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Abstract. The algebra of observables for the renormalized ¢* interaction in 3-di-
mensional space-time is constructed. It is shown that the von Neumann algebras associated
with observables in a bounded region B are independent of the space cutoff which is used
in the construction of a Hamiltonian for this interaction. This result is shown to be useful in
the construction of a translation invariant ¢* theory in three dimensions. It also gives a
physical criterion for the equivalence of non-Fock representations of the canonical com-
mutation relations.

1. Introduction

Recently, there has been some interest in a certain class of non-Fock
representations of the canonical commutation relations (CCR) which
occurs in a natural way in the construction of a dense domain for a
Hamiltonian for the :¢*: interaction in 2+ 1 dimensional space-time.

This construction was initiated by Glimm [107], who considered an
interaction

H,(9)=H,+ | 0% (x)g(x)d*x+ M, +E, (1.1)

with a momentum cutoff ¢ (the momenta occurring in the interaction are
bounded in absolute value by o) and with a space cutoff g which is a
smooth function with compact support. H, is the free Hamiltonian and
¢,(x) is the cutoff free boson field at time zero:

P(x)= [ (k> +md)~*(a*(k)+a(—k)d*k, my>0.
lkl<a

M, and E_ are the mass and the additive counterterms respectively
whose definitions are suggested by perturbation theory. In order to
define a Hamiltonian H (g) in the limit ¢ — oo, Glimm used a modified,
truncated version of the formal wave operator. This operator T,(g) is
called a dressing transformation. His construction is summarized in the
following

Theorem 1.1 (Glimm [10]). Let A,(9)=|H ' [:d% (x)g(x)d*x Q|
where Q is the Fock vacuum. There exists a family T,(g) of dressing
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transformations satisfying for p, ' € 9,

L 1im (T, (), Ty(@) ) exp = A,(9) = (T, (9w, T, (9)), (1.2)

exists for all 9, o' = 0.

I1. The expression (1.2) defines a positive definite scalar product (., .),
on the linear hull Z(g) of {T,,.(9) w|w € Dy, all 0 20}. Z(g) together with
(-,.), is a prehilbert space whose completion F (g) is a separable Hilbert
space.

1. |H,(9)T,,(9)w|*> exp—A,(g) is uniformly bounded in 0 <6< %0
and 1im(T,,(9) v, H,(9)T, ,(9)y) exp — A,(g) exists and defines a sym-
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metric operator H . (g) with domain Z(g).

It is easy to show that the multiplicative “renormalization” exp + 4,(g)
is infinite in the limit 6 — oo; indeed A,(g)= O (In ). This fact plays an
important réle in the following construction.

Consider the algebra y(B) generated by {expi¢(f), expi n(f),
f € 25} where Z is the set of all smooth functions with support contained
in BCIR?, and where n(f) is the time derivative of the free field, at
time zero. There exists a natural representation I, of y(B) on # (g)
obtained by defining II,(C), Ce Uy(B) by (T,,(9)w, 1,(C) T, ,(9)y’),
EJL%(TQG(g) v, CT, ,(9)y')exp—A,(g). The existence of this limit is

proved in Theorem 4.3. Fabrey [8] and Hepp [16] have shown that such
representations are inequivalent to the Fock representation. Let (B, g)
be the weak closure in . (g) of I1,(U,(B)); AU(B, g) is a von Neumann
algebra. It is natural to ask under which conditions are the two algebras
A(B, g) and A(B, ¢') unitarily equivalent, which in turn would signify that
the representation does not depend on the space cutoff g.

Similar problems have been treated in the literature. Chaiken [3] has
developed necessary and sufficient criteria for representations of the CCR
(in fact, Weyl systems) to be equivalent to the Fock representation. In
addition, necessary and sufficient conditions for the equivalence of quasi-
free representations of the CCR have been given by van Dacele, Verbeure
[207] and Araki [ 1]. No such general results have been found for our case
of representations which appear not to be quasifree (and are thus not
Fock representations). Fabrey [8] has shown that two representations
are not disjoint if essentially |4, — 4] is bounded uniformly in a. Oster-
walder and the author [7] have shown that the representations obtained
from different truncations in the definition of T,(g) are all unitarily
equivalent.

! ¢, is the set of all vectors in Fock space whose n-particle component is zero for n
large and which have compact support in momentum space.
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In this paper, we analyze the effects of a change of g to another
function ¢'. If g is not equal to ¢’ on a set whose volume is not zero, then
|4,(g) — A,(g")| = O (In 6). The representations A (B, g) and A (B, g') are
both non-Fock if g %0, ¢" + 0 on B and so none of the above criteria will
apply. One can, however, make use of the geometrical relations between
g, ¢’ and B, to establish unitary equivalence. This is expressed in our
main result:

Theorem. Let B be a bounded, open, convex® region in R?. Let
B,,={xeR? dist (x, B)<d,}. If g(x) = g'(x) on By, for some d, >0, then
A (B, g) and N (B, g') are unitarily equivalent. The equivalence ¢ is natural
in the sense that ¢ (IT1,(C)) = I1,.(C) for all Ce Wy(B).

Such a result does not come really unexpectedly. It signifies that the
“local observables” derived from expi¢(f) and expin(f) can in fact
not “see” a change of the space cutoff g if this change takes place outside
of the support of f. We shall see below what this implies in terms of the
dynamics of the :¢*: model in 3 space-time dimensions.

The above theorem allows the construction of the time zero quasi-
local (C* —) algebra U, for the coupling constant 4 (see e.g. Haag [15]
for a definition of quasi-local algebras). Indeed, let 2 ,(B) be the equiva-
lence class of all algebras (B, g5 ;) gz, » being smooth with compact
support, gz ; = 4 on B, for some d > 0. 2, (B) is an (abstract) C*-algebra.
For BC B’ there is a natural injection ;(B)— 2[,(B’) defined on any
representative (B, gz ;) € A,;(B). Therefore the inductive limit
u {2,(B); B bounded} is defined, and is a normed *-algebra whose
uniform closure we denote by 2, the quasi-local algebra for the coupling
constant A.

A more important application of the main theorem is its connection
with the program of Glimm and Jaffe to construct a :¢* theory in
2 space-dimensions. The program can be visualized in the following
diagram:? (see Fig. 1).

We give some explanations:

Point (1) is the construction of a domain for a symmetric operator
H (g), with a fixed space cutoff g. This construction, whose results we
have summarized in Theorem 1.1, has been done by Glimm in [10]. In
point (2) and point (3) important properties of the Hamiltonian H (g)
are derived. Point (2) is a proof of the semiboundedness of the Hamiltonian
H . (g). This problem, and point (3) are under investigation by Glimm
and Jaffe. Point (3) is the construction of a unique selfadjoint limit of the

® The convexity of B is inessential and we have restricted ourselves to this case for
convenience.

3 The program, conjectures and allusions to techniques being used in proofs which are
still under work have been kindly communicated to me by Prof. Glimm in private dis-
cussions.

1%
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©) Construction of a symmetric operator
H..(g)on a domain 2 (g) < # (g)
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Intersection property
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planes with cutoff in one direction only

Finite propagation speed in all directions,
construction of fields

@

Fig. 1

operators Hy ,(g). The limit must be independent of the parameter 0 of
point (4). Point (4) is the following conjecture: Choose a cartesian
coordinate system 6 in IR* and let (k,, k,) be the two components of k in
this frame. By ¢ we denote the momentum cutoff which restricts only the
k,-component to values |k,| < o, the other component being unrestricted.
For fixed g and finite g, one can expect H.(g) to be “local” in the “2”
direction, and H(g) should have “finite propagation speed” in the “2”
direction; such results can be proved using ideas which go back to Guenin
[14] and Segal [19], and which have been applied by Glimm and Jaffe in
[11]. By “finite propagation speed” we understand the following: Let B
be a bounded, convex region, and for ¢>0 and a given cartesian co-
ordinate system 0, let Sfi),, be the narrowest strip with boundaries
parallel to the x,-direction which contains By,,.. For every g, one
constructs an appropriate truncation H,; of the free Hamiltonian H,
and we define H, ,(9)=H,; — Hy+ H,(g), where 0 is the angle between
the x;-axis and some fixed coordinate system. Then “finite prop-
agation speed” in the “2” direction means: For A4 € A(B,g), one
has @, ,,,,,(4) = expi(tH, ,(9)) A expi(—tH, ,(g)€ U(Sf,,. g). and
%.9.5.4(A) is independent of g in the 2-direction if g is held fixed on S, ,,
(cf. Fig. 2).

The “independence” of g is really nothing else than an application of
our main theorem (5). Indeed, by the main theorem, U (B, g) is unitarily
equivalent to the algebra on Fock space, 2 (B), whenever supp g B, =0
for some d, > 0. Therefore A (S, g) is really defined and is, for example,
equal to

A ((supp g S e 9)0 Wio) (ST+ .\ (supp g N S{F),) -
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Result 1s independent of
changes of g in shaded
region

Fig. 2

But (supp g {7, ), is a convex bounded region if supp g is, and for such
regions the main theorem gives the required equivalence criteria. With
this result, one can easily go to the limit ¢ — co. In point (6), one would
like to prove that the intersection U (B, g)n(B,,g) is equal to
A (B, N B,, g). We sketch the ideas of the proof of the “finite propagation
speed” asserted in step (7) as a consequence of steps (3)— (6), which
should show their respective rdles in proving this result. The statements
should be understood as conjectures.

Let B be a bounded open convex region in IR%. Let g (x) = A on By ses
let g have compact support. For any cartesian coordinate system
0=(x,, x,), let S® be the narrowest strip with boundaries parallel to x,
which contains B. It should follow at once from the selfadjointness of
H (g9) and from the “finite propagation speed in half-planes” (steps (3)
and (4)) that expi (t H,,(9)) ¥ (B, g) expi(—tH ,(9))C U (S{7), g). One now
rotates the cartesian frame and thus finds

expi (t H,,(9)) W (B, g) expi (—t H,(g))C[)AS}, 9)

where the intersection runs over all frames. By (6) one will find
() ASH, 9= (ﬂ S, g) = A (By, g)- So finite propagation speed is
0 o

proved for each fixed g, and by the above remarks, the automorphism
u:A—expi(t H,(g) Aexpi (—t H,(g), Ae¥ (B,g)

is independent of g if g = A on By, for some &> 0.
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This paper is divided into two parts. In Part 1 we set up the definitions
and state the results; Part 2 is devoted to the technical aspects of the
proofs. Sect. II contains the definitions and Sect. III contains the statement
of the main result and its proof as a consequence of the fact that a certain
functional is normal on both algebras A (B, g) and A (B, g'). This normality
follows from the fact that a sequence of functionals approximating the
above functional is norm convergent. These functionals are given in
Sect. IV, where we also state the corresponding theorem. The sections of
Part 2 deal with an approximation of operators in y(B) in terms of
Wick monomials with creation-annihilation operators in the complement
of a region containing B, (Sects. V and VI). It is one of the main problems
to show that this approximation converges weakly, whereas such a
result cannot be expected to hold for the usual Wick expansion due to
the non-Fock character of the representation of the canonical commuta-
tion relations induced on % (g). In Sect. VII we prove the norm con-
vergence of the sequence of functionals defined in Sect. IV. Sect. VIII
contains some purely technical estimates.

Part 1. Definitions and Results
I1. Notations and Definitions

In this section we introduce some notation. For the definition of
Fock space 7, the reader is referred to the literature (e.g. in [16]).
The expression j.d)j.(x)h(x)dzx has an expansion

4 4
Y W= Y fat(ky)..a* (k) a(ki,,)...alky) woop(ky, .o ko) dk, ... dk,.
i=0

i=

(2.1
Here,
Wign(Ky, ..., K ()HM k) V2R (kg4 Ak =k — e — k)
=1
: if |k|<o,j=1,..4,
0, otherwise ; (2.2)

~ denotes Fourier transform, u (k)= (k? + m2)!/?, m, > 0. In modifying
Friedrich’s perturbation theory, Glimm has defined “dressing transforma-
tions” [ 10, 16] which are defined on 2,C % (the set of all vectors whose
n-particle component equals 0 if n > N, some N, and which have compact
support in momentum space). These dressing transformations map into
the domain of H,+ j:cbj,‘:(x)h(x)dx-%— counter terms, and their limits
o— oo define a domain for the renormalized :¢*: interaction with space
cutoff in 3 dimensional space-time. We define a simplified version of this
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dressing transformation, which gives rise to the same representation of
the CCR as the transformation given by Glimm (see [7]). It is defined by

T, (=[] exp V. (23)
j=r J
where
4

Vo= V)= = sk 0] ik
= (2.4)

4
Jla*tkydk: V=V,
i=1
Furthermore y;(k, ..., k4) is the characteristic function of

Ijs{(kl,...,k4)|m?x|ki|e[2j,2f+‘)}, =12 (25

zgs{wl,...,k4)ymiax|k,.]§z}, 2.6)

j
andexp A= ) A"/n!.
J n=0
Whenever the truncation is not specified, we shall write ' for an operator
with four creators.

We finally define

A=V, QP =4v. |3, and A (h)= i/lja(h) 2.7)
i=0

J

where Q is the Fock vacuum. We also set, for ¢ =2/* !,

4 -1
Vi = U}a(h) = Xj( Z #(k1)> Wagn = vj(h)
i=1

4 -1
and o) = — (Z u(k») Wani -
i=1

Let 5 be the set of all functions in & =% (IR?) whose support is con-
tained in B. Then U, (B) is defined as the *-algebra generated by

{expi@(f), expin(f)., feZg. (2.9)

Here ¢ and = are the time-zero free field and its time derivative re-
spectively:

b(x) = 2712 [ e** (k) V2 (a* (k) + a( — k))d?k (2.10)
a(x) =272 [ &% u(k) Y2 (a* (k) — a(— k) d2k . (2.11)
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The following result is standard [7]:
Lemma 2.1. Let p,, 9, € Dy, 7y, 1, €N, he &, Ce Uy(B). Then

C()(C) :(U(C‘lpl’ UJz5 Fi,¥2, h)
(2.12)

= lim (py, T2, () C T,,,(0) ) exp — A,(h)

exists and defines a linear functional on Wy(B). The expression
o (U, vy, 74,75, h) defines a positive definite scalar product (.,.), on

<T (W ylpe Py, reN>=9 (h), (2.13)

where < > denotes the linear hull.
The scalar product is given by

(T;lao(h)lpb rzoo(h)wl h— 1lw19 Wza'u”p h) (2]4)

9 (h), together with (. , .), is a pre-Hilbert space whose completion, a
separable Hilbert space, will be called % (h).

We defer the proof of Lemma 2.1 to the end of this section. The
remainder of this section is not needed in order to follow the statements
which shall be made in Sects. IIT and IV. An expression of the form

Won=Ja*(ky) ... a*(ky) @ (ks 1) o @ (R ) Wy (Koo Ki) dy o dy

is called Wick monomial, w,,, is called its (numerical) kernel. We define

|W,,,| as the Wick monomial with kernel |w,,,|. We shall frequently use

creation and annihilation operators in position space and we shall

denote them by A*(x) and A (x). We define the Wick expansions. Let

W Land W .. be two Wick monomials as above (with kernels w,,, and
Wiy ,,) The product W,,. Wi can be expanded as follows:

min(n.m’)

Wn Wi = Z Z“_Ia*(k dk; ﬂa*k ) dky,
r=0 Pon i=

n—r n'

H a(ly) dl,n

i 2 (2.15)
. {J‘Wmn(kl‘” m&ll"'l) m n(k/ kr/n”l;l;l)

TL60, =K dk)}.

Here, ) extends over all partitions of {1,...,n} into two ordered sets

P,
{iv,ooo i), {40, 1,_,}, and of {1...m'} into two ordered sets {i},..., i},
{I1,...,I,,_.}, and over all permutations = of {i, ..., i,}. This expansion

is the Wick expansion and each term in the sum)_ Y is called a Wick term
r P.m
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with numerical kernel { }. We extend this definition in the natural
fashion to Wick polynomials.

It is customary [16] to represent Wick monomials and Wick terms
as graphs. Each Wick monomial W,,, is drawn as

m lines : X : n lines

and each Wick term is represented by connecting the lines whose vari-

ables have been identified by []| 6(...) in (2.15). These lines are called
q=1

internal lines, the others external lines. A skeleton graph is a graph which

does not contain the graph

@ , corresponding to A,, as a subgraph.

We introduce the notation W, W to denote the r-th term in

’
mn.___ mn

the sum (2.15), i.e. the sum of all Wick terms of W,,,
tions. We also define W,,, W,,,=Y W,, W,

in " m'n" "
r>0 r

A factor in a Wick term is sometimes called a vertex.

This ends our definitions.

Proof of Lemma 2.1. (We only sketch the proof for the case C =1. The
general case can be found in [8].) This proof is identical to proofs in [7],
and [8], except for a minor modification we wish to include in order to
make the proof more flexible with regard to changes of the space cutoff
h or of the definition of T Such changes will be needed in later sections.
Glimm’s analysis shows that, since

W w With r d-func-

ja =

expA;exp(—4;,)<1 and A;,,Z/,, forallj, (2.16)
j
(Lo T pa) e |

<Y (il S, s 2.17)

P.q=0 Spq

Here Z runs over all Wick terms S, in the expansion of (V*)? V¢ whose

SP‘I
graph is a skeleton graph. Let s,,(pin. Pey) be the numerical kernel of
Sp45 Pext (Piny) stands for all the variables belonging to the external (in-
ternal) lines of the graph of S ,,. The following lemma is the basic estimate
towards the proof of Lemma 2.1.
Lemma 2.2 (Glimm [10, Theorem 2.2.17; [5]; [7]; [8]). Let x!",
i=1,....,n, jelN be a family of symmetric functions (R*)*—-C and let
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X =\dk,...dk, a*(ky)...a*(ky) x\P(ky,...k,). Suppose that there exist
constants a, Ao < oo and > 1 such that the following inequalities hold for
alli,i'e{l,...,n};j,j eN:

k)XW, < 2oy ™ (2.18)
and
O L) x 0 ) (DX,
e (2.19)
Sy I T

where r=1,2,3;a,0 <4 —r and every vertex x"” is contracted to x; or
. Then there exists a constant K = K(Z,) such that for all Wick tel ms
Y, ra Of

( 11) X(lp)) ( (11) X“I)) (220)

Ja

whose graph is a skeleton graph one has

IT 2®) ™ § dpi] X pq (Piots Pex)]

D1 € Pext

2,ext (221)

< K+ 7An§lin ;!A"z:lj,;

Proof. [8]. We may suppose that the graph G of the Wick term is
connected, since both sides of (2.21) are products of similar expressions
involving connected components only. We proceed by induction on
p+q. For p+g=1 the assertion follows from (2.18), the case p+¢q=2
follows from (2.19). Let p 4+ g = 3. The graph may be written as a disjoint
union of subgraphs of one of four types: A central vertex connected to
1 =r =<4 other vertices. The decomposition of G into these subgraphs is
defined recursively as follows. For p + g =3, there will be one subgraph.
Suppose the decomposition for 3<p+g< N isgiven. Let p+g=N + 1.
Since G is connected, we may choose a subgraph H C G of type r = 1. Then
G — H is a disjoint union of connected components H. Let H' be the
union of H with all those H; which consist of a single vertex. If H'¢G
we apply the decomposition prescription to the components of G — H'.
We now apply (2.19) to each of the components to get (2.21).

We now return to the proof of Lemma 2.1, and we apply Lemma 2.2
with

4 -1
=10 =0y = k) (X 000) i ko)
i=1

Inequalities (2.18) and (2.19) are known in this case, they follow from
Weinberg’s theorem [5, 22].
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By the Schwarz inequality, we get as a bound on (2.17)

WMZ 024(p+q)((4p) (a)t) (2.22)

Z max I—.[ ,U. “(p)j"qu plnt’ pcxt \dpml

Jteedpdi oo daed P9 | piepext

2. ext

where J is the set of allowed sequences j,...j,, j;...j, if one takes into
account the truncation H exp V(2. 3)*. The maximum is over all Wick

terms X ,, with kernel x, of (2.20) whose graph is a skeleton graph. It is
known [7] thatj,,.. ’}p?}l? ., Jqin J satisfies j; > i'/% j.>i'/* and therefore
we get as bound on (2.17)

Corer X 24070 ((dp)1 ()2 KP iy — 1) 00

p.q4=0

y“(z)<z) <. (2.23)

This proves a uniform bound in ¢ for (2.12).

The existence of the limit follows then by the fact that the kernels
converge pointwise and by the bounded convergence theorem. The
proof of the positive definiteness can be found in [10], [7]. The essential
ingredient is the fact that

lim lim [] exp A;,(h)exp—A4;,(h)=1. (2.24)

PO G0 o

II1. Main Theorem

In this section, we formulate in a precise manner the main result
which we mentioned already in the introduction.

Let B be a bounded open region in IR?. Let &, be the space of all
functions in ¢ (IR*) whose support is contained in B and define 21, (B) to
be the #-algebra which is (algebraically) generated by

lexpi@p(f), expin(f): [feTg}.

Let he & be a (space cutoff) function. The construction of Lemma 2.1
defines a representation I1, of 2,(B) on the space # (h) in the natural way:
Let C € Ay (B), then I1,(C)is defined by

(Tl%(h) Y1, Hh(c) Trzoo(h) U)Z)h = }i—»n;l(;(wl > !10'( lz()‘(h) P> ) Aot 5
(3.1)

with y,, v, € %,, r|, r, € N. We define A (B, h) as the weak closure in
F (h) of II,,(Ay(B)); the algebra A(B, h) is a v. Neumann algebra.

* Explicitly, in 7 exp V}, the term V, appears at most j times.
3
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We note the following result which was proved in [7] and which
justifies the particular choice of 7, (h) in (3.1).

Theorem [7, Theorem 7.1, Theorem 4.1]. The space F (h) contains a
dense domain for the renormalized Hamiltonian H  (h) (with space cutoff )
of the :¢*: boson interaction in 3 dimensional space-time.

This means that although T, _ (h) is not known to map into the
domain of H  (h), it defines the correct Hilbert space and [7, Theorem 6.1]
a representation of the commutation relations (in the Weyl form) which
is the same as the one defined by a limit as in (1.2), where T was some
dressing transformation which maps into the domain of H_ (h). Since
T, (h) is a much simpler expression than T, these facts will make the
ensuing definitions (in Sect. IV) simpler.

We shall distinguish between the following notations. If

w;z:r;'aoc(h)waﬂ waEQO’ rae]Nvazlaz’
we write
(WL I(C) o) =(T,, . (W, [T,(C) T, (h) w2)y » (3.2)

which we consider in general as a functional over 2 (B, h). But we can
view it also as a functional over 2,(B) only, in which case we write

w,(C)= wh(C‘UM S, T T2) = (0 IL(C) ph)y - (3.3)

w,(C) in turn, may be viewed as a functional over any other representa-
tion of A,(B), and if continuity allows, this functional will extend to
closures of such representations. For any set SCIR? we define S, to be the
set of points in R? within distance d of S, d =0, and we define ~ S to be
the complement of S in IR%,

We now formulate our main result.

Theorem 3.1. Let ¢, g'€ ¥ (R?) and let BCIR? be a bounded, open
convex region. Suppose that for some dy,>0, g(x)=g'(x) for all x e B,,,.
Then the von Neumann algebras W (B,g) and W (B, g') are unitarily
equivalent.

The major step towards the proof of Theorem 3.1 is the following
continuity statement about functionals. Let I1, and II, denote the
representations on % (g) and Z (g'), respectively.

Theorem 3.2. Let g, g’ and B satisfy the assumptions of Theorem 3.1.
For any vy, p,€ 9y, ry, r, €N, the functional w, (- |y, p,, 1y, 75) is
continuous on Wy (B) in the ultraweak topology from the representation I1,.

We postpone the proof of Theorem 3.2. and prove now Theorem 3.1.
This proof is purely algebraical. We suppose a certain familiarity with
von Neumann algebra terminology. Since I1,(1) =15, 1,(1) =15,
by construction of the representations, it follows that the representations
are not identically zero.
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We next show that the kernel of the two representations I, and I1,,
is zero. Let M be any finite dimensional subspace of 2, the space of
smooth functions with support contained in B. We define (IN) to be the
von Neumann algebra of fields over 9, acting in Fock space & :

AN = {expi d(f), expin(f), f € M}"

where { }"” denotes the bicommutant.

By v. Neumann’s theorem [21], since YR is finite dimensional and
since & is separable, we know that IT (2 (9t)) is unitarily equivalent to
a direct sum of copies of A (). It follows from this and from the proof
of v. Neumann’s theorem that U () is a factor of type I,. One can
extend the representation IT, to a C*-algebra U, (B) defined by

WE=( Y am),
M C Dy,dim(M) < o
where ()~ indicates uniform closure.

This algebra has been discussed by Segal [18], it is sometimes called
the Weyl algebra (over Z) [3]. Evidently, one has 2, (B)> A, (B). In [9],
Glimm has shown that 2, (B) is simple; i.e. that every nontrivial repre-
sentation of A, (B) is faithful. Therefore IT,: Wy(B)—I1,(A(B)) is a
*-isomorphism.

In order to show the unitary equivalence of the weak closures 2 (B, g)
(of IT,(Wo(B)) or, what is the same, of IT, (2, (B))) and A(B, ¢), we need the
continuity properties established in Theorem 3.2 and general properties
of A, (B). We first prove that the natural *-homomorphism

UI1,(%, (B)— IT,.(2, (B)), defined by U (IT,(4)) = IT,(A)

for all A e A, (B), extends to a normal homomorphism U from 2 (B, g)
onto A (B, ¢').

The assertion of Theorem 3.2. holds for every vector of the form
T.o(@)w, reN, p e D,. Note that every element in the linear hull of the
T, .(9") yis again of the form T,. . (¢') ' for somer'e N, v’ € %, and hence
Theorem 3.2. holds for a dense set of vectors in & (g'). Since the norm
limit of normal functionals is normal, Theorem 3.2. holds on all of # (¢').

The normality of U follows: Let {4,} be a sequence of operators in
Ao (B). If 1,(A,)—0, ultraweakly on F (g), then (y,I1,(4,) '), -0
since (i, y'), is ultraweakly continuous on ,(B) with the topology
of I1, by Theorem 3.2. Since y, y’ run over all of # (g') by the above
remarks, it follows that I1,(4,)—0 weakly on #(g). By going to in-
finite linear combinations of such functionals, it follows that U : IT, (2, (B))
— I1,,(Ay(B)) is ultraweakly-ultraweakly continuous, in the topologies
defined by I1, and I, respectively. Define now U(A)for A € A(B,g) by con-
tinuous extension of U: U ( lim An) = lim U (4,), where 4, € I1,(A(B)),
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A,— A weakly in the topology of IT,. U is onto: If 4’ e (B, g') then
let 4, eH (QIO(B)); A, — A'. Since U™! is ultraweakly continuous,
A,=U""4, is weakly convergent, and has a limit A. By definition
U( )= hm U4,)= 11m A, =A', so U is onto. Thus U is a normal

homomorphlsm U: QI(B g)-»QI(B g).

We now show that U is an isomorphism. Since U and U~ ! are normal
U U "and U ' U are normal homomorphisms which equal 1dent1ty
on the dense subalgebras H (QIO(B) )) and I7,(2,(B)); hence UU '=1
everywhere and U~ ! =(U) !:U is an 1somorphlsm

We show that U (B, g) has a cyclic vector and a separating vector. We
note that by construction, & (g) is a separable Hilbert space. By con-
struction (B, g) D I1,(A,(B)) and since the A(IM) are of infinite type,
so is IT,(2, (B)) and hence A (B, g) is of infinite type. It is known [4, IIL8,
Corollaire 11], that the (separable) commutant (B, g)' of the algebra
A (B, g) which is of infinite type has a separating vector, and this implies
that A (B, g) has a cyclic vector. The argument which proves the existence
of a separating vector for A (B, g) is similar: Let B’ be a bounded open
region which is contained in the complement of B. Now

A (B, g) > 11,(A(BY),

by the locality of the free field and by weak limits. So by the argument
above A (B,g) is of infinite type and so A (B,g)=(A(B,g)) has a
separating vector. By [4, III.1, Théoréme 3] it is known that every
normal isomorphism between two von Neumann algebras with cyclic
and separating vector is unitarily implemented. Hence Theorem 3.1 is
proved.

We now return to Theorem 3.2, and reduce it to the following technical
theorem, whose proof will take up the remainder of this paper.

Theorem 3.3. Let g, g', and B satisfy the assumption of Theorem 3.1.
To every v, p, € Dy, 1y, 1, €N, there exists a sequence ™ of ultraweakly
continuous functionals on U (B, g) such that for all ¢>0 there exists an
N (&) such that for all n> N (&) one has

| (IT,(C) = 0, (Clypy, 2, 1y, r)| <[ (34)

for all C e Wy(B).
One says that w, (-, y,,7,,7,) is the norm limit of the ™. We
shall choose functionals of the form

w(n) = wg(' I 9(‘#’1’ ?"1, n, g/)’ G(lpb Vz,}’l, g/)a rl (n)’ r2(n))
in the proof of (3.4).
Proof of Theorem 3.2 as a consequence of Theorem 3.3: By
Theorem 3.3, @™ — " |y, @@yl <& for n,n" large. By Kaplansky’s
density Theorem, since the w'™ are ultraweakly continuous on U (B, g)
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and since I1,(Ay(B)) is ultraweakly dense in U (B,g), we have that
[ ™ — ™| <e. The norm limit of normal states is normal, and therefore
the limit @ of the w™ is ultraweakly continuous. Since, by Theorem 3.3,
ol oy = @y We find that w, is ultraweakly continuous on Ay (B)
in the topology of the representatlon I1,; Theorem 3.2 is proved.

IV. The Approximating Sequence of Functionals

We motivate first our choice of the functionals ™ which approximate
wy (.|, ¥,,1,,7,) of Theorem 3.3. We shall choose a first sequence
w™ of the form

w(n)(c) = (Gln’ Hg(c)eln)g ’ (41)

01, 02, € 2(9).(,),1s the scalar product on F (g) as defined by Lemma 2.1.
As a second approximation, we shall choose functionals w,,,(C)
= (0 un> I (C)05 )55 O > Ormn € Z(g). Both families of functionals
are ultraweakly continuous on A(B, g), by construction. Note that,
although the functionals o™ and w,,, will be seen to converge in norm
as n— o0, we cannot expect convergence of 6, or ¢,,,,,, asn—oo, 0 =1, 2.
We recall that

wg'(CIIPu Y2, rla r2) = (T;loo(g’)u%’ Hg'(c) nzoo(g/)wZ)g' .

Our first approximation of @, is by construction of vectors whose low-
momentum part coincides with the low-momentum part of T, (g")y;.
More explicitly, we define for n>r,

0

Ouns = | | expVj,(9) H eXP (9w

i epnde) 1 “2)
=T 0eWe =12,
We let wffn)( ) = (Blna’ C02na) eXp — Ana (43)
n—1 o
where A =4{ T 1013+ 3 I
Jj=0 ji=n

Finally we denote by w™(C) the limit }Lrgwg"’(C), if it exists.

For technical reasons, we are forced to define below a more sophisti-
cated approximation. Namely this approximation must be made in a
way to allow the application of two major facts. The first fact is that any
C € A, (B)creates or annihilates smooth, exponentially decaying functions
in the region localized outside of B,, d > 0. This follows essentially from
the support properties of the test functions in & and from the fact that
the u**/?-factors which occur in ¢(x) or n(x) destroy localization only by
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exponential tails. The second fact is a materialization of the hypothesis
that g = ¢’ on B,,. This implies that

IP(Bdo/z) Z (Vja(g)‘ V,a(g/))Q” <0,
Jj=0

uniformly in o, where P(B,,) is the projection of at least one of the four

created variables onto B, ,,. It has been shown by Fabrey [8] that for

such finite changes in norm between v;,(g) and v;,(g'), say,

<o,
2

!(U,-a(g) —;,(9") [_I 1

there is a natural unitary map between % (g) and & (g') which, under
simple additional conditions, intertwines the natural exponential Weyl
systems on these spaces.

We shall not be able to separate completely the two arguments
related to those two facts. This problem is due to the non-Fock character
of the total representation. But we define now a second sequence of
approximations to w,(.) in which the two effects are better separated
than in ™. The approximating functional w,,,, will be constructed by
replacing each V;,(g) by a sum Vg + ¥V, which is almost equal to V;,(g)
for large j but in which V; and ¥, have special supports in position
space. Furthermore in the definition of w,,,,, each exp(Vg + V) will be
replaced by e>§p V, e);p Vo, !

We now start the explicit definitions. By the assumptions of
Theorem 3.1, g(x) = g'(x) on B,, and since B is convex, there exists a
polygonally bounded region Q CIR? such that g(x)=g'(x) on Q, and
QD B, for some d> 0. Throughout the remainder of this paper, d will
denote this fixed number and Q will denote this fixed region, ~Q its
complement.

Let 1 <v<?2; we shall fix v in Sect. VIII. We define space cutoff
functions g, ; and g _;, derived from g. Let j be large so that 4y i<d.
We define
g(x) for dist(x,Q)=4v
0 for dist(x,Q)<3vJ

(x) = 4.4
9+1) smooth interpolation by scaling of a smooth “4)

function for 3v ™ < dist(x, Q)< 4vJ;
g(x) for dist(x, ~Q)=4dv7J,
0 for dist(x, ~Q)<3v 7/,

g-ix)= . . . (4.5)
smooth interpolation by scaling of a smooth

function for 3v 4 < dist(x, ~Q)<4v 7.
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Let g4;(x) = g(x) — g ;(x)— g ,(x). Similar functions are derived from
g', we denote them by g’ ; and g;;. We define furthermore a smooth
version of y;. Let ¢ be a function in #(R?) satisfying

Px)=0 if |x21/2, ¢(k)=z0,

4.6
[o(kydk=1. (4.6
We let ¢;(k) =v ™% @(v/k), and we define
Cilky, .. jﬂ dlo ik, —1L) 20y, ... L), 4.7
x; was defined in (2.5).
Let finally x., be the characteristic function of
{(x, .., x) | x;¢0Q, foralli, 1<i<4} andlet yp=1-—y.
With v(g):
4 4 -1
ek = = T )2 3 k] alhy 4 ),
we set vo, = 25’ (P vlg -
= 1P v(g ) (4.8)
Uk, = 120 )

Note that by the assumption of Theorem 3.1,
to, = 18'CP0(g-) = v,

In these definitions and later,/ *will denote the operator “multiplication
by / in position space” and /” will denote the operator “multiplication
by / in momentum space”. We let Vi = [dk, ... dk,a*(k,)... a*(k,)
“vg,(ky, ..., k) and we define in an analogous way the operators V¢, and
Vo, Let furthermore

o _ Ve, if jzn
! Vg, if j<n,
and we set

s—1

Tons = [] expV” expVQ 4.9)

j=m 7

b
We always set [ | 4;=1ifa>b.
j=a

2 Commun. math. Phys, Vol. 25



18 J.-P. Eckmann:

Finally, our second approximation to w,(.|y;,p,,ry, ;) is defined
for n>m> max(r,, r,) and is given by

mno(c) ( mns rlnr(g)waTmns’Trznr( )U)z)eXP—Ana, (410)

where 7 = 2", 0 = 2°; m, n, se N, and we recall that

m-1

Tdg) = |1 e>;pV,-r(g’),

j=r1

and does not depend on #n since n > m. Explicitly,

wmna(c) = (9(7’1, m,n, s, IP1), Ce(rz, m, n, s, ‘Pz)) CXp - Ana ’

and for s> n, O(r,m, n, s, p) is given by

s—1 n-1

0(r,m,n,s,p) =[] (expVR expVQ) I1 (expVR expVQ>
Jj=n j=m J

m-1

I1 exp Vie(g)p

Jj=r

The ideas behind the construction of O(r, m, n, s, ) are the following.
This vector approximates the “low momentum” part of the vectors
s—1

= [T expV,,(g)w used in the definition of wy(-|yy,p,, 1,72
j=r J
Indeed, the factors expV;,(g") coincide exactly with those of 6,y up to
J

j=m—1 and approximately with those of 6,y up to j=n—1. The
product expVy expVy approximates expV;,(g') up to the “strips” at the
J J J
boundary of Q and up to the fact that exp(V, + V) is replaced by
J
exp Vg expVy . For j 2 n, the factors in 0(r, m, n, s, p) are approximations
J T ’
to exp¥;(g), making thus lim 0(r, m, n, s, p) exp(—4,,/2)a vector in F (g).
J s 0
Before going into boundedness and existence proofs for the limit
0— o0, let us give the proof of Theorem 3.3., assuming these results. By

construction of w®™, it is evident that o = w,. It follows from
Theorem 4.4, which is our main technical estimate, that for C e ,(B),

|wmnoo(c)~wmn’oo(c)| <8“C“ > (411)

provided that n,n' > N(e, m), since T,, . w € D, if pe D,, t<oo. On the
other hand, we show in Lemma 4.5 that

” mns rnrw rnownzexp_/lnd<8 (412)

for m > M(¢), uniformly in n>m and s > m. Eq. (4.12) has nothing to do
with the algebra U (B), but simply expresses the fact that 0(r, m, n, s, )
approximates T,,,y if m is large enough. It is immediate that (4.11) and
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(4.12) prove lw"(C) — 0™ (C) <e|C,

provided n, n' > N(g), since

l™(C) = 0™(C)] £ 10™(C) = Do (O + |Dpen (C) = Dpy o (O]
-+ lmmn’oo(c) - w(n,)(c)l .

One first chooses m so large that the L.H.S. of (4.12) is very small, such

that the first and the third term in (4.13) are bounded by &/3||C|| each,

by the Schwarz inequality. The second term in (4.13) is then bounded

using (4.11), and so this proves Theorem 3.3.
We now state the facts we have used in the derivation of (4.13).

(4.13)

Lemma 4.1. For every v e 9, there exists a constant C(y) such that
uniformly in m,n, seIN

” ’Frnawn 2 exp - Anu é C(‘P) ) (414)
1 Toune Trnewll? €xp — A4,, < C(y), (4.15)

where ¢ =25, 1= 2",
We defer the proof of this lemma to the end of this section.

Lemma 4.2. The limit ¢ —c0 of o™ exists and defines for each ne N
an ultraweakly continuous functional on UA(B, g).

The proof of this lemma can be found essentially in [8], or [7]. The
technical changes due to the fact that T,,, depends on two space cutoffs
g and ¢’ are trivial, see also Lemma 2.2.

Theorem 4.3. The limit 6 — 0 of w,,,, exists and defines a functional
on Wy (B).

At the end of this section, we shall only prove the existence of
alg{_lo Wno(l). The general assertion will then follow from the proof of

Theorem 6.3.

Theorem 4.4. For every 8, € 9,, m,eN, a=1,2, and for every ¢>0
there is an N = N(s,0,,0,,m,,m,) such that for all n,n'>N and for
every C e Wy (B), uniformly in s > max(my, m,), o = 2°, one has

[(Tonsns 012 C Tonys 02) XD = Ay = (T, 01, C T, 02) exp — A,y | S| CL
In the proof of Theorem 3.3. we used this theorem with m, = m, = m,
a = Tr“nz"‘wegw a=172
The second part of this paper will be devoted to the proof of
Theorem 4.4.
The vector approximation is described in
Lemma 4.5. For every pe %,, r€N and every ¢>0 there exists an
M = M(s, p,r)<oo such that for all m>M(e), s,n>m, t1=2", g =25
o

0
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one has
” rne ¥ mns ’Trnrwuzexp—'/lno‘<8'

This lemma will be proved at the end of this section.

Proof of Lemma4.1. Inequality (4.14) follows from inequality (4.15)
for m=s. The proof of (4.15) follows, at least in spirit, the proof of
Lemma 2.1. We call A-component any Wick term whose graph has the

form@.Let ()

, denote the sum over all Wick terms whose graph

ske
is a skeleton graph, i.e. which contains no A-components as subgraphs.

A simple combinatorial argument shows that, as a formal power series,
(4.15) can be written as

Z [(lp, ml_-ll Vj*rj sl:[1 ( I/j(n)'lb _Y_(Q‘Z_)*

SEF(s) ril pit g

j=r  Tjt j=m

- V(n)pj V‘“ m-1 prj
T T, 0

T |
] q r]'

) {[f fl f’u“a exp — AH

G(s,f) U,j=1a=1 Mja*
We have used the following notation:

Vi=V9),
A =41007),  Qjzm
Aij 2= 4(vg,, vQJ), Lj=m
Aij,3=4!(vi, vj), j<m
Ao =410, o) hjzm
Aij s =41, v,  ij=zm

Aij 6 =410, v)), iZmj<m

(4.17)

Ayj 7 =4 (v, V"), i<m,jzm
Aij g =4 vg,, v)), izmj<m
A;; 9—4(1)l,vQ), i<myjzm.
Welet A;; , = 0,if i, j are not in the ranges indicated above. (Small letters

indicate kernels of operators with same capital letters.) Finally, the sums
extend over

F(S)E{f=(puqurwp:7q:7r;]r§l§3_1)|0§p1§l70_—<:q1§17

. (4.18)
0=r=si;0=5pi£i,05¢ =i, 057 S}
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and for fe F(s) over

G(s,f)z{kij,ago,oc=1,...,9,r§_i<s,r§j<s,

s=1 m-1
Y ki tkjat Y kyeSi—p
j=m j=r
s-1 m-1
Z kUZI—kUs}' Zkus—— — 45
J=m
-1 s—1
kar Y ki tkye<i—r; (419
_] m
s-1 m-1
Z kija+kijs+ Y ki, <j—pj;
1=m i=r
s—1 m-1
Z kl}2+ku4}’ Zku9—— LI;';
1=m

m-1 s—1
Z kij s+ Z ku6+k”8S]—r}
By construction, 4;; , = A;; 5 =0, for all i,j=m and A;; ;=0 if i+,
i,j<m.

In order to prove (4.15) we have to prove the analogues of (2.23) and
of the fact that H epr exp — 4; < 1. Note that the n'"-order contribution

to T,,,is not a truncatlon of V"/n! in the usual sense that its kernel equals
the kernel of V"/n!, multiplied by a characteristic function. But T, ,,s is
constructed in such a way that “up to” a square integrable “error” it is
indeed such a truncation.

We start our estimates by bounding the 4;; ,.

To this aim we relate vy and vy to v)(g), as defined in Sect. I, Eq. (2.8).

Lemma 4.6. There exist constants Ay <oo and y>1 such that the
following inequalities hold.

lvj(g )l <o, (4.20)
lvr, = vi(g+ )2 + Ivg, = vi(g - M2 < Aoy 7, (4.21)
lvi(g) — vi(g+ ) —vi{g- D2 < Aoy ™. (4.22)
If i< then
[Aijd <Agy™F77. (4.23)

«=1.2,6,7,8,9
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We shall prove this Lemma in Sect. VIIL

We now use the inequalities (4.20)—(4.23) to prove (4.15). We first
bound 4;;; and 4;; , as follows, using (4.21) and (4.22): Namely one
finds
1A, — 4o (g )31 < Ayy;'  for some y,>1,

and > iy
|4, — 4Moig -2l < Axy2 "

(4.24)

Also,
[Aji 1+ Ay, — 4! loi@)lI5l <A3ys ™', for some y;>1, (4.25)

if i < n, and the analogous relation holds with g' if i > n.
We now prove that ) { }in (4.16) is bounded by a constant, uniformly
G

inm<n,sand f € F. Note that for A = 0, exp4 exp(— A) < 1, and that for
J
B <0, expB exp(— B) < exp|B| exp|B| < exp2|B| . (4.26)
J J

Using these facts, and replacing all A4;;,, i%j, a=1,...,9 by |4,
we get

‘Z { }‘ <C,.-11 exp{2 i lAim|} < const, (4.27)
G

i*j a=1
by (4.26) and (4.23), uniformly in
M, 1, S, Dis Gis Tis D i T -
Our next step is to prove the uniform boundedness of Y (y, ... Y)ge

F
in (4.16), and we repeat the considerations of Sect. 1. It follows at once
from Lemma 4.6 that the set of functions x{" = v, x{?) = v, satisfies
(2.18) and (2.19) since vj(g+ ;), v;(g - ;), v;(9) and the corresponding primed
quantities do. Let S,, be a Wick term of (V*)?(V)* whose graph is a
skeleton graph. We apply Lemma 2.2 with the above choice of x{" and

x{¥ and get
IZ(IPu o Po)skel
F

< S Y (pih 15,4 )

P,4=0 Spq

D max(ipy) IS, hpal) (4p)! (4a) ) 2440+ (@.28)

p,g=0 °rd

IIA

IIA

p/3 a3
0 1/2 p4(p+q) ~(p+a) —<Z nl/2> ‘(Z ,,1,3)
Y Connl@p)! (@) 2 42* 0y —1)=* 0y b=t Jy =i ) <o,
p,q=0
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p/3 q/3
T nx/z) _( T ,,1/2)
The factor (y ( y =t ) comes from the fact that the set cor-

responding to J in Sect 11 (after Eq. (2.22)) is now a subset of {j; > (i/3)'/?,
ji>(i/3)"} since Tis the product of three truncated exponentials. This
completes the proof of Lemma 4.1.

Proof of Theorem 4.3. We prove here only the existence of algroxo WOpno(1).

(C), Ce (B) will then follow in a similar way

mnao

The existence of lim w
ag— o0

from Theorem 6.3. Usually, the existence of limits of this kind is proven
by using the pointwise convergence of the kernels of T,, and the bounded
convergence theorem. We are forced, due to the more complicated
structure of w,,,,, to prove the convergence directly. This is easy if we
use the explicit formula (4.16). We write

A= Y iS(s ) Y L, f)}
feF(s) G(s, f)

in short for (4.16). We now assume that s; > s,, and we want to show that
[4(sy) — A(s,)| <e if s, is large enough. To this aim, we exhibit 4(s;) as a
sum of two expressions A4, (s;, s,) and A,(s;, 5,), where A,(s;, s,) “almost”
cancels A(s,) term by term and where |A4,(s, s,)| is small.

Let Fi(s;,s,) be that subset of F(s;) for which p;=gq;=r;=p]
=q;=r;=0for j=s, We have

Fi(s;,8) =F(sp))x{pj=¢q;=--=0]s;>j=s,}.
If feF(s,), we let f be the corresponding element of F,(s;, s,). We set
Ai(s; )= Y l (s, 0) Y le,f)}

feFi(s1,52) G(s1,f)

and A,(s;, 55) = A(sy) — Ay sy, 55). If feF(s;,s,), it follows from the
definition of S(s,, f) that S(s,, f) = S(s,, f), and therefore

Al(sl732)= Z [S(SZSf) Z_ L(Sl’f)} .
feF(s2) G(s1,f)

We have thus prepared the cancellation in
|41 (515 52) — A(s,)]

Y { (sy, f { Y Lisi, /)= Y Lisof }H (4.29)

feF(s2) G(s1,f) G(s2,f)
S Y ISGu N sup | Y Lis, Hi— Y Lsz,f)‘-
feF(s2) SeF(52)|G (s, f) G(s2,f)

By the proof of Lemma 4.1,
Y 1S(s5. /) £ C(yw), uniformly in s, .

feF(s2)
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We now argue that the sup in (4.29) goes to zero as s,—oo. Let
G'(s1, 82, f) = G(s3, f)x {kij, =0 if i%j and (i=s, or j=s,)}.
Obviously, G} (s, s, /) C G(s;, f) and we set
G (51,55, ) = G(s;, /NG (51, 55, f) .

In G', the 4;; , « = 1,2, 3, will occur in all powers in the range 0, 1, ..., i,
if i = s,. Thus, for any ¢ >0, we find

Y L f)= Y L(Sz,f)(si—[ exp(z AM)>exp( Ao+ Ay

G(s1, /) G(s2,f) i=s, a=1
Y L(sy, f)-(1+e), fors, large.
Gis2f)

We have used ¢; = 2%, and we used the fact that for 4 >0,
0= 1—expAexp(—A) < A7/ +1)!,
J

and the estimates of Lemma 4.6.
Therefore, for large s,,

[A4;(5y,55) — A(s,)l

> Lisa, f l e+ Cly) sup

G(s2) §F(s2)

=Cl) sip,

Y L(sy, f)l . (4.30)

G (s1,52, /)

The first term in (4.30) is bounded uniformly in s, by the argument given
in the proof of Lemma4.1. The second term goes to zero as s, — oo
because every term in ) contains at least one small factor 4;;
G (51,52, 1)

i%j, i or j=s,, and these factors go uniformly to zero as s, — o0, by
Lemma 4.6. So we have shown that [4,(s,, s,) — A(s,)| <& for s, large.

In each term of A,(s;,s,) there occurs at least one V"™, V* or
Vé’f’ with j = 5,. We use Eq. (2.22) and we apply the argument which led
to (4.28) to get a bound |A4,(sy, $,)| < const.y "2, for some y>1. Thus
|A4,(s1,5,)|—0 as s,—o0: the assertion “(yli_gg W,,,5(1) exists” is proved.

ij,o

Proof of Lemma4.5. We want to bound the expression

“ rne¥ — mns rnrwuz eXp — Anm (t = zm) (431)

for n>m, m large, and we want to show that this bound goes to zero
as m— o0. The proof goes along lines described in [7, Lemma 4.1] with
some new estimates.
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We break (4.31) into two parts, writing

H ncrw mns’Trnrw”eWAnU/Z

S T = Touns Tone s wll €2 (4.32.1)
1 T Tone Titns® = T Tepll e (4.32.2)

Here
min (s,n)—1
Trﬂns = U exp(V(g ) VQJ)
S_’;m (4.33)
[T exp(Vilg) = Vo, = V).
ji=n

We show that the assertion of Lemma 4.5 holds for each of (4.32.1),
(4.32.2) separately.
To bound (4.32.1), we write

Tyno — Tons T2

mna mns mns) = Lmns : ’I;‘nl' M

Trno— Touns Tone T2

rne mns frnt “mns T rnr (

Suppose for simplicity of notation that s> n; the proof of the case s < n
is similar. We let o
V(g") = Vi(9) {f J Zn ’

y Vi(g) if j<n

J

Lmns = ﬂ e);p(l/j(n) - VQ., + (Vj(g(”’) _ ]/j(n) — VQ,,))
j=m
s-1
- 11 efp(V‘"’) exp(V, )exp(V (@) = V" =V,)
j=m

- (434)
= Y { [ [CXP(VJ(") + Vo, + (Vg™ = V" — VQ,))}

Yomr oo ys-120 G=m | J b

s -1

- T [ exp(V ) exn(Vg") - V0= Vo | |

j=m
where [ ], indicates “y-th order term”. By definition of expA4,
J
[exp(V(") + Vo, + (Vi(g™) — Vi — VQ,)}

) (4.35)
{exp(V‘"))exp(VQ)exp( (g™ — Vj‘")-VQI)}

ifye{0,1,2,...j}. Therefore a term in the sum (4.34) is zero unless for at
least one j = m one has y,>j.
This implies that all contributions from

[e)§p(VR} + Vo, +(Vi(g) = Vg, — Vo, ))J
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are cancelled in (4.34). We rewrite (4.32.1):

2

eXp — Anu

m-—1

Lous |1 expVi(g)yp

j=r

[(4.32.1)) =

(4.36)
( YltrLTnnsLmnsanW) eXp — A _11 + IZ'

We describe the decomposition I, + I,, which is obtained by distin-
guishing different Wick terms, cf. also the decomposition of (4.16) in the
proof of Lemma 4.3. I; is the sum of all those terms in which Vg or
Vo,» j = m and their adjoints occur only as Vg, Vg or V5, V, com-
ponents resp., I, is the sum over the remaining terms.

|I,] is bounded by a standard argument, which we used already in the
bound of |A4,(s;, s,)| in the proof of Theorem 4.3. Each Wick term in I,
has either a V¥, Vi® with j=m in its skeleton, or a V¥, j=m in a
skeleton or a A4 component of the form A4, ;, 4;; ,, i #j, i or j = m. Thus
it follows from (4.28) and Lemma 4.6 that |I,|—>0 as m—o0; the uni-
formity in n follows at once from the fact that the bounds in Lemma 4.6
can all be given with the same constants for g and ¢'.

To estimate I,, we use the representation (4.34) and the cancellation
due to (4.35). We write

Il = er—;'ntwnzexp( A )'Cmns7
where Cons =Xp(—4,,+A4,.) (2, L* Lypns@) 4 -

mns mns

Q is the Fock vacuum and ( ), denotes the sum over those Wick terms
whose graph consists of 4;; ; and 4;; , components only.

By Lemma 4.1, | T,,.||* exp — A4, is uniformly bounded in n and t.
It remains to show C,,,,— 0 as m — oo, uniformly in » and s. By definition

s—1
Crons = ZA {H [e);pAij,le)Jgijj,z} exp—/lj},

Pme-s 7s-120 Uj=m 7
where ZA extends over the set {y; =, for at least one j}. We bound

s-1s-1

1Consl = Z n {exp('Ajj,1| -+ ]Ajj,2|) exXp —Aj}

i=m j=m
JjFi

Z (41| + 145, 2Dy ) exp — 4;

<cm’y 3 4

8

¥
/

exp A;,

by Lemma 4.6; note also that C(m)—1 as m— co.



Model Field Theory 27

Now for 4 >0, (epr - epr) exp— A< AIT)(j+1)!, so we finally
J
find, for large m,

and this goes to zero as m—o00. We have used |4;| < 44, Eq. (2.16). The
uniformity in n follows as before. This completes the proof that
(4.32.1)> >0 as m— oo, uniformly in n.

In order to bound (4.32.2), we proceed similarly.

I(4 322)'2— ” mns rnr(Tygns )wuzexp—Ana'

There is no exact cancellation of the type (4.35), but instead each V(g, )
has a kernel with small L,-norm, by Lemma 4.6. We do not present the
detailed arguments. If one writes T4, =1+ T,,,,., then all contributions
from T, are small for large m, whether their vertices occur in A-com-
ponents or in skeletons, by Lemma 4.6. The 1 cancels, and we get the
assertion for (4.32.2); the proof of Lemma 4.5 is complete.

Part 2. Proof of the Main Theorem

In this second part, we shall prove Theorem 4.4. The proof given is
rather technical but the main ideas are fairly simple. We want to use an
expansion of C € Uy(B) in terms of creation and annihilation operators,
and we require that this expansion of C should converge inside the
functionals w,,,,. By Fabrey [8], one knows that 011}1;) DpnoN), where N

is the number operator, is infinite. This suggests that the usual expansion
of C in terms of creation and annihilation operators, as given e.g. in
[12, Eq. (4.17)], cannot converge inside w,,,, as o —co. However, if
K = [A*(x) A(y) k(x, y) dx dy, where k is smooth and falls off at infinity,
one can show that w,,,,(K) stays bounded as ¢ —» o (Theorem 8.9). We
take advantage of this fact by using a more specialized expansion of C in
which smooth kernels similar to k will occur; indeed we shall expand C
only in the region (~ Q), and it will be seen that such an expansion
converges because B C Q. This construction induces the following com-
plication in our bounds for functionals: We shall see that one can use
the Wick expansion of the functional only in variables which are “local-
ized” (in the Newton-Wigner sense) outside of Q. This has made necessary
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our choice of w,,, in Sect. [IV. We shall now describe the expansion
(Sect. V), prove its convergence (Sect. VI) and then prove Theorem 4.4
(Sect. VII). Sect. VIII contains two main estimates: An analysis of the
behaviour of v,(g) outside the support of g and bounds for w,,,, on
operators with smooth kernels.

mnao

V. The Particle Expansion of Operators in 2 (B)

In this section, we use an expansion of operators C € U, (B) in order
to exhibit the fact that such operators, considered as sums of Newton-
Wigner localized Wick monomials, have smooth kernels which rapidly
decay outside the region Q D B in position space.

We first describe an approximation construction which is similar
to one devised by Glimm and Jaffe in [12].

Let C e Uy(B), i.e.

C= 3 ojexpi(@(f)+n(hy). (5.1)

The test functions f; and h; are smooth and their support is contained
in B; oje C. We want to go to Wick-ordered quantities. We define, for
e, f € #(R?), an operator u,: ¥ (R?)— & (R?), by

) X)) =Qm) ) (ke *dk, (52)
where ~ denotes Fourier transform. Now, for real /e % (R?),

d(f)=2"12fdx A*(x) (_1)2f) () +27 2 dx Ax) (u_y /) (x) (53)
and

n(f)=i2712fdx A*(xX) (a1 ) () =272 fdx A(x) (4112 f) (%) (5.4)

Using the commutation relations, we find that the general element of
A, (B) can be written as

i ajexp A*(c;.) expA(c;-), (5.5
where «; € € and i
¢+ () =127 (g0 ) () +i27 2 (11 0h) (), (5.6)
- () =1Q27 (w1 f7) () =127 P (s 100 (%) (5.7)
One can invert the relations between ¢;, and f; and #;,

f( )= 1/2(H+1/2Cj+)(x)+2—1/2(ﬂ+1/zcj—) (x), (5-8)
() —i27 1/2(/‘—1/2014)(X)+i2-1/2(#~1/2cj—)(x)- (5.9
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It is at this point that we make use of the fact that the functions f; and h;
have support contained in B. We introduce a function ¢:IR*? R with
the following properties:

(eC®0=((x)=LEx)=1 if xeB,¢(x)=0 if x¢By,. (510
We can rewrite (5.8) and (5.9):

if;(x) =272 () (s 1/2€54) () +2712E(X) (141 25-) (), (5.11)

ihj(x)= =127 V2E() (o 12€50) (0127 2E(0) (o g p650) (8). (5.12)

Inserting (5.11/12) into (5.6/7) we get

cir(¥)=K,c;r(x)+K_¢;_(x), (5.13)
ci-(x)=K_cjs(x)+ K c;_(x), (5.14)
where Ky =1/2 p_ 38y p £ 1/2 poyn8puy)s. (5.15)
We shall denote by k (x, z) the distribution kernels of K ;

k. (x,2)

=1/2fdyp_  2(x = VEWM 412y —2) £ 1/2[dyps 1 f2(x = YEW) - 1)2(y — 2).

Let Q be the polygonally bounded region defined in Sect. IV, QD B,
for some d > 0. We define an expansion

C= Y Copm, (5.16)

m,m’' =0

in which, loosely speaking, C,,,. is that term of C which creates and
annihilates m and m’ particles respectively in the region (~Q), and an
indefinite number of particles in Q. It is convenient to consider first the
special case

C=exp A*(c,)expA(c_). (5.17)
In that case,

Com = | dxy...dx,dx;...dx, A*(x,)...A*(x,) A (x])... A(X))
Xi,Xj¢Q

® (m+a\/m+ao 1 m
‘{a,a’z=0( o >( o« )(m,ﬂff+x)ﬂc (x5)

J=1

[ dys...dydy;...dy, [T (A*() . (v)) H (AW)e-() }

v, ¥5€Q j=1 i=1

(5.18)
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The bracket { } is an operator valued kernel c,,,, (x, x'), and the operator

acts on w
Fo :C@<@ LZ(Q)@") s
n=1

(5.19)
where (X) denotes the symmetrized tensor product

Let now y, be the characteristic function of Q in R? in one variable
We define

kiilx, y) =k (x,9) 1o(), (5.20)
kio(x’ y)zki(xs y)(l_)%Q(y)) (521)

The subscripts i and o stand for “inside” and “outside” respectively. Let
K., K., be the operators with kernels k., ;, k. ,, resp. We write

ce(¥)= [ dyky,(x, ) e+ [dykii(x,y)cs(y)
~Q Q

(5.22)
+ [ dyk 0oy ez )+ fdyk_i(x, y) ez ().
~Q Q
Introducing (5.22) into each factor of
Hc+(x Hc (x}) of (5.18),
j=1 Jj=1

we get
Conm (X1 e+ Xy X1 Xp00)
= ) ﬂUk J) et )

a2’ =0 jit+jrtjstja=mk=

Jjitirtistja=m’

fdzy...dz; 4 dz . dzhﬂzd pee Wy jadny Ay,

J1

: I:[k-i-o(xm n)c+ Uk—o(xj1+n’Z}{+n)c——(zj/'i+n)

’ nk+1(x]1+12+mnn)c+(" nlk——z(x“+jz+13+n7]1]3+n)c (}1]3+n)

j1 j2
BT | L AR I O (5.23)

n= n=1

J
gL

14
+1i }1+J2+n7nn)c (7] l_lk J1+12+J3+n97]j3+n) (nj;Jrn)

n=1

a

| ﬂdy,A Wpes) [TdyjA)e_(v).

v, v;€Q j= ji=1

Furthermore, we write, e.g.

fdn k., eem)=fdydnk,(x,n)AMn)__A*y)c (¥,
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where __means “contracted”. Therefore,

Conme (X1 -+ Xy X7 Xt

o)

4
=Y Y @) ] Gl dzy . dz  dzy L d2
a0’ =0 ji+...+ja=m k=1

Jit..tja=m

H k+o(xn’ n) l—[ k-a(x11+n> 11+n)

deA ‘C)k+1('x11+12+mt) l—[ deA(T ~1(x11+12+“+n9 T)}
Q

n=1 n=1¢Q
atjs+ja a'+j3+ja (5.24)
vf( [ anamye.0) 11 djae)eo))
i= ji=1
Jitjz jitia
[T cat@) IT c-(z)
n=1 n=1
J3 ja
vln deA*(T) kXt jsam H [dTA*(T)k~i(xj1+j2+j3+n’ T)}
n=1¢Q n=1Q

Jt J2
: n ko (X, 2,) n ko (X} n Zjy +n)
n=1 n=1

: ((zx +j3Hj)H @+ +j4)!)—1 alolj3ljsljatjal.

The last combinatorial factor compensates for the number of contractions.
We reorder terms, setting

n=ji+jy, W =ji+j B=0+js+js, =0 +j3+]s. (5.25)
Then (5.24) simplifies to

c ’
Coum (X 15 +ves Xons X5 eens Xp)

- ¥ Y (7)(,”) ( dz,...dz,dz;...dz,

nt+n Sm+m’ ji+jz=n 1 1/ z,z{¢Q
Jjitia=n
Jitjatistjs=m
11+12+J3+14— !

Hk-i-o(xk’zk)nk—o ;,+k> J1+k)

k=1

J

{H j TA(T)k+l(XJ;+jz+k’T)H §dTA T)k“l( 11+}2+13+k,r)
=10 k=1Q

\_/cnn(zla LR n’Zl7 s Zpt

v

] (5.26)

js Jja
~ [ n deA*(T) k+1(x“+12+k: l—[ _‘dTA*(T) k—i(xj1+j2+j3+k’ T)}
k=10
Jl

k=1

k+o(x},c> ZI;) n k—O(XJ"f‘H(’ Zj1+k) .
k=1
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Two remarks are in order. So far, our calculations have been formal
manipulations of power series. We shall show below the convergence of
this series. The expansion (5.26) is a multi-linear expansion of ¢,,,, ; indeed

Conm’ =L({Cnn’an+n/ §m+m'})’ (527)

where L is linear. Since expressions of the form (5.5) are finite linear
combinations of expressions of the form (5.17), it follows from (5.27) that
the expansion (5.26) is valid for the general case (5.5) and not only for
(5.17). C,,,» then denotes that part of Ce Uy(B) in which exactly m
(resp. m’) particles are created (resp. annihilated) in the region (~ Q),
and in which an indefinite number of particles is created and annihilated

in Q.

VI. Convergence of the Particle Expansion of Operators in 2 (B)

In Sect. V, we defined an expansion (5.16)
C = z Cmm’ H (61)
m,m' =0

of a bounded operator Ce Uy(B) in terms of unbounded operators
C,.m - These unbounded operators can be written as

Coome = | doxy..dxpdx} .. dxpy A*(x)... A*(6) A (x})... A (X))

:18

X , (6.2)
Comm (X tyeev s Xy X yene s Xpr) -

We call ¢, (X1, .-y X5 X1, .., X)) the kernel of C,,,,,..; we shall see below

that its value is a bounded operator which acts on %, (cf. also (5.19)).
It is useful to consider two Fock spaces #, and #._, as defined in
(5.19) and to identify the Fock space & via a unitary transformation
0 with #_ , ®@ Z,.
Let (Z. o) (%), be the n-particle components of #_., and %,
respectively. Then 6 is defined by

(6.3)

m+ n\'/?
m

g(w;r/.@l/);:) (pl’ cees pm+n)=<

’ Symw;r/l (pla 7pm)w;: (pm+1>'“,pm+n)'

”

Here, y,, € (Z . o)m> ¥ €(Fp), and sym is symmetrization in the m +n
variables.
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Let now ¥, Wi € Fo 0 = 0 ((F~ 9)n ® Fy). By the definition (6.1) and
6.2) of C,,,,, we have

(o, Cooo) = (Wo, Cyo) (6.4)
min(m,n)
and (wm’ Cmnw;:) = (wma CIP;;) - Z (wm’ Cm—k,n~k]p;|) . (65)
k=1

We now view ¢,,,(x;, ---» X,u+n) as the kernel of an operator c,,, from
F. 0 10 Z,, o with norm ||c,,,|o: For v, € %, 4

”Cmn”Q = Ssup I(wm’ cmnwn)l .

lloml| =1
[fwn lI=1

From Glimm and Jaffe [12], we get

Lemma 6.1 ([12], Lemma 4.2) .
Let CeUy(B) and let ¢, be defined as above.

Then
[emalle= 2 € (66)
Proof. By definition of c,,,,,
lemallg="sup |, Conior)|(mtn)™ 42, 67
[Jwm|| =1

Hwifl=1
and also, for 0 £ k < min {m, n},

, , m! nl\12
I(wma Cm—k,n—kwn)lg me“ “lan Hcm—k.n—k”Q T!—_k_' . (68)

We now use (6.4) and (6.5) to get

min{m,n} )1/2

_ (m!n!
leanlos iy 2 (] + 7Y Y e ylo)

The assertion follows now by induction on min {m, n}.

Our next step towards estimating ,,,,(C) is an estimate on the
kernels k.., defined in section V, (5.15). Due to the particular localization
properties, they will be very well-behaved.

We describe properties of u,(x) and k. (x, y) in the following

Lemma 6.2. Let u(x) be the kernel of the operator defined in (5.2),
let t> —2. Then

t+2
;zt(x)=2“21“(—r/2)“(—2§—l°)71<_@(molxl), if x+0, (6.9)

3 Commun. math. Phys, Vol. 25
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where K, is a modified Bessel function, and
u(x) is C*® for xelR?—{0}. (6.10)

Forallny,n,e NuU{0}, x, >0, t> — 2 one has

dn1+n2 .
Wﬂz(xnxz) < Cm+n2,xo,rexp(_m0|x ), if lx] Z X - (6.11)
Here x| = (x% +x3)*/2. (6.12)

Let k. (x,y) be the kernel of the operator K, defined in Eq.(5.15) and

let x ¢ Q.
Then k. (x, y) is a C* function on (~Q)x R?. (6.13)

There is a constant K such that for x ¢ Q ,

k< (x, y)| = K exp(—mg|x| —mo|y)) . (6.14)

Proof. Eq. (6.9) is obtained by a simple combination of formulas
(1.3.7) and (1.13.45) in Bateman [2], if 7%0,2,4,.... If 1=0,2,4,...,
U(x)=0if x=+0. Eq. (6.10) and Eq. (6.11) follow from the properties of
the modified Bessel functions K, (see e.g. Jahnke-Emde [17]). To prove
(6.13), we use the fact that B, is a fixed compact region, and we use (6.11)
with x,+d/12. We consider only the term u_,,,&u,,,,, the estimate
for the other term of K, is similar. Now

(.U—1/25,U+ 1/2) (x,y)= j#—x/z(x —2)¢(2) puy 1/2(2“)’) dz.

Since &(z)=0 if z¢ By, and since x¢Q, u_;,(x—2z)E(z) is a C*
function of x and z, and therefore (u_;;,Epy4)2) (X, 2) is a C* function
of x and z on (~ Q) x IR?, because p, ;,,(z) has a pole which is of finite
order and falls off otherwise.

To prove (6.14), we consider (x, y) e (~ Q) x (~Q) and (x, y)e(~ Q) x Q
separately. On (~ Q) x (~ Q), by (6.11) and (5.10),

ks (X, Y = Co a2, - 1/2€XP (— Mg dist (x, Bd/Z)) : Slzlp |f (Z)|
“Co,a/2,+1/2 eXP(_ modist (y, Ba/z)) < const exp(— m0(|x| + M)) >

since By, is compact. On (~ Q) x Q, by (6.11) and (5.10), we get a bound
const exp (—myq|x|), by integration by parts, and since ye Q, and Q is
compact; the assertion (6.13) follows, the lemma is proved.

We now define a decomposition of C,,,, which is designed to make
extensive use of the properties of k., ;, derived in Lemma 6.2.
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We rewrite Eq. (5.26).

A

n\[(n
Cmm,: Z Z (i )(,/>
n+n Sm+m’ jitjz=n 1 1

jitjz=n'
Jjitjztjztja=m
Jjitistijztja=m’

[ dxy...dx,dx]...dx,,
xi, X{¢Q

J3
[T fdtkaix), s jpi DA(T)
k=1Q

T4+

ja
l_[ jdtk—l(le+p+]3+k7 T)A(T)
Q

k=

[

Jj1 Jj2
— { [ dzy..dz,dzy.dzy [] Koy (0 22) T] koo (%), 40 21 40)
2i,2.¢Q k=1 k=1

it i3
e IR L zmk)} —
k=1 k=1

Jj3
o | faeke i 0 40 (615
k=10

Ja m’
U(j;dtk_i(le+jz+j3+k, 2) A*(1) UA(x,;).

We shall estimate later w,,,,(C,») by estimating each term of the
sum (6.15).

We now use the following technical device. If D is a bounded operator

and if u’f;, i=1, ..., n is square integrable then at least as bilinear form,
on Z(A(f)) x 2(A(f) CF(9) x Z(9),

A(f)_D=A(f)D—-DA(f)
and it is straightforward to calculate that
k n
[TAH_D_ [T 4*(f)
j=1 j=k+1

=[..[A(f) [...[A(f1). D].. ], A*(fis D), - L A*(S)] - (6.16)

k commutators

3*
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This means that [ ]J__{ }__[ ] of (6.15) can be written as a sum of
terms of the form

+ | dxy..dx,dx..dx),
Xi, X[¢Q
- [T A*Ca) H [dtk (X s jsvi 1) A*()
k=1 k=10

4

H jﬂ rk—i(xj1+j2+j3+k, ) A*(7)

1Q
3 14’1
: §d1k+l XjvprioDA@ 1 [dtk_ i v jiei0 DA(D)
k=jivie k=ji+1Q
't } 6.17)
ja
. knl £d1k+i(xj1+j2+k, 7) A(7) H Idrk—i(x}f+;5+,~5+k,T)A(T)
= k=10

j3 Ja
H jdrk+i(x;’]+j§+k,r)A*(T) H fdfk—i(le+j_~+j3+k>f)A*(T)

k=j7+1Q k=ji+1Q
N

T AR
k=1

C,,. is a sum of at most 8™ *™ terms of the form (6.17).

As a next step, we Wick-order the A’s and the 4¥’sto the right of { } in
(6.17). The number of terms thus obtained is bounded by (m + m’')!. We
have thus rewritten C,,,. as a sum of at most (m + m’)! 8™ *™ terms which
are of the form

+ fdx...dx; s dx).dX g,
‘H“A*(xk)«//f«YD)P{ ) lHZA(xk) (6.18)

where {.} is asin (6.15), each Yy is one of the quadratic creation-annihila-
tion operators described below, p<m+m' —(j, +j, +j +j5) and #~
is an ordering of creation and annihilation operators to the left and the
right of c,, which are inside the { } brackets, subject to the following
rules:

1. All creation and annihilation operators to the left of c,, are
Wick-ordered.

2. All creation and annihilation operators to the right of c,, are
Wick-ordered.
By construction, Y,, Yy does not appear to the left of ¢

and Y3, Y5
does not appear to the right of c,,,,..

nn'>
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And this is the list of operators Y; which can occur as a Y. (The
variables x, x" are always integrated over ~ Q, 7 is integrated over Q).

= [A*(x) A(t) kyi(x, 1) dxd T,
Y2 = [A* (1) A(X) k. ix, D) dxd T,
= [A*(x) A*(1) k_;(x, ) dxd,
Y4—_[A(x (t)k_i(x,7)dxd,
Yy = [ A*(x) A*(X) k4 (x, 7) k_ (X, 1) dxdx'd T,
Yo=[A(x) AX') kyi(x, 1) k_i(x', 1) dxdx'd T,
= [A*(x) A(x') k4 i(x, ) ko i(x', 7) dxdx'd T,
Yo = [A*(x) A(X') k_y(x, 1) k_(x', 7) dxdx'd T .
One can draw a graphical picture to show the allowed positions of the

Y’s after # -ordering. We let A* = [A*(x)..., A*=[A4* (1)..., etc
Then the allowed terms are:

Ys

Y,

Tl o

A% A* A% A* A* A¥ A¥ A* A¥ A¥ A A c, , AX¥A¥*AAAAAAAAAA
| b
“Ys Yl
Y.

Y,

Y-
Fig. 3

We note that the kernels f of Y, i=1,...,8 and of K+, are of the
form f(x,y)=yx.(x) f'(x,y) x,(y), where f'(x,y) is C* and falls off ex-
ponentially at infinity with all its derivatives. y,, @ =1, 2 is the character-
istic function of one of the regions Q, ~Q or R

We expand all ¥s and all expressions [ A™(x) k1, (x, z) as sums of
operators (AM(f - x) A, - x2): and AM(f - x,) f1,(2) x2(2) respec-
tively. Here, f7 is the i** Hermite function and A(f) = [A(x) f (x) dx. We
shall write f;= f- y without keeping track of the support of y (which is
always one of the regions Q, ~Q, or R?).
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Then (6.18) takes the form

0 aytay
2 iigitenan HA*(ﬂ,) [T A()
i1,...,ig=0 j=ai+1

. {j IT fixddx [T S, (0 dX (X1, -0y X,y XY, ...,x;,)} (6.19)
k=1 k=1

aytax+tas q
[T 4 I 4.
j=aitax+1 j=aitazr+taz+1

By construction, <2 (m+m’) and (by bounding the maximal
number of commutators in going from (6.17) to (6.18)) g=m +m'. The
smoothness of the k, will insure the convergence of (6.19).

Our next theorem uses only the decomposition (5.18) and none of
the more sophisticated decompositions derived later. Let C € U,(B) and

let C,,, be defined asin (5.16). Let C,,,, Z Coum oo b€ the decomposi-
tion of C,,,,- into Wick monomials as descrlbed by (5.18), that is

Cmm ,aa’ Z ﬁ m'ml"x‘a,')—lA*(X QC_;+)mA (XQCJ+)

(6.20)
A(XQC,'—) A(X~ch-
Let @i, w2 €Y,, 11,7, €IN. For nelN, 6 =2°, selN, we define
na(C) ( rins u)l! 2ns lp,Z) exp( - Ana) . (621)

Our control over such expressions is collected in
Theorem 6.3. For fixed v, w5, ry, ¥, and for every C e Uy(B) there
exists a constant K such that for all M, M', n, g,

M M’
Z Z lwna(cmm’,aa’)l §K

m,m' =0 a,a’=0

There exists a constant M(C,e)=M/(C, e, 9}, w5, ,,¥,) such that for
all M > M(C, ),

M

wna(C) - wno( z Cmm’,aa)

m,m’,a,a’ =0

<e

uniformly in n and o.

Proof. 1t is evidently sufficient to prove the assertion for a C of the
form

C=expA*(c,)expA(c_),
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see also (5.5). We use Theorem 8.9 and we get
Do (Copmrar) S |B]CL C5 (Tt e e
Jesmr e mt with €y, C3>0,C,>1, (6.22)

where (as will be seen in Sect. VIII) |lc, |~ and |c_| . are finite. Note
that this bound is not uniform in | C|. It is just one of the main problems
of this paper to show that |w,,(Cpm) — Opo(Crm)| <& | C|| as n, n' > ny.
The assertions of the theorem follow now from (6.22) and from the fact
that for finite o, only a finite number of C,,,,,,’s give non zero contribu-
tions t0 w,;(C,.. o). This theorem also proves the validity of Eq. (5.24)
and Eq. (5.26) since they are obtained by splitting each term in (5.18)
into a finite number of terms.

We come back to the proof of Theorem 4.3. In section IV, we have
already proved the existence of the following limit: Let w,,,, be defined
by (4.10). For n=m, by using the definition (6.20), we find that with
ve="T .. W, 0=1,2,7=2" the functionals »,,, and w,, are equal. So
Theorem 6.3 shows that

COmnct(c) - wmna( Z Ckk ,aa )

k. k' a0’

<e, (6.23)

for large M. By applying the arguments for the proof of the existence of
}Lnolo W,no(1) to expressions of the form

m,,(,( IT4*(f) n A(f})), one can easily see that

j=
dl_l_,n(}’ Dy (Ckk’aa’) CXIStS, (624)

since the kernels ¢, fall off fast enough. The existence of lim w,,,,(C)

follows then at once from (6.23) and (6.24).
We now come to an estimate which makes use of the expansion (6.19).
Theorem 6.4. Let C € Wy (B). Then the decomposition (6.19) of C,,, is
bounded in the sense that

) IR T

i1,..ig4n+n’

aytaz aytaxtas q
na<l_[A*(f,J) [T Ay I1T 4*f) I1 A(ﬁ,))
j=a +1 j=aitax+1 j=ai+axtaz+1
SK-||C|y~ ™™ with y,t>1. (6.25)

Proof. By construction of (6.19), there is to every A to the left of {.}
at least one A to the right of {.} or an A* to the left of {.}; a symmetric
statement holds for 4*: for every A* to the right of {.} there is at least
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one A* to the left of {.} or an 4 to the right of {.}, see also Fig. 3. Since
there are g operators A and A*, and by the above argument, at least
q/2 of the factors A™ are either an A to the right of {.} or an A* to the
left of {.}. Note that g = (m+ m’). We use the Schwarz inequality and
apply Theorem 8.9. Then we get

aytaz aitaztas q
,.,(HA*(f,,) A T ) T a0
j=ai+1 j=aitax+1 j=aitaztaz+1
aytaz
[T A*f) HA(ﬁ, s || €™ 4/
j=ai+1 Jj=
aytaztas q
l—[ A*(ij) n (fLJ) mnslp2 e “Anel2
j=aita+1 j=aytaztaz+1
I He-
n+n’
Here |[{ }lo=|cwlo I1 fil2, and this bound comes from the
k=1

observation that

n+n’

FTT £ Com (X1 vy X)Xy oo dXy i
k=1

defines in a natural way an operator from %, 4 to %, o, and hence an
operator from %, to %,, or from # to # (by tensoring with 1). This
explains the above bound.

By Lemma 6.1 and the fact that f;, = f7, - x, where the f; are Hermite
functions and y a characteristic function, we get

nt+n’ n+n’

lewrl I 1l = et -5 T o2,

Assume that ] has at most r particles. We want to apply Theorem 8.9 to

H A*(f,) r[ A Tt | exp — 4,

=ww(nA*<fi,.) a0 A*(ﬁ)n A(ﬁ,)
i=1 j=ai+1 j=a +1

=w,,(R*R).

We expand R* R as a sum of Wick ordered terms, R¥ R=Z W,;., and it is
easy to see that the number of terms in the sum is bounded by a,!. The
kernel w,;. of W), is of the form

Wy, = const H Ji(x) H S (1) 5
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where k, k' run over 1,...,a, and some subset of {a; +1,...,a; +a,}.
The constant is of the form IT' (f;, f;,), where the product runs over a
pairing of the indices which do not occur in II, and II,. respectively.
We bound the constant by

T S SIS o s T4 L S e ST - 7
We now apply Theorem 8.9 to w_,(W,;), using the kernel
Fo =TT TT® wi = Ta® 15 T1a% 15, -
k k' k k'

Note that I >a, and I' > a,. With these preliminaries, we find, using in
particular Egs. (8.24) and (8.25), a bound

aytaz
1_[ A*(fx_,) H A(ftJ) nsw1 exp _Anc
j=a;+1
a;tas
=Cy)) Z ((4p+a; +ay)! (4p' +a, +ay)!)'? H (B
p,p'=0 j=

p’
_Kp+p’+al+az, Z H,y l"[l,y*}
j=

):1, ..... Jp€Ja, -r j=
Jiseens Jjp€Jay -~

el ay+a
SCwy) Y (Bp+ar+a)!(@p +a;+ay))'? ﬂ (RS
j=1

p,p’'=0

.KPtetaitaz, C;ﬂf"P‘_P"

Herej,, ...,j,e J,= {ji|j; 2", p 2 max (a,0)}, and y, C,, 1> 1. We use
the bound || /7 . < Ki* for the i — th Hermite function. Summing over
p and p', we get a bound

aytaz

Cwy)- TT ()°Cr% (ay +ay)!- K472,

j=1
By the Schwarz inequality, the L.H.S. of (6.25) is therefore bounded by

g+n+n’

Cw) X [irigrnan I__[1 @efcy-xmm (6.26)

CyME (g, +a, +ay+ay)!,

where a; + -+ a, =q. By the remarks made at the beginning of this
proof, a; + a3 =¢q/2 and g=m+m', and so we get the bound

(626)< C(yy) - C3 ™

C|, forsomeC;>1,t>1,
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and where we have used n+n' <m+m’ and
o] qg+n+n’
16 +ntn' 3m+m’
)y (o, tgenenl [1 G)° S KT S KM

i1yees ig+n+n =0 j=1

since the Hermite expansion Zo; ., fi(x;)...f} (%) of a smooth
function f has the property that

k
Zlow, o [T <[] (see [13D),

with a Schwartz-norm || |,. Theorem 6.4 is proved.

VII. Proof of Theorem 4.4

We shall prove in this section the bound

Theorem 7.1. For any w,,w,€PD,, r{,r, €N and every ¢>0 there
exists a constant N = N(e, py, P,, 7y, F,) Such that for all t',t> N, uni-
Sformly in s, with ¢ = 2°

I(Trtsq'Jl s Cmm’ 7AﬂrtslpZ) CXp(-— Ata)
- (Trt’swn Cmm Trt’st) exp(—At’o)l é ‘SHCH ’ ,y-m—m’

Jor all C e Wy(B), with y> 1.

(7.1)

Itisimmediate (sum over m, m’, and use Theorem 6.3) that Theorem 7.1
proves Theorem 4.4.

Proof of Theorem 7.1. We shall use a partial Wick expansion (in ~Q)
of (7.1). By our lengthy construction, Vg*' is an operator on #_,, and
we can therefore expand in terms of contractions between the Vi* and
the other “legs” in ~Q coming from C,,, (only m+m’ legs!) and from
V§¥ (at most 3 legs in ~Q!) or from the vectors y,, y, (compact support
in momentum space!). The above remarks should indicate why this
expansion should nicely converge “on #_,”. Our elaborations in
Sects. V and VI have shown how convergence is enforced “on %,”.

We now use a variable n, which we choose very large, and we assume
t,t'>n. For a given ¢ in (7.1) we shall find a minimal n for which the
proof will furnish the required bound, and that n will define
N (e, Wy, p,,71,7,). We apply the term “R,-skeleton” to a Wick term
whose graph contains no Vg _, Vg, components, i 2 n, j = n. The combi-
natorial argument of Sect. IV, Eq. (4.16) shows that one can decompose
the lefthand side of (7.1) into a sum of R,-skeletons:
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Let n<t<t,let V¥, = Vi¥ if j<t, V¥, = V¥ if j = t. Then

( 1tslp1>C thsw2) CXp Ata- ( ntswhcmm thslpl)exp Ata

s—1 V}I{’ *x /s5—1 * s—1
=Z/<w1, H < J"t) (n e)j(pVQJ> mm(]—[ eXpVQ>

j=ri\ Dj: J=ry J=r2 J

s—1 Vp , s—1 AI:U
(H pR >lp2>R rskelz {I—I kj'l}exp A

’
Jj=ra J* i,j=n "ij

VII{J_-t, * /s—1 * s—1
——E'(Wh I1 ( A ) (H e),(-pVQJ) Cmm,(l_[ expVQj)

j=ry p;: j=ry j=ra 4
s—1 ij’ s—1 A/ku
Rt 1
(H /,t >1Pz> 2"{ I1 ”' }exp Ay
j=r. Dj* R,-skel ij=n k;

Here X' runs over the set {0<p;<j,0=<p;<;} and X" runs over
{ ,j,O<ZkU_] p;, 0<ZkUSz~ } We write (7.2) as a sum of

(1.2)

two terms I ,+1, ,,similar to the proof of Theorem 4.3.In 1, ,,, p;, p; =0
for all j = n; I, , is the remainder.
For the bound on term I; , we bound first

s—1 Ak,
A(n) = 1EN{ H < k”'l ) exp( Al} 1)}

i,j=n

1 A”"l (7.3)
_Eu{'l—[ < k”' )CXp( A}l)}
L,j=n
Here " runs over the set
{kijazkijgjazkijéi}~ (7.4)
i j
and we show
. [ Ay
,I,LTOZ/{H ( kj' )exp( Ay, 1)}=1. (7.5)
i,j=n

We have already seen in Sect. IV, Eq.(4.27), that ¥”{ } is uniformly
bounded for all n. Now the sum of all terms in which k;; + 0 for some
i=j goes to zero like y ™" since (4, ;) < consty ™'~ by (4.23). We therefore
have to show

s—1 s—1
'1111130 11 epru yexp(—Aj,4) H exp(—A;;,) =1
j=n 1,ij*—jn
and this follows at once from (4.25), and the fact that

1-ﬂepr exp(— <ZA’“/(1+1)!
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This shows that for any ¢ >0 there is an N < co such that for all n> N,
t,t' > n the expression (7.3) is bounded by &. Note that by (4.25)

s—=1

T exp(—= 41 = 4355 [] exp4i,(g*) -1

i=n

as n— o0, which justifies our replacing

n—1 s—1
exp(—4,,) by H eXp(_Ajo(g))' H exp(— Ay, — Ay5,2) -
Jj=0 i,j=n

By construction, the contribution I, , can be arbitrarily approximated by

n—1 s—1 * s—1 n—1
Kw,,(ﬂ expVz, I1 e)§pVQj> C,,,,,,,< [T expVy, H expV;Qj)%)

j=ry i=n j=r2 J j=r2 7
,, 9)
: n exp— A1 H exp — A, 2}“ exp—A;;,:4(n),
i,j=0 i,j=0 ij

where IT” runs over the set {i,j;(i<n,j=n) or (i = n,j<n)}. The con-
tribution [ ] is uniformly bounded in n,s by const.||C|-y~™" ™, by
Theorem 6.4, and the product | | is bounded by a constant, uniformly in
iJj
n, s, since lim ]—[ exp(—4;;;) = 1. Finally we have seen that 4(n)—0 as
n—ooy

n—oo and so the assertion of Theorem 7.1 is proved for the contri-
bution I, .

In I,, we shall not need any cancellation between the terms coming

from N
( 115w1’ 'Tms%) exp(—A,zs)

and ( rit’ slpl ’ m’ Trzt’st) exp('—At’Zs) >

but we shall show that the contribution from each of these two terms is
small, as n is large.

We call “R-Wick expansion” the Wick expansion in terms of opera-
tors A*(x), A(x), x ¢ Q. By construction of I; and I, each R-Wick term
of (T, ;sv1, Cp thslpz) exp — A,,. which contributes to I, must contain
at least one of the following contractions:

1) VRJ N Jrok=1,23,jznizn;ork=1,23,4,j=n,i<n,

2) VR Yosk=123,j=n,

3) VR, Lommr k=1,2,3,4,j=n,

4) Vg W2 k=1,2,3,4 j=n,

5) “adjoint” versions of 1), 2), 3), and 4).

The smallness of the contributions to I, follows from the presence of
these contractions. We can expand this in the following way:
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- s—1

Let (= n xp VR,.. H expVQ

Let V§ _, denote “Vy  contracted in one or several of the fashions 1) to
5); let Vg, denote ‘the corresponding statement for Vg ..
Then

[( 1tsw17 ’TrzlslpZ)]Iz exp—AtZS
s—1
= (Trlls,jwl’ Vlgtj\,,cmm’ Tms%) €Xp — Azzs
j=n
(7.6)
+ Z r,tswlv mva, rﬂs,jlpz)e’(p—/lzzs

- Z (Trlts,jthlt Com_ Vi ,,Trzrs,j’lpz)exP—Arzw

G N s T
J =n

+ further terms of third and higher order (sign alternates with number
of V's).

We only discuss the first three terms of (7.6), the other terms are
bounded in a similar fashion. We bound the absolute value of each term.
In each of these three terms there is a finite number of different Wick-
terms involving V§ or Vi . Each of these terms contains at least one
contraction which is “small” as n is large. We write, e.g.

4
Vlik_,\gmm’ = kgl :Vlskj\kgmm’:R + Cmm V};kj\_;, . (77)
Here : :; is Wick ordering of 4*(x) A(x), with x¢ Q. Now V,;“J\VC,,,,,,,
contains a kernel og k.,, with at least two variables identified, and we

have seen that the Hilbert Schmidt norm of this kernel is small as j is
large.
Indeed the decomposition

g,k

=Ug pu "k,

shows that the contribution from the first four terms of (7.7), summed
over j =t goes to zero as t— oo, uniformly in |C||, using the bounds of
Sect. VI.

The last term in (7.7) yields a small contribution since there are at
most 3 contractions between V¢ and Vg ,,j,j’ = t, and so m this and all

other possible cases one has a factorz p I < (p =171y due to
jzt

(4.21)—(4.23). This proves that the first two terms in (7.6) go to zero in
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absolute value, uniformly in ||C|. In the third term the argument is similar
but there occur more terms.
We expand

% —_ Sk .
VR, \,Cmm’ “_/VRJ" - Z “)VR,\klzcmm'\kZ/VR,'R >

ky,ka, kS \\\\\kj_’////\\a

ky*+4
and then we repeat the above arguments.

In higher order terms, the argument is similar. It is easy to verify that
for a term of order p in Vg*¥, one will get a bound

s—1

T % % T _
jl..gpzn(Thmwl’ VR“\-;' VRJk\)Cmm’ (/VRJ,(_l "('/VR“, TrztslPZ) exp AtZ-‘
i dped

p/2
<const. Y [[y Wy cl

qiztmizi=1

< const 7y

K

where y, t>1, J = {j;|j; = (n+i)'/?}.
Summing over p, we get the bound ¢(n) ||C| y~™~™ for I,, with ¢—0
as n— oo, and hence Theorem 7.1 is proved.

VIII. Estimates

In this section, we present the technical estimates we needed in the
previous sections.

The estimates are roughly of two types: estimates on certain numerical
kernels and estimates of functionals w,, acting on Wick monomials with
smooth kernels.

We start with the estimates on the numerical kernels v(g), defined in
Sect. I1. Our two basic estimates describe the following facts: Lemma 8.1
shows that [xv(g)||, ~ O(Vol(suppg)) if g is smooth enough and if its
support is essentially a disk in IR?. Lemma 8.3 shows that if at least one
of the four variables of v(g) is projected outside (suppg) by a projection
P then ||Py;v(g)||3 ~ C(y /) for some y > 1. This means that v(g) is essen-
tially concentrated on (suppg), with a square integrable tail outside of
(suppg).

We shall use the following notation. Let f be any function, then we
write

D)= suplkl|f (M) 8.1)
=0 keR?
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If the Fourier transform f of f exists and is n times differentiable, then
there is a constant K, independent of f, such that

<
D= K, 5, maysp| T )
o (82)
~Vol( U (supp . f))EEn(f).
lel=1 0x
olel peitex
Here, axe = Oxt oxE’ 1Q| =0;+0,.

Symbols C(a, b, ...) will denote constants which depend on a, b, ...; the
symbol may take different values in different lines of an equation. C is
any constant. The absence of an argument in C(a, b, ...) does not imply
that the constant is independent of this argument.

Lemma 8.1. Let g be a smooth function with compact support. Let
v(g) be defined by (2.8) and let y; be defined by (2.5). Then there is a constant
Ao, independent of g, such that

[20@)> = Ao sup (1 +[k) |g(k)| = 20D, ).
Proof. By definition
||va(g)|l§ = jdk cdkyyiky, ..o, ky)?
H ulk)” (z ik )) 90k, + - + ko).
We bound (8.3) by
Dl(g)zjdk1 o dky ik, o ky)?
: ilfll u(k,-)”(i‘; u(ki)>_2(1 g+ k)72

= D) Cy*,

by power counting [22], [6].
Note. C(y;) depends on the scaling of y; in the following manner:

(8.3)

C(Xj)=C(m0)ln( max max |k; ]/ min max_ |k; ]) (8.4)

esuppy, i esuppy, i
where m, is the mass in p: u(k) = (m3 + k*)*/2.
Lemma 8.2. Let {; be a smoothed version of y;, defined by

4

Cj(kla v ky) = jdlx dl4°‘~8j H Qb(“_jli) Xj(k1 ~l, . ka1,

i=1
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where e &, | p(k)dk =1, p(k)=0,1<a<2. There exists a constant A,
and a constant y>1 such that

2\ "2 . )
06~ @l <ol 2] D@L foralli 83)
Proof. By Lemma 8.1, it is sufficient to bound
jdkl dk4(§j_)(j)2 (kys-oes ks)

4 -2
H ulk;)” I(Z u(k; ) (L |k + -+ kg2 (8.6)

We divide (R*)* into 3 disjoint regions R,;, R,;, R;;: Let f=(2a)"?;
we define

Ryy={kr. o ko): max [k [2/ 45270 = pr},
R, = {(kl, o kg); max |k <2—p or max [kjz 2"+ ﬁ’},

Roy= ki, oo ks max, [kf e @i 204 Bu@* = 1,2 + i)

We bound j by observing that if k € R, ;, each k; is at least at a distance
Ry,

B’ from the boundary of suppy;. Therefore the integration in {; extends
at least over the set |I] < f, and

Cj(kuw-,kzt)?_( j thzj(,z’(o‘*jl))‘t

fH=p7 (8.7)
dlc?)(l))“ 21-Cly, @)y 7

(lztgzﬂzw/z
for any y; > 1 and some finite C(y,, @) since ¢ decreases faster than any
polynomial. From (8.7), we conclude that

[ = (dky..odkyyky ... ky)

Tt [ £ t)] 04l R COu

and so, the assertion (8.5) holds for this part. A similar argument can be
used for R,;. Finally the contribution of R;; can be bounded by using
(8.4). We get as bound for large j: D,(§) - C In((2) + p/)/(2' — B)) < D, (9)
-ClIn(1434/2/) < C- D,(9) B/2’. This completes the proof of Lemma 8.2.
Lemma 8.2 will allow us to smooth freely the function y;.

Lemma 8.3, Let g be a smooth function with compact support, and let
{ be a smooth function whose support satisfies dist(supp(, suppg)>d,
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for some d>0. For d <1 the following estimates hold. If { has compact
support, then

|79 P v(g)]| 2 < AgE5(0) Ey(g)d 32772 (8.8)

If 1 —{ has compact support then

1729 0(g)] < Ao(Es(l ~0+ sup sup

eR? o<

@2 )
for some A, independent of (,g and j.

Proof. We write

27X v(g)],

4
:{j'fdlxj(kl, cky) 5(](, — DGl +ky+ky+ky) u()~12 H ,u(k")_lfz

n=2
2 1/2
dk, ... dk4}

{uo+ z u(kn))”l

g{jdkl . dk, +ks +kg) ()72

Xj(ku s ky) I:[z /’L(ki)_”z(‘z H(ki)>_

2y1/2
} (8.10.1)

4
lys oo k) G+ Ky ks + k) p()72 TT plk) ™2

i=2

+{jdk1 .. dk,

Ll =) [(u(k1)+ 5 u(ki))— —(u(l)+ ) #(ki)>‘ ]dl

i=2 i=2

2y1/2
} .(8.10.2)

The term C,eg is obtained as follows: If { has compact support then we
set C,eg—C If {—1 has compact support then (,,, =(1—{), in other
words, we have omitted from (8.10.1) a contribution coming from the
¢ function (= 1). But this contribution is zero since for k, =, [ ] vanishes.
One can view these remarks as a consequence of the fact that (8.10.2) is a
commutator.

We estimate (8.10.1) and (8.10.2) separately. For the first term, we
recall from Lemma 6.2 the bound

olel
|‘a—x—9#—1/2(x)

4 Commun. math. Phys,, Vol. 25

< C(o) |x|_3_|Q| e~ molxl
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We now use the essential assumption that the supports of { and g are
separated by a distance d > 0. Therefore

[+ Y ke — 1 ()12 G+ p) (1 + |p)Y dl)

. i a|2| alr[
<C(N,N) Y, feuk::-#p.ﬂw v C(X)ﬂ_l,z(x—y)g(y)dxdy‘
lo| <N X y
[
plet gl
< C(N,N' LA o
o )llelél\l;{j 0x? 0y* (00 pmyjo(x = y) g(y)| dx dy

To bound (8.9), we bound this quantity by

o (s

0x?

C(N,N) 3 (sup sup
lo| <N \xeR? le/|<N
[t

( sup [dx d—3—N-N’e""°'x—yl)~EN,(g) =B,(N, N, d).

yESuppg

We have assumed d < 1.
To bound (8.8) we shall use instead the bound

C(N,N') Ex({)-d> "N "V Ey.(g) = By(N,N', d).
We therefore get

K&lOJ)[g(jdklu.dk4

Faptke, oo ka) (ko |+ 1) 72 (|ky + kg + kg |+ 1)1

B ] u(k,-)*”(i u(ki))_l 2)”2 < Clmg)- B, 1, d)2 17
=2 i=1

by power counting; B = B, or B,.
To bound (8.10.2), we use the inequality

4 -1 4 -1
[0+ 3 wtk) = () + T uthd) | Gt =0

-1

< Bl ) il —l)i'(u(l)+ 5 u(ki)>_ (2 ﬂ(ki))
i=2 i=1
Now we bound

I e (k) ()] < (1 + [k]) C(mg) - €,y (k)] < (1 + |K]) 72 Cmg) - D3 (C,ey) -
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Therefore
|(8.10.2)|2
< [dky.dkg|fdlidly g3k, .o kg) G(l + ko + ks + k) G(1, + ky + ks + ky)
’ ﬂ(h)al/z /v‘(lz)—ll2 Zreg(kl =)tk = 1)~ freg(kl — L) ulk; = 1)

4 4 -2 4 -1 4 ~1
-nmm%zm@ (0 3 wkd]  (utr+ 3, ute)
n=2 n=1 n=2 =

n=2
< C(mo)* D3(C0p)* D; ()
fdky . dkg dl dL( kg — L) 72 (14 kg — )72
A+ kot ks +h )T A+ | kg ks k)7

4 4 -2 4 -
-wmmwonu&w(zuwﬁ(mm+zmm)
n=2 n=1 n=2

1

-@w+zuwﬁ

n=2
< C(mg) D3((,ep)* Dy (§)2277,

by an explicit application of Weinberg’s theorem [22]. This establishes
our bound on (8.10.2) and proves Lemma 8.3.

Corollary 8.4. Let g be a smooth function with compact support and
let RCIR* be a region such that dist(suppg, R)>d, for some 1=d>0.
Let Py denote the projection onto R in one variable. If R is a compact
region, then

|1Prz;0(9)]|2 < CEy(9)d™7{(2/0) ™% +(2/0®) 772 VOI(R ;. 3,-14)} &.11)

for any 1 <a®<2.
If R is the complement of a compact region then

[Prx;v(@)], < C-Ey(g)-d™”

. {(2/0()—1/2 + (2/a8)—j/2 (VOI(]RZ —R)+1)}. (8.12)

Proof. We first replace y; by a smooth function {;, as in the proof of
Lemma 8.2. Let (k) = 0; @(x) =0 if |x| = 1/2 and suppose

j(p(k)dk=1, j @(k)dk_Z_l-CNl_N.
k<1
We set
Liky, oo kg) = [dl; ... dl(ad)®
4 ‘ (8.13)
: 1:[ QD(a“jlnd)'Xj(kl b, k=),

n=1
43
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We shall fix « later. Then
P}({x) Cg_p) — P}({x) Cg_p)ém
where we choose ¢ to be smooth, £ =1 on (SuppPg)+ -4, ¢ =0 outside
(suppPg) + 34-74> and smoothly interpolated between 0 and 1 elsewhere.
For large j, dist(suppé&, suppg) > d/2. We bound (8.11) by
HPRXJ‘U(Q)Hz = ”PR(CJ - Zj) U(g)“z + HPRC,fU(g)Hz

<€ =x) v@)] 2+ 1IE;E0@)]2

= ”((j'— Xj) U(Q)Hz +

‘Zo XiCjév(g)

l . (8.14)
2
By Lemma 8.2, the first term in (8.14) is bounded by

2\ "2
/10(—0;> d V2D, (G). (8.15)

Let dist(k,, suppy;) = 2F. Then
zj(k1’~”’k4)§ f dl1(°‘_jd)_2‘l’(0‘_jdll)

2rs|ly|

= | dle()ECy@d2ra i)V,

d2pa-i<|lf

Therefore we find
DKy ooos ka) Cilkys oo k)| < C(N) gilkys <.y kg) V27N G=N - (8.16)
If R is a compact region, then by (8.8)
lx:€0(@)])2 < Ao - E5(&) Ey(g)d 3272
<Cd 3a¥ Vol(R, 5,4,-5) E;(g)d 32772,

The bound on the derivatives of & comes from the smooth construction
of £. We therefore get the following bound on (8.14):

2\-in i
Pl sc(2) a0,

+C(N) Y 271NN G=N . 43 43IV Ol(R, 4, -,0) Es (g)d™ 32712
i=0
SCE(9)d™"{(2/a) 7+ (2/0®) 77 VOI(R 1 3,-50)} 5 (8.16a)

by an obvious bound on ). This proves (8.11).
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To prove (8.12), we use (8.9)

el
[x:¢o(@)ll2 = 4o (E3(1 — &)+ sup sup 2 .

)El(g)d*z-“z

< Jo(d 30 VoI(R? — R) + d ™ 2a?)) E, (g)d 32772

and therefore

2\ ~J
lPage@l=c(2) a0,

FC(N) Y 271NN g=N. =3 43)(Vol(R2 — R) + 1) E, (g)d~ 272
i=0

SC-E(9)d77{2/)™ 7+ (2/a®)"*(Vol(R* — R) + 1)} .
The bound (8.12) is established, Corollary 8.4 is proved.

Lemma 8.5. Let jeN and let g ; be defined by (4.4). Then there is a
constant Ay < oo such that

lx;0(@s)lla<do foralljeN.
Lemma 8.6. Let vy and vy, be defined by (4.8). Then for v small enough,
og, — vi(g4+ )i+ lvg, — vi(g-)l.< Aoy ™! for somey>1.

Lemma 8.7. Let g ; be defined by (4.4). Then, for v small enough

vi(g) —vi(g+)—vilg- )l <oy -
for some y > 1.

Lemma 8.8. With the notations (4.17), if i=j then

Y A/ SC-y™' 7 for some y>1.
«=1,2,6,7,8,9
Note that Lemmata 8.5-8.8 prove Lemma 4.5.
Proof of Lemma 8.5. This Lemma follows at once from Lemma 8.1.
Note that |, ;(k)| is uniformly bounded in j by const. max g(x)

- Vol((suppg)4,). Note also that [k[ |7, ;(k)| is bounded uniformly in j

by O (“length of boundary of Q” -8 v~/ . vJ),
The last factor comes from the derivative near the boundary of Q and
the first two factors describe the volume over which this derivative is
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not zero. Since g and g’ have compact support and are smooth, the
assertion follows.

Proof of Lemma 8.6. We prove [vg —v (g ;) |,<Cy~J only, the
proof for the other term is similar.
By definition,

”ij U(Q+J)”2 ”/((x) (p) (g+j)_X§'p)U(g+j)“2
=[x (P v(g+ ) =P v(gs )+ P v(gs ) — 1P v(g4 ), (8.17)
S =% %) v v(g )l + 1P = 2P v(g+ )2 -

The first term is bounded as follows: By construction of v(g, ), {; and
of (1 —y. o) there is at least one of the four variables in which

(1= 9 T vlg. )= (1~ ) &0
with dist (supp &, supp g, ;)= v /. By Lemma 8.3 we have
J
”XEP) év(g+j) [,=C v El(g+j)' v

Note that E,(g. ;) is uniformly bounded in j (see proof of Lemma 8.5),
and the assertion follows now by an argument similar to (8.16):

M8

1) P Ev(g, )], < C v,

0

i

The second term in (8.17) is bounded by Lemma 8.2. This completes
the proof of Lemma 8.6.

Supp gy,
Fig. 4

Proof of Lemma 8.7. The proof is a combination of Lemma 8.1 and
Corollary 84. Let g,;=g—g.;—g-; We write g,; as a sum of g;/’s
which have more or less circular support and whose derivatives are
bounded by v' "9/ see Fig. 4.

The number of such g;;’s necessary to “cover” g,; is O(¥). Then
2= Y (ol olgse) - B.18)

”va(gAj)“%: 'U(gji)
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By Corollary 8.4,if g;; and g;;. are not nearest or next to nearest neighbors,
then

I(va(gji)7 va(gji'))| = I(P(suppgﬂ)‘ . va(gji)! va(gji’))'

(P~ suppay .. -1 20(G50, 1;0(9;0)
—g ]lva(gji) HZ : ”P(suppg).), vy va(gjl’)HZ (819)

+ “P~{(suppg,,J _J]va(gji)nz ;009500 2
SCE (g;) v - {(2/0) 7% 4 (2/a®) 7%}
SCylig*i2miR

and we get the desired bound if v’ a*2 7?2 < 1. This is our choice of a.

It is now easy to bound (8.18):
Let Z Y +Z where ' extends over {i=i'}, nearest neighbors

ll ll

and next nearest nelghbors
Then

(8.18) <z max 2090005 + Z”C (Va2 12y

<C-5vVmaxE,(g;)* +C- v a*27 12y
SCSvly 2% 2 L C(VWat2 1Y <y
for small ¢ with some y >1. QED.
Proof of Lemma 8.8. We prove the assertion for 4,; ; only; the proof

for A;;,, «=2,6,7,8,9, is similar. By definition, 4;;; = ({;v(g.,),
X~o(;(9+,) We assume i>3j. Then let

4
Cilxq, oo xg)= Edy1~--d)’4ﬁ+8i H (P(ﬂ+i}’n) X~ (X1 = Y15 oes Xg— V4,
n=1

where @ (k) is smooth with compact support contained in

K £1/2, ()20, fp(x)dx=1 and | @(x)dx=1-Cyy™;
[xl<x

B will be fixed later. Now we rewrite

Aij= ((X~Q =&)X v(g4 ) ij(g+j))
+ kZ,O(ngiU(g‘HL wCilv(g+5)- (8.20)

To bound the first term in (8.20), we use an argument similar to the
proof of Lemma 8.2.
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We consider 3 regions (in position space):
Ryi={(x1,....X4)|x, €Q, and dist(x;,0Q)=p" "> fork=1,...,4},
Ryi={(x1, ..., X4)|x, ¢ Q, and dist(x,,0Q)=p""* for at least one k} ,
Ryi= (1R2)4 —Ry—Ry;.
Let yg,, be the characteristic function of R;;, 6 =1, 2, 3. Then

3
H(X~Q“ gi)(X) Cgm v(g)l. = Z, HX(IQ. X~Q— éi)(x) Cgp) v(g4)lls-
For =1, 2, we bound

”X&ﬁ, (X~Q - 5;‘)(3‘) Cgp) v(g+)lla
= su 6_I(X~Q—éi) (X1, --0s Xg)| - ”X(Iﬁi CEP)U(ngi)”zéCY_i

(x1...x4)eR,

by an argument similar to (8.16) and by Lemma 8.5, and Lemma 8.2.
The smallness of the term with =3 will come from the bounded volume
of Ry; and its distance from supp g, ;.

We use the second term of (8.16a), which is a bound on |[xx{;v(g)l-
We get for f>v, i large,

|lXR3,~(X~Q — &) C(ip)v(g+i)“2
-i/2
§l|XR3,C§p)U(g+i)”2§CE1(g+i) V7i(v—3) .

We shall therefore require 1 < v2* < 2. This gives a bound

|((X~Q - Ci)(x)CiU(g+i): ij(g+j))| = CVfi SCy D,

for some y > 1. To bound the second term in (8.20), we note that according
to (8.16)

[ 8l £ C(N) g3k oos ky) yiN2 KN,
By construction, we also have
OO f =P EP9P f, where
1 if max |k, € [2k— B, 2k + B
0 otherwise.

9(kys ..., k4)={

Therefore

s

(aliv (g4 1009+ ) (8.21)

k

0

A

Z C(N)ViNz—li_kIN' I éi'gijU(ngj)“z'
=0
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Now again by (8.16),
9011 if k=2j<2i3
and |9,{;| < C(N)WN21k~JINI2 gince, for large k, 2¢ — B> 242,

Therefore

2i/3
(8.21) < c{ Y 2-iNva2+kN}
k=0

+ C{ i va2~‘i—k|ijN'2‘|k—j|N'/2}

k=21/3
<Cy i< Cy %9 if v is small enough.

This proves the assertion for the case i > 3j. The case j> 3i follows by
symmetry. The other cases follow from Lemma 8.6.

We now discuss the functionals w,,,, on Wick monomials with
smooth kernels.

We shall use the following norm. Let w,,,(xy, ..., x,,4,) bea function.
We define
m+n
“wmn“~ = Sup ” l—[ l’t mn(kl’ AR m+n)“2
0Sv,S3. V1 i=

Then one has the important bound

Theorem 8.9. Let W, be a Wick monomial of the form

m+n

Wmn= del“‘dxm-‘\-n H X(ﬁl)(xi) Wmn(xl’ LEER} xm+n)
i=1

'A*(xl)“'A*(xm)A(xm+1)"~A(xm+n)a
with B;e {1,2}, y'V =g, #® =y~ o. Then uniformly in t and o,
Iwra(Wmn)l g Cl ' “W

with C,>0,C,>1,C;>0.

Com e —ntircy)
2

mnll ~ ;

Proof. We look first at a contraction

dexwmn(x,...)ij(x,.,.)

= [ dxdydzw,,(x, .. u(x =y pu_(y—2)vy,(z,...),
xeQ

zeQ

with v> 0, and p, is defined by (5.2). We now write

Fdx Wy, . 2) 20 (%) 1, (x — )
= [dxdzdz' (X, . )y (x—2) - n, (2= 2) go(2) 2 = y).
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By Lemma 810’ “ I:u—v ~£(Z - Z,)XQ(Z/)IJV(Z/ —)’)dzl ”2 = Cv,c <o if e> 1’
%> V> _—12—2—8— Similar statements hold with Q replaced by ~ Q, and

for contractions to vg;.
We write, with vg =vg, or vy,

Jodx wy,(x,..) o (x, ...)
x¢Q
= [ dxdydzw,,(x,...)u,(x=y) p_(y—2) vs (2, ...)

— | dxdydz w,,(x,...) u,x=y) - (y—2) vg (2, ...).
xeQ

. .
We now “absorb” u, or u,,, into w,,,

m+n

“jdxl”‘dxm+nwmn(x15 ""xm+n) l—_[ ( (ﬂ)(x).uv( 1 z))

=1

2

ésupilijdxl"'d‘{m-*n mn(xl" "Xn1+n)HXQ(xi)#v(Xz~Zz)niuv(xi~:i)i

iel i¢gl 2
I
<Sup” dxl d‘cm+nwmn Xiseeos Xpgn nﬂv+e Xi—Z H:uv —Zl)l}
iel i¢l il2

n]”dzﬂ y—e(x—=12) )(Q( u(z= )i,

el
S [ Woanll (C ™"
Here sup extends over all subsets I of {1,...,m+n}, C, ,=max{1,C, }-2,

and all || |,-norms are over the variables which are left after the integra-
tion over the variables inside || |,.
As in Sect. IV, Eq. (4.28), we estimate w,,(W,,,) by giving a bound on

Z z (W)1|’ |Spqmnl [V’zl) > (822)

p.q=0 Spqmn
where ) extends over all Wick terms of (V*)”W,,, V¢ whose graph is
Spamn
a skeleton graph. We get

8221 Y max (sl 1S,gml [12) ((4p+ )1 (4g +m)) 2K Farmen,
P:4=0 Spgmn
(8.23)

Suppose p, and y, have at most r particles, (i.e. the k-particle components
of p, and y, are zero if k> r). Then at least m —r and n—r contractions
are between W, and some V¥ or Vg, and in these contractions we
apply the mequalltles derlved above. It follows at once that for v>0

l ™ vg o= lu v (g-pla+me™-llvfg-)—vg,ll
<const. y J for some y>1,
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by Lemma 8.6. Therefore we can apply Lemma 2.2, and we get

p q
max ([} 1S, gmal V2D S C 2 [Ty % TTy 7 Wl ~ (8.24)
Spamn Ji--jpe€Im-r k=1 k=1

G ibern-,

m-r n-r

p q
-1/2 £ kY2-1/2 § KV2-1/2 § kV2-1/2 F kU2

écwwznwmn“~(y—1)—(p+q)')) i k=t k=t k=1
é C‘plwzg“ Wmn n N'V/ —m3/2-¢ _,,3,/2—5?,, —p3/2-e —g3/2-¢ , (825)
for any ¢ > 0.

Here j,...,j,€J,, -, = {j,lj; = i"/* (truncation), p=m—r (number of
legs to connect)}. The constants y’, y” are larger than 1.
The assertion of Theorem 8.9 follows now at once from (8.23) and (8.25).

Lemma 8.10. Let Q be a polynomially bounded region in R%. Then

[fdzpu_,_(x—2) 5o(2) u,(z—y)ll, <0

—-1-2
if———24—i<v<1/2and8>1.

Proof. We use the following statement, and then Lemma 8.10 follows
by simple power counting.

Lemma 8.11. Let Q be a polynomially bounded region in R and let y,
be the characteristic function of Q. Then the Fourier transform j,(k)
satisfies the following:

For |kj=1, k= (k,cosq, k;sinp), k, fixed,

Tonk)=C for all ¢ and n>0

n+1

and 7o(nk)=C' for almost all ¢ € [0, 2 ), and n > 0.

1
(n+1)?

Proof. Let {{,} be a covering of R* with smooth functions of compact
support such that

1) {," %o #* 0 for a finite set of o’s.

2) The boundary of the support of {, - 7, contains either a segment
of two edges of the boundary of Q which meet in a corner, or no edge of
the boundary of Q or a segment of one edge of the boundary of Q (Fig. 5).

We now prove the assertion of the Lemma by proving it for each
Lo o

Ii('2 {4+ 20={,, then the assertion is trivial, by the smoothness of {,.

If {, - 7o contains one sharp edge, then {,- o, ={," 1p» Where Q" is a
square.
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Then 74 has the properties which we want to prove for 7, (as can be
seen by a direct calculation), and hence ({,- xo)~ (k) = jca(k— l) 7o (D dl
has these same properties since convolution by a function which falls
off faster than any polynomial preserves the asymptotic behavior,
(see [16] Lemma 4.3). The case with two edges follows in the same way,
by letting Q" be a parallelogram.

supp {

supp Lo

Fig. 5
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