i, K±0 be the operators with kernels fc±ί, k± 0, resp. We write

~Q Q

Introducing (5.22) into each factor of

m m'

Πc+(^)Πc-(^) of

J = l 7 = 1

we get

= Σ Σ
α,α' = 0 j i +j2 + 73 + 74 = m k

71 + 7 2 + 7 3 + 7 4 =»«'

Π fe+o
π = l

73

f] k + i(
n=l

n —

73

_0(x} ί+n,z j. l+jc+(z j l+?ί) (5.23)

74

Π / C + i W ί + J 2 + n ?

??ή)C-( ??ή) Π / C-i( X j ί + J 2 + J3 + n^J3 + n)C+(^3 + n)
n = l

yj,yj£<2j=i 7=1

Furthermore, we write, e.g.

J^ k + ί(x, ?/) c+(η) = lay dη fe + ί(x,
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where ^_^ means "contracted". Therefore,

Σ Σ (αίαΊ)- 1 Π
α,α' = 0 jΊ 4- . . . + J4 — m k=l

j'\ + ...+J4=m'
h J2

1 1 k + 0(xn, zn) I [ k _ 0 ( X j ί + n,
n=ί «=1

73

n = l Q

J3 + J4 α '+J3 + J4 \ (5.24)

Π dyjA+Wc+W Π dy'jA(y'j)c_(y'j))
7=1 j = l /

JI+J2 ϊ\+}2

Π c+(zn) Π c_(Z;) ̂
n = l n = l

The last combinatorial factor compensates for the number of contractions.

We reorder terms, setting

w =Λ +J2? W =;; + J2, j8 = α -hj3 +;'4, J8' - α' +73 4- ;4 . (5.25)

Then (5.24) simplifies to

= Σ Σ (""} ί
n + n ' ^ m + m' Jι+J2 = n V l / V l / z^zίφ

j +J2 + J3 +

71 72

k = l k = l

73 74 (5.26)
Π ίdτ^(τH + i(*7 ι + 7 2 + k>

. k = l Q

, τ)
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Two remarks are in order. So far, our calculations have been formal
manipulations of power series. We shall show below the convergence of
this series. The expansion (5.26) is a multi-linear expansion of cmm> indeed

cmm.=L({cnn.9n + n'^m + m'})9 (5.27)

where L is linear. Since expressions of the form (5.5) are finite linear
combinations of expressions of the form (5.17), it follows from (5.27) that
the expansion (5.26) is valid for the general case (5.5) and not only for
(5.17). Cmm. then denotes that part of Ce5l0(B) in which exactly m
(resp. m') particles are created (resp. annihilated) in the region (~β),
and in which an indefinite number of particles is created and annihilated
in Q.

VI. Convergence of the Particle Expansion of Operators in $10OB)

In Sect. V, we defined an expansion (5.16)

c= Σ cmm., (6 i)
m,m' = 0

of a bounded operator Ce2i0(£) in terms of unbounded operators
Cmm.. These unbounded operators can be written as

Cmm'= ί dx1...dxmdx(...dx'm,A*(xί)...A*(xm)A(x'i)...A(xt

m.)

We call cmm,(x1? . . . ,x m ;xί, ...,x'm>) the kernel of Cm m^; we shall see below
that its value is a bounded operator which acts on ̂ Q (cf. also (5.19)).

It is useful to consider two Fock spaces ̂  anc^ ^~Q as defined in
(5.19) and to identify the Fock space $* via a unitary transformation

Let (^Q)n, ('^o)n be the π-particle components of J^Q and
respectively. Then θ is defined by

Here, ιp','n e («^Q)m, ^» e (^)w and sym is symmetrization in the m 4- n
variables.
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Let now φm, φm 6 J^m Q = θ ((̂ ~ Q)w ® ̂ Q). By the definition (6.1) and
(6.2) of Cmn, we have

min(m,n)

and (ψm,Cmnψ'n) = (ψm9Cψ'tt)- £ (tpw, C M _ f e > „_*!/?;) . (6.5)
fc=l

We now view cm n(x l s ...,xm + n) as the kernel of an operator cmn from
^n,Q to ^m,Q with norm \\cmn\\Q: For ψ

CmnQ = SUp ψm, Cmnψn .

| |Vm| | = l

| | V n | | = l

From Glimm and Jaffe [12], we get

Lemma 6.1 ([12], Lemma 4.2) .
Let C E W0(B) and let cmn be defined as above.

Then

(6.6)

Proof. By definition of cmn,

||cmjβ= sup \(ψm9CmM\(mlnir112, (6.7)
| |v«ll = ι
l l v . ' . l l = ι

and also, for 0 :g k ̂  min {m, n},

/ m\ n\\^2

\(ψm, Cm-k,n-kΨ'n)\ Z \\Ψm\\ \\Ψ'n\\ llc^^^l^— — j . (6.8)

We now use (6.4) and (6.5) to get

min{m,n} / j n i l 1 / 2

The assertion follows now by induction on min {m, n}.
Our next step towards estimating ωmnσ(C) is an estimate on the

kernels k±, defined in section V, (5.15). Due to the particular localization
properties, they will be very well-behaved.
We describe properties of μt(x) and fe±(x, y) in the following

Lemma 6.2. Let μτ(x) be the kernel of the operator defined in (5.2),
let τ > - 2. Then

/2m \—
μt(x) = 21 / 2Γ(-τ/2)"1 η-p 2 K (t + 2)(m0|x|), if X Φ O , (6.9)

3 Commun. math. Phys., Vol. 25
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where Kv is a modified Bessel function, and

μτ(x) is C00 for xeIR 2 -{0}. (6.10)

For all nί, n2 eNu {0}, x0 > 0, τ > — 2 one /zαs

if | x ^ x 0 . (6.11)

Here M = (*ι +*1)1/2 (6 12)

Lei /c±(x, y) be ί/ze kernel of the operator K± defined in Eg. (5.15) and
let xφQ.

Then /c+(x, y) is a C°° function on (~β) x 1R2. (6.13)

There is a constant K such that for x φ Q ,

\k± (x, y)\ ̂  K exp(- m0 |x| - m0|y|) . (6.14)

Eq. (6.9) is obtained by a simple combination of formulas
(1.3.7) and (1.13.45) in Bateman [2], if τΦθ,2,4, . . . . If τ = 0,2,4,...,
μτ(x)r=0 if x Φ O . Eq. (6.10) and Eq. (6.11) follow from the properties of
the modified Bessel functions Kv (see e.g. Jahnke-Emde [17]). To prove
(6.13), we use the fact that Bd/4 is a fixed compact region, and we use (6.11)
with x0 + d/12. We consider only the term μ_ ι/ 2 £μ+ι/2> tne estimate
for the other term of K± is similar. Now

(μ_1/2ξμ+ 1/2) (x, y) = J μ_ 1/2(x - z)ξ(z) μ+ 1/2(z - y) dz .

Since ξ(z) = 0 if zφBd/4, and since x^β, μ_1 / 2(x-z)ξ(z) is a C°°
function of x and z, and therefore (μ-ι/2^+ι/2)(x?z) is a C100 function
of x and z on (~ Q) x IR2, because μ+ 1/2(z) has a pole which is of finite
order and falls off otherwise.

To prove (6.14), we consider (x, y) e ( ~ β) x ( ~ β) and (x, y) e ( ~ β) x β
separately. On (~ β) x (- β), by (6.11) and (5.10),

\k±(x,y)\ ^ C 0,d/2,-ι/2exp(-m 0 dist.(x, Bd/2)) - sup \ξ(z)\

(- m0dist (y, Bd/2)) ^ const exp(- m0(|x| + \y\)) ,

since 5d/2 is compact. On (~β) x β, by (6.11) and (5.10), we get a bound
const exρ(—ra0 |x|), by integration by parts, and since yeβ, and β is
compact; the assertion (6.13) follows, the lemma is proved.

We now define a decomposition of Cmm> which is designed to make
extensive use of the properties of k±ίo derived in Lemma 6.2.
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We rewrite Eq. (5.26).

- y y (nψm'~ L L 1 I I •/
n + n'^m + m' jι+J2 = n V l / V I

• J dx1...dxmdx'1...dx'm
Xi.xlΦQ

Π
fc=l Lk= 1 Q

k=ί Q

Jί J2

J dzί...dzndzf

1...dz/

n. Π ^+0fe ?^)Π
zt,zίφQ k=ί k=l

jΊ J2

cnnf(zl9...,zn'9z'ί9...,z'n,)ll k+0(x'k9z'k)H fc_0

k = l k = l

[f] Jdτ/c+ ί(x; ί + J i + t,τ)X*(τ) (6.15)
L k = l Q

k = l Q k = l

We shall estimate later ωmnσ(Cmm.) by estimating each term of the
sum (6.15).

We now use the following technical device. If D is a bounded operator
and if με/i, i = 1, ..., n is square integrable then at least as bilinear form,
on 9A(fύ x 2(A(fύC^(g) x

and it is straightforward to calculate that

fJ)^J>^ Π

/c commutators
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This means that [ ]̂ ,{ }̂ ,[ ] of (6.15) can be written as a sum of
terms of the form

± J dxί...dxmdx'1.,.dx'm,

k= 1 k= 1 Q

fc=l Q

J3 Ϊ4

k = J3 + l Q k = j'ί'+l Q

{ } (6.17)
J3 Jΐ

Π
k= 1 Q

Π
*=;',"+! 2

Cmm, is a sum of at most 8m+m' terms of the form (6.17).
As a next step, we Wick-order the A's and the A*'stothe right of { } in
(6.17). The number of terms thus obtained is bounded by (m + m')l. We
have thus rewritten Cmm, as a sum of at most (m 4- m')! 8m+m terms which
are of the form

±$dxί...dxjί+j'2dx'i...dx'j[ + J2

n { . } } l ] \ A ( x ' k } ^ (6.18)
f c = l k = l

where { . } is as in (6.15), each 7D is one of the quadratic creation-annihila-
tion operators described below, p ̂  m + m' — (j± +j2 +fί +/2) and ̂
is an ordering of creation and annihilation operators to the left and the
right of cnn, which are inside the { } brackets, subject to the following
rules :

1. All creation and annihilation operators to the left of cnn, are
Wick-ordered.

2. All creation and annihilation operators to the right of cnn are
Wick-ordered.
By construction, 74, Yβ does not appear to the left of cnn>, and 73, Y5

does not appear to the right ofcnn>.
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And this is the list of operators Yt which can occur as a YD. (The
variables x, x' are always integrated over ~ Q, τ is integrated over Q).

Y! - f A*(x) A(τ) fc + ί(x, τ ) d x d τ ,

Y2 = J4*(τ) Λ(x) fc + ί(x, τ ) d x d τ ,

Y3 = jA*(x) A*(τ) fc_f(x, τ) dx d τ ,

74 = $A(x)A(τ) k_i(x, τ ) d x d τ ,

) k + ί(x? τ) fc.fίx', τ) rfxdx'rf τ ,

') fc+ί(x, τ) fc_f(x', τ) dxdx'rf τ ,

y? = J^[*(χ) A(χ') /c+ί(x, τ) fc+ί(x', τ) ̂ x^x'rf τ ,

yg = J A*(x) A(x') /c.^x, τ) fc_i(x', τ) dxdx'd τ .

One can draw a graphical picture to show the allowed positions of the
Y's after iT-ordering. We let 4* = J A*(x)..., A* = J,4* (τ)..., etc.
Then the allowed terms are:

- î-
-y7-

Fig. 3

We note that the kernels/ of Yh i = 1,..., 8 and of K±^ are of the
form f ( x , y ) = X i ( x ) f ' ( x , y ) foUO* where f'(x,y) is C°° and falls off ex-
ponentially at infinity with all its derivatives. χα, α = 1, 2 is the character-
istic function of one of the regions Q, ~ Q or 1R2.

We expand all Y?s and all expressions J^4 (* }(x)/c±^(x, z) as sums of
operators : ̂ (/'̂  - χ j A(*\f'i2 χ2): and ̂ (A χj /ί2(z) χ2(z) respec-
tively. Here, f\ is the ith Hermite function and A(f) = $A(x) /(x) dx. We
shall write ft = f\ - χ without keeping track of the support of χ (which is
always one of the regions β, ~ Q, or 1R2).

J* /d* J* Λ * Λ * Λ * J* J * Λ * >d* A A r J* J* A A A A A Λ A A A A
ΠL /T. ,/! yT. y_l VT. /I. ^T. ^rl yΊ. VT. yT. *^MM' ''* •** •** •** 3̂- £j £3- -̂ * f * ^U £j £!•
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Then (6.18) takes the form

Σ V...V....Λ.*.. ΠΛ*(/O) π
. . . , i g = 0 j = l j = αι +
n + n' = 0

ί Π fjkMdxk Π fjk+n(x'k)dx'kcnn,(x
=l fc=l

α2 + 03 <Z

Π A*(fι) Π

By construction, <j^2 (m + w') and (by bounding the maximal
number of commutators in going from (6.17) to (6.18)) q^.m + mf. The
smoothness of the fc± will insure the convergence of (6.19).

Our next theorem uses only the decomposition (5.18) and none of
the more sophisticated decompositions derived later. Let C e 2I0(

let Cmm, be defined as in (5.16). Let Cmm, = ]Γ Cmm>>αα, be the decomposi-
α,α' = 0

tion of Cmm, into Wick monomials as described by (5.18), that is

Let ψ'1; ψ'2 eS>0, r l 5 r2 eN. For neN, σ = 2s, seN, we define

ω»α(Q = (TrιM φΊ , C fr2M ψ'2) exp( - Λnσ) . (6.21)

Our control over such expressions is collected in
Theorem 6.3. For fixed ψ'l9 t//2, rί9 r2 and for every Ce2ί0(J5) there

exists a constant K such that for all M , M', n, σ,

M M'

Σ Σ \ωnσ(Cmm,^\^K.
m,m' = 0 α,α' = 0

There exists a constant M(C,ε) = M(C, ε, φi,tp /2,r 1,r 2) swcfo ίfcαί /or
α»M>M(C,ε),

...... ,-„ / (

< ε

,m',α,α' = 0

uniformly in n and σ.

Proof. It is evidently sufficient to prove the assertion for a C of the
form

C = ί
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see also (5.5). We use Theorem 8.9 and we get

rn (C \<\ωnσ(^mm'a<x') = \

. | |c + | |™ + α | | c_ | |™' + α ' with C 1 ,C 3 >0,C 2 >1, (6.22)

where (as will be seen in Sect. VIII) | |e+| |~ and ||c-||~ are finite. Note
that this bound is not uniform in ||C||. It is just one of the main problems
of this paper to show that |ωnσ(Cmm,) - ωπ,σ(CmmO| < ε ||C|| as n, ri>n0.
The assertions of the theorem follow now from (6.22) and from the fact
that for finite σ, only a finite number of Cm m/α α/'s give non zero contribu-
tions to o}nσ(Cmm.Λa,). This theorem also proves the validity of Eq. (5.24)
and Eq. (5.26) since they are obtained by splitting each term in (5.18)
into a finite number of terms.

We come back to the proof of Theorem 43. In section IV, we have
already proved the existence of the following limit: Let ωmnσ be defined
by (4.10). For n^m, by using the definition (6.20), we find that with
ψ'Λ = Trχnτφa, α = 1, 2, τ = 2m, the functionals ωmnσ and ωnσ are equal. So
Theorem 6.3 shows that

_ _ < e, (6.23)
>fc,k ' ,α,α ' = C

for large M. By applying the arguments for the proof of the existence of
lim ωmnσ(i) to expressions of the form

<7~* 00

Ik k' \
/ T-T .£, r\ T~T Λ(f'\\ '] fU

m n σ \ j = ι J j = ι 3I

Urn ωmιισ(Ckk,αβO exists, (6.24)

since the kernels c± fall off fast enough. The existence of lim ωmnσ(C)
σ—* oo

follows then at once from (6.23) and (6.24).
We now come to an estimate which makes use of the expansion (6.19).
Theorem 6.4. Let C e^0(B). Then the decomposition (6.19) of Cmm, is

bounded in the sense that

\A*(f,) Π A(ft){.} Π
ί j = aι+l j = αι- f-α2

^K- | |C||y" ( m + m ' ) τ, with y , τ > l . (6.25)

Proof. By construction of (6.19), there is to every A to the left of {.}
at least one A to the right of {.} or an A* to the left of {.} a symmetric
statement holds for A*: for every A* to the right of {.} there is at least
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one A* to the left of { . } or an A to the right of { . }, see also Fig. 3. Since
there are q operators A and A*, and by the above argument, at least
q/2 of the factors Aw are either an A to the right of {.} or an A* to the
left of {.}. Note that q^(m + mr). We use the Schwarz inequality and
apply Theorem 8.9. Then we get

π

π
7 = α ι + α 2 + l

7=1

Π

y-Λna/2

Π

Here || { } ||Q^ ||cnn'||Q Π ||/jj|2> and Λis bound comes from the
k= 1

observation that

n + n'

f Π /• (x ) c '(x x 0 dx dx

defines in a natural way an operator from J^ Q to J^ Q, and hence an
operator from J^ to ^b> or fr°m ^ to J^ (by tensoring with 1). This
explains the above bound.

By Lemma 6.1 and the fact that fjt = f'j. χ, where the f'h are Hermite
functions and χ a characteristic function, we get

k=ί k=ί

Assume that \p\ has at most r particles. We want to apply Theorem 8.9 to

π
7 = 1

We expand R* R as a sum of Wick ordered terms, R*R = Σ Wn,, and it is
easy to see that the number of terms in the sum is bounded by a2!. The
kernel wzr of Wιv is of the form

w ι r = const Π /ίk(xk) f] 4,(xkO,
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where fc, k run over !,...,«! and some subset of {̂  -I- 1, ...,#! + fl2}
The constant is of the form Π' (fij9fijt)9 where the product runs over a
pairing of the indices which do not occur in Πk and Hv respectively.
We bound the constant by

We now apply Theorem 8.9 to coτσ(Wn)9 using the kernel

Note that / > α 1 and V>a^. With these preliminaries, we find, using in
particular Eqs. (8.24) and (8.25), a bound

Π

2

exp - Λn

P,P' = O
p p7

+ al+a2 . y Π ^"^ Π

j l , . . . . j p 6 J α , -r j = l ;'=!
j{,...,jpeJaι -r

+ aι+ci2 . Γ^~ a\ - pτ — p'τ

;;76JίJ = 0'i7i^^ / 2

5P^max(α,0)},and 7, C1 ? τ > l . We use
the bound ||/ί||~ ^Kί3 for the z — th Hermite function. Summing over
p and p', we get a bound

C(V>Ί) β fftf/ cΓβί (βι + ̂ 2)! ^αι+α2 -
j=ι

By the Schwarz inequality, the L.H.S. of (6.25) is therefore bounded by

Ί) Σ k..Λ.n J
9+ίf (f/||c|| ί:"+"' (6.26)

ΐ l , . . . , I g + n + n' J = l

where αα + ~ + a4 = q. By the remarks made at the beginning of this
proof, flj -f α3 ̂  ζjf/2 and g ̂  m + w', and so we get the bound

(6.26) ̂  C(φΊ) Cj ( m + w / ) τ ||C|| , for some C3 > 1, τ > 1 ,
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and where we have used n + rί :g m + m' and

since the Hermite expansion Σα ί l_ ί k/
/

ί l(Λ:1).../' ί k(Λ;k) of a smooth
function / has the property that

(see [13]),

with a Schwartz-norm | ||s. Theorem 6.4 is proved.

VII. Proof of Theorem 4.4

We shall prove in this section the bound

Theorem 7.1. For any t/)1? φ2 e ̂ 0, r 1 ? r 2 eN and every ε>0 there
exists a constant N = N(ε, φ1,ι/;2, r1? r2) such that for all t',t>N, uni-
formly in 5, with σ = 2s

\(TrtsΨι,Cmm.Trtsιp2)exp(--Λtσ)

-(frtls^Cmmlfrt,sψ2)Qχp(-Λfσ)\^ε\\C\\ y-m-m'

for all CεMQ(B\ withy >1.

It is immediate (sum over m, m', and use Theorem 6.3) that Theorem 7.1
proves Theorem 4.4.

Proof of Theorem 7.1. We shall use a partial Wick expansion (in ~Q)
of (7.1). By our lengthy construction, F^*} is an operator on «^~Q, and
we can therefore expand in terms of contractions between the V^ and
the other "legs" in ~ Q coming from Cmm, (only m + mf legs!) and from
V^ff (at most 3 legs in ~ Q!) or from the vectors ιpl, ψ2 (compact support
in momentum space!). The above remarks should indicate why this
expansion should nicely converge "on ^~Q". Our elaborations in
Sects. V and VI have shown how convergence is enforced "on J^".

We now use a variable n, which we choose very large, and we assume
ί, t' >n. For a given ε in (7.1) we shall find a minimal n for which the
proof will furnish the required bound, and that n will define
]V(ε, t/;1,ι/;2,r1,r2). We apply the term "Rn-skeleton" to a Wick term
whose graph contains no Vg 4yRι components, i ̂ nj^ n. The combi-
natorial argument of Sect. IV, Eq. (4.16) shows that one can decompose
the lefthand side of (7.1) into a sum of jRn-skeletons:
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Let n < t < f', let V$t = V&? if j < ί, V$t = Vff if j ^ ί. Then

- Λσ - (Γrιί'sΦι, Cmm' 2ί,sφ2) exp - At,a

s-1 / yPj \ * /s-1 \ * /s-1

' V i , Π M Π expKj Cm

-Σ' , Π - H Π «pκj Cmm,
j

Σ"

Here Σ' runs over the set {0 :g pj ^ /, 0 :gp} ^7} and Σ" runs over
j/c 0 .;O^Σfc 0 .^7-pj, O ^ X f c y ^ i - p A . We write (7.2) as a sum of
I i j I

two terms / I ! M + /2 > n, similar to the proof of Theorem 4.3. In /1>n, p,-, Pj = 0
for all j ^ w; /2>n is the remainder.

For the bound on term /1>Λ we bound first

,~ ̂
tj ^ '

-Σ" Π

Here Σ" runs over the set

and we show

' 1 - (7 5)

We have already seen in Sect. IV, Eq. (4.27), that Σ" { } is uniformly
bounded for all n. Now the sum of all terms in which ktj φ 0 for some
i Φj goes to zero like γ ~n since (Λ^ ^ ̂  const γ~l~j by (4.23). We therefore
have to show

s-1 s-1

lim ΠexpΛ,j U exp(-Λ ) f]
-*

and this follows at once from (4.25), and the fact that



44 J.-P. Eckmann:

This shows that for any ε >0 there is an N < oo such that for all n > N,
t,t'>n the expression (7.3) is bounded by ε. Note that by (4.25)

Π exp(-Λ i j f l-yly, 2) Π expΛ^Hl
i = n i — n

as n-»oo, which justifies our replacing

n-l s-1

exp(-/lt(T) by f] exP(-Λ jσfef)) Π exp(-Λy>1 -/ly.2)
j = 0 i,j = n

By construction, the contribution 7 1 ) W can be arbitrarily approximated by

n-l s-1 \ * /s-1 n-l

Π eXPFK, Π *XPVQj} Cmm\ Π eXpPQ, Π
•/ j = rι J / V/ = r2 •> j=r

-l s-1 Ί

Π eχP-^u,ι Π exρ-%2 Π"exP
,j=0 i, j=0 J i,j

where Π" runs over the set {ij;(i<nj^n) or (i^nj<n)}. The con-
tribution [ ] is uniformly bounded in n,s by const. \\C\\ y~m"m ' ? by
Theorem 6.4, and the product Y[" is bounded by a constant, uniformly in

ij

n, 5, since lim ΓΊ exp( — A{i i) = 1. Finally we have seen that A(ri)-+Q as
n-co^

n->oo and so the assertion of Theorem 7.1 is proved for the contri-
bution Iλ.

In /2, we shall not need any cancellation between the terms coming

/«

n-l s-1 V

and (frιt'SιplίCmm,fr2t,sιp2)Qxp(-Λt,2S),

but we shall show that the contribution from each of these two terms is
small, as n is large.

We call 'Έ-Wick expansion" the Wick expansion in terms of opera-
tors A*(x), A(x), xφQ.By construction of ̂  and J2, each ,R-Wick term
of(frιtsψl9 Cmm, Tr2tsψ2}

 exP ~ ̂ r2s which contributes to I2 must contain
at least one of the following contractions:

1) Vijit^yRi9k^l9293J^n9 ί^n; or k = 1,2, 3,4,; ̂ n, i<π,

2) ^^/Qi.,^l,2,3,j^n,

3) ̂ ^^^ = 1,2,3,4,7^^
4) VgJ^ψ2,k = l,2,3,49j^n9

5) "adjoint" versions of 1), 2), 3), and 4).

The smallness of the contributions to I2 follows from the presence of
these contractions. We can expand this in the following way:
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s-l s-l

Let TrtsJ=

Let VS^ denote "Vί contracted in one or several of the fashions 1) toKj^x ** J , t '

5)"; let ^_VR denote the corresponding statement for VR t.

Then

TrίtSΨl> Cmm' -2 ί S

= Σ (t l tsjVι, V$3 jCm m,fΓ 2 t sv>2)exp-Λ ί 2.
7 = «

s~1 - - (7.6)
+ Σ (Γr l ί s

j = n

s-l

- Σ (tlί

± further terms of third and higher order (sign alternates with number
of V's).

We only discuss the first three terms of (7.6), the other terms are
bounded in a similar fashion. We bound the absolute value of each term.
In each of these three terms there is a finite number of different Wick-
terms involving V£ or VRj. Each of these terms contains at least one
contraction which is "small" as n is large. We write, e.g.

***^C«»' = Σ V£jCmm .R + Cmm, V*^ . (7.7)
k = l k

Here : :R is Wick ordering of A*(x)A(x), with xφQ. Now VR ^ Cmm>

contains a kernel vRjk±^, with at least two variables identified, and we

have seen that the Hubert Schmidt norm of this kernel is small as j is
large.

Indeed the decomposition

shows that the contribution from the first four terms of (7.7), summed
over j ^ ί goes to zero as ί->oo, uniformly in | C||, using the bounds of
Sect. VI.

The last term in (7.7) yields a small contribution since there are at
most 3 contractions between V^ and VRjt,jJ

r ^ ί, and so in this and all
other possible cases one has a factor^] y~j~j' ^(y — l ) ~ 1 y ~ t ~ j ' due to

j ^ t
(4.21)-(4.23). This proves that the first two terms in (7.6) go to zero in
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absolute value, uniformly in \\C\\. In the third term the argument is similar
but there occur more terms.
We expand

F* Γ V — VRι\^mm'^fyRJ' ~ Li ^

and then we repeat the above arguments.
In higher order terms, the argument is similar. It is easy to verify that

for a term of order p in V^\ one will get a bound

s-l

Σ (T in V* V* Γ V V T
\J-rίtsΨl> ' Rj. " R.. ^mm' v R ,_. J R,D * rΊ

h jp = n
h ~'jPeJ

Pi 2

^ const. £ Yly~(Jl)"/2y~m-m'\C\\

where y, τ > 1, J = {j. | j. ̂  (n + z')1/2}
Summing over p, we get the bound ε(n) \\C\\ y~m~m' for /2, with ε-»0

as n-^oo, and hence Theorem 7.1 is proved.

VIII. Estimates

In this section, we present the technical estimates we needed in the
previous sections.

The estimates are roughly of two types: estimates on certain numerical
kernels and estimates of functionals ωnσ acting on Wick monomials with
smooth kernels.

We start with the estimates on the numerical kernels υ(g\ defined in
Sect. II. Our two basic estimates describe the following facts: Lemma 8.1
shows that \\XjV(g)\ 2 ~0(Vol(supp0)) if g is smooth enough and if its
support is essentially a disk in IR2. Lemma 8.3 shows that if at least one
of the four variables of υ(g) is projected outside (suppg) by a projection
P then \PijV(g)\2

2 ^ ®(y~j) for some y > 1. This means that v(g) is essen-
tially concentrated on (suppg), with a square integrable tail outside of
(supρ0).

We shall use the following notation. Let / be any function, then we
write

£„(/)= Σ sup|fc|' |/(/c) . (8.1)
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If the Fourier transform / of / exists and is n times differentiable, then
there is a constant Kn, independent of/, such that

a | ρ l ~
Dn(f) g Kn £ max sup -— f (x)

'';,""£•• <8 2)

u s

Here'
Symbols C(α, b, ...) will denote constants which depend on α, b, ... the
symbol may take different values in different lines of an equation. C is
any constant. The absence of an argument in C(α, b, ...) does not imply
that the constant is independent of this argument.

Lemma 8.1. Let g be a smooth function with compact support. Let
v(g) be defined by (2.8) and let χ; be defined by (2.5). Then there is a constant
λθ9 independent of g, such that

\\χjv(g)\\2 ^ λ0 sup (1 + |fc|) \g(k)\ ^ λ.D^g) .
fcgR2

Proof. By definition

We bound (8.3) by

by power counting [22], [6].
Note. C(Xj) depends on the scaling of χ; in the following manner:

C(χ .-) = C(m0) ln( max max \k\/ min max \k^\ , (8.4)
\ k e s u ppx., i = l .. 4 ' kesupp^ i = l ... 4 /

where m0 is the mass in μ : μ(fe) = (m% + /c2)1/2.

Lemma 8.2. Let ζj be a smoothed version of χ; , defined by
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where φ e ̂  , J φ(k) dk = 1, φ(k) ^ 0, 1 < α < 2. There exists a constant λ0

and a constant y > 1 such that

"j/2

D,(g\ for all j . (8.5)

Proof. By Lemma 8.1, it is sufficient to bound

.-χ,.)2 (&!,..., fc4)

(8.6)
i - 1 \i = 1

We divide (IR2)4 into 3 disjoint regions Rίj9 R2j, R3j: Let β = (2ot)1/2ι
we define

max (k^ ^ 2j-βj or max |/d^
ϊ = 1 . 4 i = l 4

» ; = \ ( k ι , . . . , / C Λ ) ; max \ k j \ e ( 2 j — β\2j-
J ' ί = l . . . 4 ' '

We bound J by observing that if k e R^p each ki is at least at a distance
RU

βj from the boundary of suppχ^ . Therefore the integration in ζj extends
at least over the set |/ f | :g βj, and

(8.7)

for any yl > 1 and some finite C(y l 5 φ) since φ decreases faster than any
polynomial. From (8.7), we conclude that

and so, the assertion (8.5) holds for this part. A similar argument can be
used for /^j Finally the contribution of #3j can be bounded by using
(8.4). We get as bound for large j: D,(g) C ln((2j + βj)/(2j- βj)) ^ D,(g)
• C ln(l + 3βj/2j) ^ C - D 1 ( g ) β j / 2 j . This completes the proof of Lemma 8.2.
Lemma 8.2 will allow us to smooth freely the function χjf

Lemma 8.3. Let g be a smooth function with compact support, and let
ζ be a smooth function whose support satisfies dist(suppζ, suppg)>d,
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for some d>0. For d ̂  1 the following estimates hold. If ζ has compact
support, then

*2~j'2. (8.8)

£ λ,

If I — ζ has compact support then

sup sup
xe R2 |ρ'

for some A0 independent of (, g and j.

Proof. We write

(8.9)

fl
n = 2

θ+
π = 2

1/2

-1 211/2

(8.10.1)

-l

i = 2

2 1/2

The term ζre^ is obtained as follows: If ζ has compact support then we
set Ireg = C If ζ — 1 has compact support then ζreg = (1 — ζ), in other
words, we have omitted from (8.10.1) a contribution coming from the
δ function (= 1). But this contribution is zero since for k± — I, [ ] vanishes.
One can view these remarks as a consequence of the fact that (8.10.2) is a
commutator.

We estimate (8.10.1) and (8.10.2) separately. For the first term, we
recall from Lemma 6.2 the bound

4 Commun. math. Phys., Vol. 25
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We now use the essential assumption that the supports of ( and g are
separated by a distance d > 0. Therefore

dxQ dyτ

To bound (8.9), we bound this quantity by

-cw

ίί x d y .

C(N9N') Σ sup sup
' dxβ

• s u p I
\ v e s u p p g f "

We have assumed d^l.
To bound (8.8) we shall use instead the bound

C(N, N'} EN(ζ] d-3~N-NΈN,(g) = B2(N9 N', d).

We therefore get

/
1(8.10.1)1 ̂  f dkί ... dk4 J χ,(/c 1 ? . . . , /c4) (JfeJ + I)~2(|/c2 + k3 +

V

L 2 \ l / 2

by power counting; B = B1 or B2.
To bound (8.10.2), we use the inequality

Σ
i = 2

Now we bound

|CΓβg(fc) μ(k)\ ^

+ Σ M*i

ι - o| (MO + Σ MΌ) ( Σ μw
V i = 2 / \i = l

- D3(ζreg) .
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Therefore

|(8.10.2)|2

• Π
n = 2

I/! + fc2

n = 2

χ^/q ... k^g(l^ + k2-

ζreg(kl ~ Ί) M^l ~ ^l) '

2 μ ( Ί ) + Σ
n=2

Σ
n=2

+ k2 + k3 + /c4)

4 \ -1

Σ μ(>
n=2

k2 + k3 + ̂ D'1

(/1)+ Σ M(

by an explicit application of Wemberg's theorem [22]. This establishes
our bound on (8.10.2) and proves Lemma 8.3.

Corollary 8.4. Let g be a smooth function with compact support and
let ΛClR 2 be a region such that dist(suppg, R}>d, for some l^d>0.
Let PR denote the projection onto R in one variable. If R is a compact
region, then

3α-J())} (8.11)

for any 1 < α8 < 2.
// jR is the complement of a compact region then

{(2/α)- ί/2 + (2/α8Π/2 (VolflR2 -

Proof. We first replace χ^ by a smooth function ζj, as in the proof of

Lemma 8.2. Let φ(k) 2: 0; φ(x) = 0 if |x| ^ 1/2 and suppose

We set

J
1*1 <'

(8.13)
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We shall fix α later. Then

where we choose £ to be smooth, ξ = 1 on (suppPjR)+α-j£/, ξ = 0 outside
(suppPfl) + 3α-Jd, and smoothly interpolated between 0 and 1 elsewhere.
For large 7, dist(suppξ, supp#)>d/2. We bound (8.11) by

^ \\PR&j-Zj)v(g)\\2+ \\PRζjξυ(g)\\2

Σ X i C j
ί = 0

By Lemma 8.2, the first term in (8.14) is bounded by

Let dist(fe!, slippy) ̂  2". Then

C/fc!,...,^ ί d/1(α- '<0-2φ(α- 'd/1)
21-211,1

Therefore we find

If R is a compact region, then by (8.8)

(8.14)

(8.15)

(8.16)

The bound on the derivatives of ξ comes from the smooth construction
of ξ. We therefore get the following bound on (8.14):

\\PRW

+ C(N)

(8.16a)

by an obvious bound on £. This proves (8.11).
i
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To prove (8.12), we use (8.9)

d^ „
dxρ

and therefore

C(AΓ)

The bound (8.12) is established, Corollary 8.4 is proved.

Lemma 8.5. Let jeN and let g±j be defined by (4.4). Then there is a
constant λQ < oo such that

Lemma 8.6. Let vRj and VQ. be defined by (4.8). Then for v small enough,

\\vRj-Vj(g+j)\\2+ \\vQj - Vj(g_j)\\2< λ0y'j for some y>L

Lemma 8.7. Let g±j be defined by (4.4). Then, for v small enough

|| Vj(g) - Vj(g+J) - Vj(g -j)\\2< λ0y ~j

for some y>l.

Lemma 8.8. With the notations (4.17), i / ί φ j then

^ \ΛijtΛ\ :gC y ~ l ~ j for some y > 1.
α = l , 2 , 6 , 7 , 8 , 9

Note that Lemmata 8.5-8.8 prove Lemma 4.5.
Proof of Lemma 8.5. This Lemma follows at once from Lemma 8.1.

Note that \g+j(k)\ is uniformly bounded in j by const, maxg(x)

• Vol((suppgf)+4v). Note also that |fe| \g+j(k)\ is bounded uniformly in;

by & ("length of boundary of β" 8 v~j vj).
The last factor comes from the derivative near the boundary of Q and
the first two factors describe the volume over which this derivative is
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not zero. Since g and g' have compact support and are smooth, the
assertion follows.

Proof of Lemma 8.6. We prove \\VR —v.(g+j}\\2<Cy~j only, the
proof for the other term is similar.
By definition,

ς?> v(g+J) - χf υ( + J 2
(8.17)

^ 11(1 -

The first term is bounded as follows: By construction of v(g+J)9 Cj an(3
of (1 — X~Q) there is at least one of the four variables in which

(1 - χ<?β) ζf %+J) = (1 - χ<ί>e) ζf ξMv(g+J)

with dist (supp ξ, supp g+}}^ VJ. By Lemma 8.3 we have

Note that E^g+j) is uniformly bounded in j (see proof of Lemma 8.5),
and the assertion follows now by an argument similar to (8.16):

The second term in (8.17) is bounded by Lemma 8.2. This completes
the proof of Lemma 8.6.

Fig. 4

Proof of Lemma 8.7. The proof is a combination of Lemma 8.1 and
Corollary 8.4. Let gΔj = g-g+j — g-,-. We write gΔj as a sum of g^s
which have more or less circular support and whose derivatives are
bounded by v(1 + ε)j, see Fig. 4.
The number of such gjt's necessary to "cover" gΔj is 0(vJ). Then
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By Corollary 8.4, ifgji and gjv are not nearest or next to nearest neighbors,
then

,^jv(gjM2 (8.19)

i ) l l 2 \\XjV(0ji')\\2

^ C E,(9ji}
2 v 7^ - {(2/aΓjl2 + (2/α8Γ j/2}

and we get the desired bound if v 9 α 4 2~ 1 / 2 < 1. This is our choice of α.
It is now easy to bound (8.18):
Let £ = £' + £"> where Σ; extends over {ϊ = ϊ'}} nearest neighbors

i,i' i,i' ί , ί '

and next nearest neighbors.
Then

^ )̂2 + C - v2 Vα42~ 1/2V

for small ε with some y > 1. QED.
Proof of Lemma 8.8. We prove the assertion for Λ^ ;>1 only; the proof

for ΛijtΛ9 a = 2,6,1, 8, 9, is similar. By definition, yl^ ?1 — (Ct ι;(^+ί),

X~Q O^ί^+j))- ̂ e assume ί>3j. Then let

w = l

where φ(/c) is smooth with compact support contained in

| fc |^ l/2,φ(x)^0, f (pOc)dx=l and J φ
W ^ x

jS will be fixed later. Now we rewrite

To bound the first term in (8.20), we use an argument similar to the
proof of Lemma 8.2.
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We consider 3 regions (in position space):

R2i = {(*!> > >X4)\XkΦ 2> and dist(Xfc,dβ)^β~ ί / 2 for at least one fc}
p /TD 2\4 p p
IV-i: — \ίt^ / — -**• 1 i — •*»• 7 i

Let χRόι be the characteristic function of Rδί, δ = 1, 2, 3. Then

3

<5= 1

For (5=1,2, we bound

by an argument similar to (8.16) and by Lemma 8.5, and Lemma 8.2.
The smallness of the term with δ=3 will come from the bounded volume
of R3i and its distance from supp g+j.

We use the second term of (8.16a), which is a bound on \\XRζjV(g)\\2>
We get for β>v,i large,

We shall therefore require 1 < v22 < 2. This gives a bound

for some y > 1. To bound the second term in (8.20), we note that according
to (8.16)

By construction, we also have

xPξPf-WξP^f, where

1 ? '" ' 4 lO otherwise.

Therefore
00

(8.21)
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Now again by (8.16),

|Skζ^l if k£2j<2iβ

and \9kζj\£C(N)vjN2-lk-j\NI2

9 since, for large fc, 2k-βk>2k/2.
Therefore

= o J
8.21)^ C Σ 2- ί Nv ί N2+ k N l

= 2 ι / 3

<; C/ ~ f ̂  Cy~ ( ί + j ) if v is small enough.

This proves the assertion for the case i > 3j. The case j > 3i follows by
symmetry. The other cases follow from Lemma 8.6.

We now discuss the functionals ωmnσ on Wick monomials with
smooth kernels.

We shall use the following norm. Let wm/1(x1? ..., xm + n) be a function.
We define

m + n

IKJ~ = sup \\l\μ(k^ wmn(k,,...,km + n ) \ \ 2 .
O i v t ^ 3 , V r ΐ = l

Then one has the important bound

Theorem 8.9. Let Wmn be a Wick monomial of the form

A*(xί)...A*(xJA(xm+1)...A(xm+J,

ith βt e {1, 2}, χ(1) = χβ, χ
(2) = χ^Q. T/ien uniformly in τ and σ,

^O, C2>1, C3>0.

Proo/. We look first at a contraction

ί dxwm π(x 5 . . .)ι;Q j(x,...)
xeβ

- j dxdydzwmn(x,...)μv(x-y)μ_v(y-z)vQj(z9...)9
xeQ
zeQ

with v > 0, and μv is defined by (5.2). We now write

Jdxw m π (x, ...)χQ(x}μv(x-y)
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By Lemma 8.10, || \μ.v_ε(z-zl)χQ(zl)μv(zf -y)dz' ||2 - C v ? ε< oo if
_ i _ 2s

>v> Similar statements hold with Q replaced by ~ Q, and

for contractions to υR .

We write, with z\ = vκ or vκ ,5 ^j KJ KJ'
J dxwmn(x,...)υSj(x,...)

xφQ

= J dxdydzwmn(x, ...)μv(x-y)μ_v(y-z)υSj(z, ...)

- J dxdydz\vmn(x, . . . ) μv(x-y) μ_v(y- z ) v S j ( z , ...).
*eβ

We now "absorb" μv or μv + ε into wm π:

Here sup extends over all subsets / of {!,..., m + n}, Cv ε = max{l,Cv J 2,

and all || || 2-norms are over the variables which are left after the integra-
tion over the variables inside || ||2.

As in Sect. IV, Eq. (4.28), we estimate ωτσ(Wmn) by giving a bound on

Σ Σ ( \ Ψ ι > \ S p q m n \ \ ψ 2 \ ) , (8-22)

where Σ extends over all Wick terms of (K*)p Wmn V
q whose graph is

Spqmn

a skeleton graph. We get

(8.23)

Suppose ψ 1 and φ2 have at most r particles, (i.e. the A -particle components
o f ψ i and ψ2 are zero if k > r). Then at least m — r and n — r contractions
are between Wmn and some V^*} or V^\ and in these contractions we
apply the inequalities derived above. It follows at once that for v > 0

:g const, y ~j for some y > 1 ,
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by Lemma 8.6. Therefore we can apply Lemma 2.2, and we get

max(|V l |, \Spqmn\\ψ2\)£Cψίίp2 £ Π ?~A Π Γ* ' I I "Ul ~ (8.24)
Spqmn j I jp 6 Jm - r k = 1 k = l

jί . . . j q e J n - r

-1/2 Σ k 1 / 2 - 1 / 2 Σ fci/2-1/2 X fci/2-1/2 Σ fci/2

<Γ l l w I I (v — l)~(p+q)y k = 1 k = 1 k = 1 k = 1

= ψιψ2 ' I w n l l ~ V > / >

<C I I W | | v ' - m 3 / 2 - ε - n 3 / 2 - ε ,,-^3/2-^3/2-. / 8 25\
= ψιψ2? I ' mπ II ~ / / ' V.'-' ^^/

for any ε > 0.
Here 1; . . . , j p eJ m _ r = {/t|j^ i112 (truncation), p^>m — r (number of

legs to connect)}. The constants /, y" are larger than 1.

The assertion of Theorem 8.9 follows now at once from (8.23) and (8.25).

Lemma 8.10. Let Q be a polynomially bounded region in IR2. Then

I I \dz μ _ v _ε(x - z) χQ(z) μv(z - y)\\2 < oo

— 1 — 2ε
if <v<i/2andε>L

Proof. We use the following statement, and then Lemma 8.10 follows
by simple power counting.

Lemma 8.11. Let Q be a polynomially bounded region in IR2 and let χQ

be the characteristic function of Q. Then the Fourier transform χQ(k)
satisfies the following:

For \k\ = 1, k = (klcosφ, klsmφ\ kl fixed,

χQ(ηk)^ C — for all φ and η>0

and χQ(η k) ̂  C- —2- for almost all φ e [0, 2 π), and η>0.

Proof. Let {(J be a covering of IR2 with smooth functions of compact
support such that

1) C α ' XQ =N 0 for a finite set of α's.
2) The boundary of the support of Cα χQ contains either a segment

of two edges of the boundary of Q which meet in a corner, or no edge of
the boundary of Q or a segment of one edge of the boundary of Q (Fig. 5).

We now prove the assertion of the Lemma by proving it for each

ζα Zρ
If C α ' ^ Q —Cα' then the assertion is trivial, by the smoothness of ζα.
If ζα χQ contains one sharp edge, then ζα χQ = ζα χQ,, where Q' is a

square.
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Then χQ, has the properties which we want to prove for χQ (as can be
seen by a direct calculation), and hence (ζα χβ)~ (fe) = J(α(fc — 0 7<2'(0 d/
has these same properties since convolution by a function which falls
off faster than any polynomial preserves the asymptotic behavior,
(see [16] Lemma 4.3). The case with two edges follows in the same way,
by letting Q' be a parallelogram.

•supp ζa

supp

Fig. 5
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