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Abstract. It is proved for fermi systems that each translationally invariant state ω with
square integrable correlation functions approaches a limit under the free time evolution.
The limit state is the gauge invariant quasi-free state with the same two-point function
as ω and it is characterized by a maximum entropy principle. Various properties of the
limit are discussed, and the extension of the results to bose systems is also given.

1. Introduction

The study of the structural properties of infinitely extended systems
has played a useful role in the understanding of the nature and properties
of equilibrium states. Similarly one would expect that analysis of the
time development of such systems would aid the understanding of non-
equilibrium phenomena. Very little work has however been done in this
direction because it is notoriously difficult even to define the time-
development of systems with an infinite number of degrees of freedom.
In fact the only interacting systems for which one has a satisfactory
definition are quantum spin systems [1] and a class of one-dimensional
classical systems [2]. If, however, one turns to non-interacting systems
the definition of time-development is relatively simple, and it is possible
to analyse the properties of states of the system as they change with time.
For example it has recently been shown that the equilibrium states of
non-interacting classical systems have strong ergodic properties with
respect to time and in fact provide examples of X-systems [3,4]. Alter-
natively, for free systems of fermi particles, it has been argued that many
states, possibly differing globally from equilibrium states, approach lim-
iting equilibrium states as time progresses [5]. In this paper we will
characterize a class of states of quantum systems which converge to a
limit state as they evolve freely and examine properties of the con-
vergence and the limiting "equilibrium states".

In the first part of this paper we consider exclusively fermions and
in Sect. 2 we define the set of states whose time-development towards
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an equilibrium state is analyzed in Sect. 3. Properties of the approach
to equilibrium are discussed in Sect. 4 and the method of extension of
our results to bosons is presented in Sect. 5.

2. Square Integrable States

A system of fermi particles moving in the configuration space Rv can
be described in a well-known way by the C*-algebra si associated with
the canonical anti-commutation relations. We will adopt the standard
notation and terminology used, for example, in Chapter VII of [6]. In
particular, we denote by

Rv)^a(f)esΐ, geL2{R>)->a*{g)esf

the generating elements of si which satisfy the anti-commutation
relations.

{*(/), α*fo)} = (/,0) etc.

The group Rv of space translations is represented as a group of strongly
continuous automorphisms α of si whose action is defined by

where
(f)() f(χ) etc.

The one-parameter group of free time translations is also represented
as a group of strongly continuous automorphisms τ of si and the action
of this group is defined by

φ { f ) ) {J) t e R
where

(VJ) (x) = - ^ p - j dpf(p) J*-***

[/ is the Fourier transform of/].
As si is generated by the α(/), a*(g) each state ω over si is determined

by the set of values

{ω(α*(Λ)... a*{fn)αfo)... a(gm)) fu ...,/„,gu ...,gme L2(R*)}.

We introduce

Wnm(fl9 ...,/„; gl9 ...,0U = ω(α*(/1)... α*(/Jαfe)... a(gj).

The state ω is defined to be even if

Wnm(fl9 ...,/„; 0!,...,0j = O

whenever n + m is odd.
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An even state ω over si is also completely determined by the trun-

cated functions ωτ

nm which are defined recursively by the following

formulae

ωMJfu ...,/*»; tfi,...,.αJ=y.(-l)σ(π)ωϊ\ (£,, . . . ,/)_ ;α, ,, . . . , # ; _ ) . . .

where the sum is taken over all partitions π of {/l9 ...,/„; gu ..., gm} into
dis joint subset s {/fl, ...Jir\gh, . . . , # Λ } , . . . , {fkl, ...Jkrι,gll9 ...,gla). T h e

/'s and gf's appear within each subset of a partition π in the same order
that they appear in the original set and σ(π) is the permutation of the
set required to rearrange the /'s and g's into the order in which they
appear in the partitioned subsets. The requirement of evenness of ω
ensures that this latter convention is unambiguous.

The state ω over si is said to be translationally invariant if

ω(αxΛ) = ω(Λ), Aesi, xeRv.

Each translationally invariant state is automatically even [7]. Such a
state ω is completely determined by the set of functions

= <^m(UXιf1,..., UxJn; UXn + ιgu ..., UXn+mgJ.

Definition 1. The translationally invariant state ω over si is defined to

be square ίntegrable if

\dξ1 ...dξn+m_ί | ω { / n } ^ m } ( ξ 1 ? . . . , ^ + m _ 1 ) | 2 < +00 for n + m>2

and for all fb g>3 such that fb g^ e Q).

Remark ί. Using the continuity and linearity properties of/-•«*(/)
etc., one can associate with each translationally invariant state ω a set
of tempered distributions Wjm such that

= J dxγ ... dXn

If the W£m are in fact square integrable then ω is a square integrable
state in the sense of Definition 1. This definition actually allows the Wjm

to have local singularities and corresponds to a condition of square
integrability at infinity. It might seem natural to demand the square
integrability condition to be satisfied for all fb g} e 2ι but this is in fact
a stronger condition than the specified requirement fi9 g} e Q).
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Remark 2. If ω is square integrable then it is automatically strongly
mixing of all orders, i.e. for all Λί9..., Ane <srf

lim c φ ^ i ... oc An) = ω(Ax)... ω(An),
min|x, —Xj\-*oo

and in particular Rv ergodic. The existence of square integrable states is
assured by the work of Ginibre [8] who shows that the equilibrium states
of a large class of interacting systems have this property at low density,
we suspect that the set of such states is weak*-dense among the set of
all translationally invariant states over jtf.

Before proceeding we recall that an even state ω over jtf is called
quasi-free if

ω lm = 0 for n + rn>2

and is called a gauge invariant quasi-free state if

ω L = 0 for (n,m)+(1,1).

Further, if ω is an arbitrary state over $0 we can define the associated
gauge invariant quasi-free state ώ by

ώ(a*(/) a{g)) = ω(a*{f) a{g)), f,ge L2(R>)

and ώΎ

nm = 0 for (n, m) Φ (1,1). It is well known that this definition actually
does determine a state.

3. Approach to Equilibrium

We next wish to analyse the time development of square integrable
states. Before this, however, we examine properties of two point functions
of a general translationally invariant state.

Theorem 1. If ω is a translationally invariant state over s$ then

limω(τt(α(/)α(flf))) =
ί-»oθ

and

forallf,geL2(Rv).

Proof. First, note that as ||α(/)|| = |α*(/)| | = |/|2 o n e has

Thus there exists an operator A on L2(RV) with | . 4 | ̂  1 such that

ω(a*{f)a{g)) = (f,
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Now as ω is translationally invariant A commutes with the group of
translation operators f-+Uxf on L2(Rγ) and hence is a multiplication
operator in momentum space. Thus there is a function ρ, with |ρ| ^ 1,
such that

co(a*(f)a{g))=Sdpρ(p)f{p)S(p)
= ω{τt(a*(f)a{g)))

and the first part of the theorem is proved.
Similarly there is an operator B with \\B\\^ 1, such that

ω(a(f)a(g)) =

translations an

ω(a(f) a(g)) = J dp σ(p)f{-p) g(p).

Again B commutes with translations and hence there is a function σ with
^ 1, such that

But then we have

ω(τf(α(/) a(g))) = J dp σ(p)f(-p) g(p) e2i^

which goes to zero as t-»oo by the Riemann-Lebesgue Lemma.

Corollary 1. If ω is a translationally invariant quasi-free state and ώ
the associated gauge invariant quasi-free state then

lim ω(τtΛ) = ώ(Λ) Λes/.
ί->OO

This follows simply by noting that the value of ω on each monomial
a*(fi) ... a*{fn) α(gfi)... a(gm) is a sum of products of the two point func-
tions ω(a*{fda*(fj))9 ω(α*(Λ)Φ,)), ω(a(gp)a(gq)).

Remark 3. As positivity implies that

ω((λa* (/) + a(g))* (λa* (/) + a{g))) £ 0

one can deduce actually that

ρ(p)^0 and \

Further, one knows that if

then ω is automatically a pure quasi-free state, but if this equality is not
valid then the quasi-free state determined by ρ and σ is a mixed state and
in fact primary.

Theorem 2. // ω is a square integrable state over srf and ώ the asso-
ciated gauge invariant quasi-free state then

lim ω(τtΛ) = ώ(A), A e si.
ί->oo
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Proof. The proof proceeds in four steps:
1. It suffices to prove that the truncated functions ωj m satisfy the

convergence property

MmωUVJu ..., VJn; Vt9u ..., Vtgm) = 0
t~*oo

for all (n, m)Φ(l, 1) and all fiigi with Fourier transforms in 2. This
follows because convergence of the state is equivalent to the convergence
of the functions

<t>nmiytfu -..,Vtfn; Vtgl9..., Vtgm)

for all f,ge L2(RV) which is in turn equivalent to the convergence of the
truncated functions. To obtain this convergence it is sufficient to prove
convergence for the fb gt in a dense set of L2(RV), for example fb gt e 2.
Finally ώ is obtained from ω by setting the truncated functions with
(rc, m) + (l, 1) equal to zero and hence the necessity that ωΎ

nm must con-
verge to zero.

2. The appropriate convergence of the two point functions has been
dealt with in Theorem 1.

3. Now with fί,... Jw gu ..., gm e 3) we can choose h e Q) such that

But then we note that
Vtft

= ft*Vth

where the star denotes the convolution product. Thus

= j ίbq ...dxn+mVth(xι)- Vth(xn+J

' ω{fn}{9m) (X2 ~ Xl> •••' Xn + m~ Xn + m-l)

Alternatively this last equation can be written

where
and

n n+m—1

i = 2 i=n+ί

Now ώ{fn}{gm} is square integrable by assumption and Ht by construction.



Approach to Equilibrium of Free Quantum Systems 199

Thus the proof of the theorem is complete if we can show that Ht tends
L2-weakly to zero as t-*αo. This is however accomplished by the fol-
lowing version of the Riemann-Lebesgue Lemma which constitutes the
fourth and final step of the proof.

Lemma 1. Let Φ be a Lebesgue integrable function on Rk and F a non-
zero bilinear form then it follows that

lim ίdr± ... drk Φ{rλ ... rk)exp{HF^ ... rk)} = 0 .
t * 0t~*O0

Proof It suffices to show that for any r = (rί ... rk) φ (0,0,..., 0) there
is a neighbourhood Nr such that the lemma holds for any continuous
Φ with support in Nr. Since F r F Φ 0 we may choose a non-singular
system of local coordinates u = (%,..., ur) at r with ux = F. If the support
of Φ is contained in the coordinate neighbourhood we then have

J dr Φ(r) eitF{r) = J du Φ{r{u)) \J(u)\ eitUί

where J is the Jacobian of the transformation (rί9..., r,-)-• (wl5..., Wj). But
this latter expression converges to zero as ί-> oo by the Riemann-Lebesgue
Lemma.

Remark 4. If we had considered a more general time evolution

then the foregoing results would be valid as long as the Jacobian of the
transformation (p 1 ? . . . ,p n + m _ 1 )-^(w 1 , . . . ,w n + m _ 1 ) where

n n+m—1

w1=ω(p1)+ Σω(Pί-Pi-i)- Σ ω(Pi-Pi-i)
i = 2 i = n +1

is non-singular for all n, m.
A slightly stronger result than that given in Theorem 2 can be

established with a slight elaboration of the above proof.

Theorem 3. Let ω be a square integrable state over <$# and ώ the as-
sociated gauge invariant quasi-free state. Denote by πω the representation
of #/, on the Hilbert space J4?ω, associated with ω by the Gelfand-Segal
construction. It follows that

lim ω(A(τtB) C) = ω(ΛC) ώ(B), A,B,Ce sΐ,
ί->OO

i.e.
weak limπω(τ tB) = ώ(B) ίω9 Bejtf

ίί->oo

where l ω is the identity operator on
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It further follows that the strong limit of πω(τtB) does not exist for
all Besrf.

Proof. The proof of the first statement proceeds again in several steps.

1. It suffices to prove the statement with A, B, C monomials in
a*(f), a(gt\ where fi9 gt e @, ordered with the α* at the left and the a at
the right. This follows because the linear hull of such monomials is
uniformly dense in s/.

2. Next use the anti-commutation relations to order the monomial
Aτt(B) C with the α* at the left and the a at the right. This process gives
an ordered monomial of the same order as Aτt(B) C plus lower order
terms each of which is proportional to an anti-commutator of an a from
A (or an α* from C) with an α* from B (an a from B\ i.e. proportional
to a factor of the form (Vtf g). As ί-» oo this latter factor tends to zero
and consequently the lower order terms do not contribute to the limit.
Thus we need only study the highest order monomial, the ordered form
of Aτt(B) C.

3. If we now write the value of this latter monomial in the state ω
in terms of truncated functions we obtain, using the first statement of
Theorem 1, a sum of terms exactly equal to ω(AC) ώ(B) plus a number
of ί-dependent terms. It remains to prove that these latter terms tend to
zero.

4. Introduce h as in step 3 of the proof of Theorem 2. Each of the
relevant terms has a factor expressible in the form

... ξn+m-ύ
where

p n + m _ 1 )

and E is a non-zero bilinear form in a subset of the variables p1 ... pn+m_ί.
The proof of the desired result is then obtained from Lemma 1.

The last statement of the theorem is easily proved by contradiction.
Assume πω(τ f α(f)) converges strongly as t -• oo then it must tend strongly
to zero because we have established that it converges weakly to zero. Thus
πω(τ f(α*(/)α(/))) converges weakly to zero. Similarly πω(τt(α(f)α*(f)))
converges weakly to zero. But

πω(τ t(α*(/) α(f))) + πω(τt(α(f) **

by the anti-commutation relations which is a contradiction.

Remark 5. In the above theorems we have established the existence
of pointwise limits of states or expectation values. One can also give
general conditions under which ergodic averages exist. Firstly, if ω is
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τ-invariant then the limits

1 τ

lim — $ dt ω(Aτt{B) C) Λ,B,Ce^
Γ^oo T 0

exist because srf is #-abelian [7, 9]. The limit can be identified and in
particular if ω is extremal τ-invariant then it gives ω(ΛC) ω(B). This
circumstance is of interest in examing the problem of return to equi-
librium. Secondly, if the truncated functions are not square integrable in
the sense of Definition 2 but are simply the Fourier transforms of meas-
ures then the limits

1 T

lim — \dtω(τtA), Aestft -

exist but are not necessarily equal to ω(A).

4. Properties of Approach to Equilibrium

In the previous section we have shown that a class of states approach
a limit state, or equilibrium state, in the limit of infinite time as the
system evolves freely. A priori one might be tempted to argue that the
limit state should be identifiable with the Gibbs equilibrium state com-
patible with the given energy and particle densities; this is clearly not
the case. The reason for this discrepancy is however immediate. The free
evolution is pathological in the sense that it allows many too many
constants of the motion. In particular Theorem 1 establishes that the
gauge invariant two point function remains constant in time. Thus the
information that could possibly be infered about the more realistic situa-
tion of an interacting system is limited. Nevertheless one can use the
information gathered for the freely evolving system to check a number
of general principles and provide examples and counter examples to
conjectured behaviour. We now examine a few such points but it is first
necessary to recall a few facts and definitions.

A state ω over J / is called locally normal if its restriction to each $1Λ

[the subalgebra generated by {a(f), a*(g);f, geL2(A)}^\ is normal with
respect to the Fock representation of s/Λ, i.e. a locally normal state is
determined by a family of density matrices {ρΛ} on the Fock spaces

in the following manner

ω(A) = T r ^ w (ρΛ A) AestfA.

If ω is a translationally invariant locally normal state over stf its mean
entropy S(ω) is defined by

S(ω) = lim - ViΛΓ1 Tr^(y l ) (ρΛ logρj
Λ* oo
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where V(Λ) is the volume of A and the limit over the net of increasing
parallelepipeds is known to exist [10].

A state ω is said to have finite density if for all A C Rv

NΛ(ω) = ViAΓ1 X ω{a*(fd a(ft)) < + oo

where {/J^i is an orthonormal basis of L2(A). A finite density state is
locally normal, and, further,

where NΛ is the unbounded operator which measures particle number
on 34? (A). Clearly, the restriction of finite density is solely a condition
on the gauge invariant two point function; if ω is translationally invariant
it is readily shown [11] that NΛ(ω) is independent of A( = N(ω)) and

N(ω) = f dp ρ(p)

in the notation of Theorem 1.
Next let us define the state ω to be N-entire (N-analytic) whenever

ω is locally normal and

for all A C Rv and all a e R (for some α > 0). This definition is motivated
by the following facts [12]. If ω is invariant under space translations and
N-entire then the following quantity exists and is finite

where the limit is again over increasing parallelepipeds; further, if ω is
α-ergodic, i.e. extremal among the translationally invariant states, then
eN(ω) is identifiable as follows:

Thus an α-ergodic state which is ΛΓ-entire has small density fluctuations
of all orders.

Finally recall that there are two notions of faithfulness of a state over
a C*-algebra. A state ω over s/ is weakly faithful if

ω(A*A) = 0

implies 4̂ = 0. The state ω is strongly faithful if the cyclic vector Ωω

associated with it by the Gelfand-Segal construction is separating for
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the von Neumann algebra πω generated by the corresponding representa-
tion πω (equivalently Ωω is cyclic for the commutant π'ω of the representa-
tion π j .

We now examine how these properties are affected by the approach
to equilibrium.

A. Maximum Entropy Principle

The Gibbs equilibrium state of a free fermi gas can be characterized
as the translationally invariant state which maximises the mean entropy
at fixed energy and particle density. Although the states we are con-
sidering do not necessarily approach the Gibbs state in the equilibrium
limit we will show that the state which they do approach has the
maximum mean entropy compatible with the constants of the motion.

Proposition la. Let ω be a translationally invariant state of finite mean
density which has the property that

lim ω(τt A) = ώ(A),
t-

where ώ is the gauge invariant quasi-free state associated with ω. Further
let Kω denote the set of all translationally invariant states with the same
two point function (/, #)->ω(α*(/) a(g)) as ω and ώ. It follows that

S(ώ) = sup S(ω').
ω'eKco

Proof It suffices to prove, for an arbitrary ω' e Kω, that ^(ω') ̂  S{ώ).
Now as ω has finite mean density

N(ω) = Λί(ω') =

= V(ΛΓ1ΎrLHΛ)(A)<+π

where A is the operator which determines the two-point function of ω
(cf. proof of Theorem 1) restricted to L2(A). Thus A is of trace-class. Let
UJi^i a n d {fJΐ^i be the eigenvalues and a complete orthonormal set
of eigenfunctions of A respectively. Further let J^ be the Fock space
(2-dimensional) associated with the algebra generated by a(ft) and a*(f).

has a tensor decomposition of the form J^ (x) Rt and in fact

15 Commun. math. Phys., Vol. 24
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Next define σt as the matrix on J ^ given by

where Q'Λ is the density matrix associated with ω'. It is easily checked that
the density matrix associated with ώ is given by

®

QΛ = Π σi

Now using Lemma 1 of [7] we have

) (ρf

Λ logρ^) ^ - T i > U ) (ρ^ l o g ρ j

Dividing by V(Λ) and taking the limit A -» oo gives the desired result.

Remark 6. If ω is translationally invariant and ωt is defined by
ωt(^4) = ω(τί^4), Aestf then in general S(ωt) = S(ω\ i.e. the entropy is a
constant of the motion. This however does not rule out the increase of
the entropy in the limit ί-»oo as S is usually only a semi-continuous
function. An example in which the mean entropy increases strictly is
given by a non-gauge invariant quasi-free state which in the limit ap-
proachs the associated gauge invariant quasi-free state [13]. We suspect
that this strict increase is a general property, i.e. the supremum in
Proposition la is attained by only one state namely ώ.

B. Density Fluctuations and Local Normality

Proposition lb. Let ωbe a locally normal translationally invariant state
which has the property that

lim ω(τtA) =
ί > o o

where ώ is the gauge invariant quasi-free state associated with ω.
It follows that ώ is locally normal if and only if ω has finite mean

density and in the case ώ is N-entire.

Proof That a quasi-free state is locally normal if and only if it has
finite mean density is demonstrated for example in [14]. Assuming ω and
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hence ώ has finite mean density then we have with the notation of Sect. 4a.

1 *> (Λ) \QΛe ) — 1 1 l rjrAσi e )

= Qxp{(ea-l)N{ω)V(Λ)}

and hence ώ is JV-entire.

C. Faithfulness

Proposition lc. If ω is a weakly faithful translationally invariant state
which has the property that

lim ω(τtA) = ώ{Λ), Aestf
ί->oo

where ώ is the gauge invariant quasi-free state associated with ω then it
follows that ώ is strongly faithful

Proof The weak faithfulness of ω implies

ω(a*(f) a(f)) > 0, ω(a(f) a*(f)) > 0, fe L2(W)

and hence Λ „ Λ

l > ρ > 0
almost everywhere. Now one can define a one-parameter group of
automorphisms of si by the following action on the generating elements

where
/ n(r>\ Vs „

-ίpx

It is easily checked that the state ώ satisfies the K.M.S. boundary con-
dition [16] with respect to this group of automorphisms, for example

σt(a(g))) = f dpf(p) g(p) ρ(p) [j

It then follows from [16] that ώ is strongly faithful.

D. Purity

Mathematically it is natural to ask if starting with a pure state ω one
always obtains a limiting state ώ which is also pure. We will now demon-
strate that this is not generally the case by citing an example.
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Consider the quasi-free state whose two point functions are given by

and

As \σ(p)\2 =ρ(p)(l — ρ( — p)) this state is a pure translationally invariant
state. Nevertheless the state attained in the equilibrium limit, the gauge
invariant quasi-free state determined by ρ(p\ is a type III factor state
(and incidentally a Gibbs equilibrium state).

5. Bosons

Examination of the time development of free bose systems is techni-
cally more complicated because it is impossible to give an algebraic
description in which the time evolution is realised as a group of strongly
continuous automorphisms. By suitable choice of the underlying C*-
algebra one can retain the automorphism property but the continuity is
lost. Nevertheless we will show that the time evolution can be defined
as a continuous mapping of a subset of states and use this formalism to
extend the foregoing results.

We will work with a C*-algebra si defined in the following manner.
On each Fock space tf{A)9 A C R\ we define siΛ to be the C*-algebra
generated by the set of Weyl operators

{U(nV(g);f,ge@nL2(A)}.

Using the canonical identification of siA as a subalgebra of siΛ, whenever
A C A' we can construct the algebra si as the uniform closure of the
union (over A C Rv) of the sίΛ.

Note that the group Rv is represented as a group of automorphisms
α of si whose action is defined by

*x{U(f))=U(Uxf) etc.
where again

(Uxf)(y) = f(y-χ)

but this group is not strongly continuous because of the easily established
relation

"-a)-111 = 2 if

This latter relation also makes it impossible to translate the free evolu-
tion of the test functions

^, teR
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into a group of strongly continuous automorphisms. This difficulty can
however be dealt with as follows. First for convenience introduce (on
Fock space)

where Φ(f) and π(g) denote the infinitesimal generators of U(f) and V(g)
respectively.

Definition 2. // ω is a state over sd such that for each pair fige@ the

is continuous on 6? x Sf we define the time evolved state ωt by

ωt(W(f,9))=ω(W(Vtf,Vtg)) teR.

We will now prove that if ω is a translationally invariant state with
finite mean density then it has the continuity property demanded by the
definition and in fact ωt also has finite mean density.

Lemma 2. // ω is a state of finite density and fige@nL2(Λ) then

\\(Wω{f, g) - 1) Ω J 2 ̂  (2NΛ(ω) V(Λ) + 1) [|/|2 + \g\2V

where Ωω is the cyclic vector associated with ω and Wω the representative
ofW.

Proof As ω is locally normal we can write

,g)-l))

~ 1)* (e ί ( φ ( Λ + π ( 9 ) ) - 1))

because for a self-adjoint operator i o n a Hubert space

\\(eίΛ-l)Ψ\\^\\AΨ\\, ΨED(Λ).

Hence as on the Fock space ^f(Λ) one has

^ (2NΛ +l)\f\2

2 etc.

we have

\\(Wω(f, ϋ)- 1) Ω j 2 ύΊΐjeiΛ) (ρΛ(2NΛ + 1)) [ |/ | | + \g\\ + 2 |/ | 2 | ^ | 2 ]

where we have used the Schwarz inequality. This proves the Lemma.
Next let us introduce a norm | | |. ||| on 6f as follows. Consider Rv

divided into cubic cells of unit size Λl9 Λ2, Then the norm is defined by
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It is easily to verify that this norm is continuous. We now have

Lemma 3. // ω is a translationally invariant state of finite mean
density then for fige 3#,

\\(Φω(f) + njg)) Ω J S ]/2Nλι(ω)+l

and hence

\\(Wω(f, g) - 1) flj S γ2NΛί(ω)+l

Proof. We have immediately that

] •

\\(Φω(f) + n Σ (Φ

where f = fχb g{ = gχ{ and χ{ is the characteristic function of Av The
inequalities now follow as in Lemma 2 with the use of translational
invariance to identify the various NΛ.(ω).

Lemma 4. If ω is α translationally invariant state of finite mean density
then the associated representation Wω(f g\ which is defined for fige @,
is strongly continuous with respect to the topology induced by \\\. |||. Hence
the representation Wω of the commutation relations extends by continuity
to a representation defined and continuous on £f. Further for f,geSf the
vector Ωω is in the domain of Φω(f) + nω(g) and

||(Φω(/) + nω{g)) Ωω\\ S )/2NΛί(ω)+l

Proof By the commutation relations and the cyclicity of Ωω the con-
tinuity of Wω follows from its continuity on Ωω. It also follows from the
commutation relations that Wω on Ωω is continuous if it is continuous
at the origin. This however follows from Lemma 3. The second inequality
of Lemma 3 remains valid for /, g e ^ by continuity; hence

Wω(tftg)-1
Ωf

But it follows by spectral theory (for an explicit proof see [15]) that if
A is a self-adjoint operator on a Hubert space then Ψ e D(A) if, and only if

ΛAt - 1

t
ψ

where CΨ is a constant independent of t. Further in such a case

'eLΛAt γ

t
Ψ ύCΨ.
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The remaining statements of the Lemma are then established by applying
this result with A = Φω(f) + πω(g).

Thus we have at this point established that each translationally
invariant state with finite mean density satisfies the continuity conditions
required to define its time evolution. But it is also possible to deduce the
following result.

Theorem 4. // ω is a translationally invariant state with finite mean
density and ωt its time translate, then t->ωt is a weak* continuous
one parameter family of translationally invariant states with constant
(finite) density.

Proof. It is clear that ωt is translationally invariant and the continuity
follows from Lemma 3 but it remains to prove that the mean density is
constant. Since however Ωω is in the domain of Φω(f) + πω(g) for all
/, g e 9* we can introduce the bilinear form

fige 9>^((Φω(f) + iπω(/)) Ωω, (Φω(g) + iπω(g)) Ωω).

By Lemma 3 this form is separately continuous in / and g and hence
is determined by a tempered distribution in two variables. But using
translation invariance we see in fact that

((*«>(/) + iπω(/)) Ωω, (Φω(g) + iπω(g)) Ωω) = J dp ρ(p)f(p) g(p)

where ρ is a tempered distribution. (As the form is positive one has
ρ ^ 0.) From this formula it now follows that

\\ (Vtf))Ωω\\ = | |(Φω(/) + iπ ω (/))Ω ω

Consequently Ωt is a state of finite density and

which completes the proof of the theorem.
If we wish to derive theorems similar to Theorems 3 and 2 for fermions

it is necessary to consider a more restricted class of states, namely those
possessing Wightman functions of all orders. Thus we now consider the
translationally invariant C^ states, i.e. the states ω for which Ωω is in
the domain of all polynomials of Φω(f) and πω(g) and

. (Φω(fn) + π ω ω ) Ωω

is continuous in fb gb i = 1, 2,..., n.

Remark 7. If ω is translationally invariant and a C^ state for the local
number operators, i.e. if ω is locally normal and
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for all ΛcRv and m = 1, 2,... then it follows that ω is C^ because one

can show that

K ( / i ) Φω(fn)Ωω\\2^Ίr^Λ)(ρΛi(2NΛl + 2n-iγ) Π Ill/J
£ = 1

and a similar inequality if some of the Φω(fi) are replaced by πω(/ f).

Finally for C^ states of finite mean density an analysis of the approach

to equilibrium can be carried out in a manner parallel to that of the

previous sections but the following changes should be noted.

1. The one point functions ω(Φ(/)), ω(π(g)) are not automatically

zero but due to translation invariance do not change with time.

2. The truncated part of the non-gauge invariant two point functions

ω((Φ(f)-ίπ(f)){Φ(g)-ίπ(g)))

must be assumed square integrable, in the sense of Definition 1, together

with the higher functions.

3. The convergence of a square integrable state to the associated

gauge invariant quasi-free state as t -• oo is no longer weak* convergence

but convergence of the Wightman functions.
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