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Abstract. We prove the existence of the thermodynamic limit for the pressure and
show that the limit is a convex, continuous function of the chemical potential.

The existence and analyticity properties of the thermodynamic limit for the correlation
functions is then derived; we discuss in particular the Mayer Series and the virial expansion.

In the special case of Monomer-Dimer systems it is established that no phase transition
is possible; moreover it is shown that the Mayer Series for the density is a series of Stieltjes,
which yields upper and lower bounds in terms of Padé approximants.

Finally it is shown that the results obtained for polymer systems can be used to study
classical lattice systems.

1. Introduction

In the last decade the mechanism of phase transitions has been
intensively investigated by studying properties of rather simple models.
One of those models, the Polymer Model [1] (also called quasi-crystalline
model), consists of a lattice which is fully covered with non-overlapping
“monomers” (molecule occupying one site of the lattice) and “polymers”
(rigid system of molecules which can be placed on the lattice in such a
way that each molecule of the polymer coincide with one site of the
lattice).

This model appears for example in the study of adsorption of poly-
atomic molecules on a surface; in this case the monomers represent the
empty sites. This same model describes physical systems consisting of
molecules with unpaired electrons; these molecules then interact to
form long chains or polymers. Finally we shall recall that this is also
the model which is introduced in the study of liquids consisting of
molecules of different sizes or in the so-called cell-cluster theory of
liquid state [2].

On the other hand this model is very general since any classical
lattice systems (as defined by Ruelle [3]) can be reduced to a system of
polymers on the same lattice; this is the “association problem”. In some
special cases the polymer system associated with the classical lattice
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system can be further simplified if one consider polymers on a lattice
with different geometry [4].

In the present article we study the properties of the polymer model
and we prove the existence of the thermodynamic limit for the pressure
as well as analyticity properties for the correlation functions at sufficiently
high density of monomers. This is obtained using the same formalism
and techniques as introduced in the case of classical lattice systems.

Let us mention finally that the more general polymer model in which
the molecules which constitute the polymer can be in several possible
states can also be reduced to the simple polymer model described above.

2. Polymer Systems

2.1. Definitions

In this section we describe the model and give the definitions which we
shall use in this article.

We consider a finite set A consisting of N(A) points in R called sites,
which are denoted by small letters x,y,... With X={x,...,x,} a
finite subset of A, a “Polymer X is a rigid system of n particles which
can be placed on A in such a way as to cover X. The polymers consisting
of one particle will be called “monomers”, of two particles “dimers”, ... of
n particles “n-mers”. Polymers are placed on A and we assume that each
site is covered by one and only one particle.

A configuration of the polymer system is therefore defined as a
partition {Xi,..., X} of the set A; we recall that by definition of a
partition, we have: .

A= X, X #0 XnX;=0 if i%+j.
i=1

The state of the system is defined as usual by a probability measure
P,{Xi, ..., X,}) on the configuration space; for polymer systems this
measure is caracterised by a positive, bounded function @(X) defined on
subsets X C A, which is interpreted as the “activity of the Polymer X”, and

k
P({X;, ... XN =01" T] (X)) (1)
i=1
where
Q.= Y J[®(X) isthe “Partition Function” . 2
all partitions i
A=0X;

The pressure p, is defined by:

1 1

.BPA=—N—(Z)_LOgQA where f= kT A3)
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We shall also study the correlation functions ¢ 4(X; ; ... ; X,,) which are
defined as the probability of finding polymers Xj, ..., X,. With the above
probability measure we have:

04(Xy5...5X)=0 if X;nX;+@ forsome i%j

a3 %) =05 [ ¢(Xi>f > M(Yj)I @

all partitions
AvX;=0Y;

if X;nX;=0 forall i=j.

With these definitions the correlation functions have in particular
the following properties

) 050, X)S1, ®)
1

i) 0,00 =0(X) 5 LosQu= 5 5 Logd, ©

where Su(X)=Log®(X) (7

and the density of “n-mers” % is defined by

op

W= = X)= 4 8

W=z L “= X x ®
NX)=n N(X)=n

where the sum is restricted to those subsets containing N(X) = n elements.
Finally if A is a subset of Z*, we shall say that the activity is transla-
tionally invariant if it satisfies

(1, X)=P(X) forall aeZ’ and XCZ'

and
., X={x;+a,...,x,+a} forall X={x,...,x,}.

2.2. Notation and Algebraic Formalism

In order to obtain a concise formulation of the problem, we shall
make use of an algebraic formalism which has already been used exten-
sively in statistical mechanics [5].

Let X ={x;,...,x,} and Y ={y, ..., y,} denote subsets of A.

If XnY =0 we shall write XUY as X + Y.
If Y C X we shall write X\Y as X — Y.

We shall denote by N(X) the number of elements in the subset X ; finally

Y. will mean “sum over all partitions of X”.
X=X,
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Let V, be the complex vector space of bounded functions ¥ (X) defined
on the subsets X C A; this vector space is a commutative algebra with
unit element 1 for the *-product defined by:

VP,%eV,, (F*xP)X)=) ¥ (Y)P(X-Y). ©)

Ycx

The unit element 1 is the vector defined by:
1 if X=0

1X)= {o if X+0.

We also define a mapping I' of V,j = {¥|PeV,¥@)=0}on1+V,
by means of the #-exponential:

(10)

1
re=1+ Z —n—'I’*” (11)
n=1
which gives explicitely:
roy =¥ [1¥X). (12)
X=XX; i
Finally we define an operation Dy : ¥ — Dy ¥
(Dx¥)(Y)=¥(X+Y)d; xny (13)
where
5 1 if =T
STT0 if BT

This operation satisfies in particular the following relations:

D (¥ » o) (Y)=[(D, ¥y * ¥5) (V) + (¥y * D ¥,) (Y)] 6y, (v

D L) (Y)=(D, ¥ *I'P)(Y) 4 gny (14)
(DxTP)(Y)= Y (Dy,P# %Dy, ¥xTP)(Y)S, xny-
X=£:‘,X,-

There is one more property of the mapping I" which we shall need
later:
Defining
Ny by ANP)(X)=*DP(X) VieC (15)
we have
rONw)=)"rvy.

2.3. Algebraic Formulation of the Polymer System and Scaling Property

Taking @(0) =0, the algebraic formalism just introduced, enables us
to write the partition function and the correlation functions in the
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following form:
Q,=TP)(), (16)

, (' D) (A - f Xi)

. . = o~
04 X150 Xp)_ ill o(X) (re)(4)

if XnX,=0. (17)

This expression for the correlation functions suggests to introduce
the reduced correlation functions g ,(X) defined as:

_ (I'?)(4-X)
X)= " — 18
20="ra i (18)
which gives:
p
0¥y Xp)= [T () 2u( 2 Xy (19)
i=1 i
Using this formalism we obtain at once the following sum rules:
XZ e4(X)=1 (20)
and
i 1
neW=—— N(X)o,X)=1. 21
ngl QA N(A) X;A ( )QA( ) ( )

Indeed Eq. (14) yields:
Q=T D) (A)=D, I P)(A-x)= ) O(X)(['P)(A~X)

X3x
dividing both sides by Q , gives Eq. (20).
Eq. (21) follows from:
Y NX)eaX)= Y ¥ ea(X)=N(A).
XcAa xed Xsx
We notice that these sum rules express only the fact that each site is
occupied by one and only one particle.
In the cases where A is taken to be a finite subset of Z*, g, will be
defined for all X CZ" by:

(r'e)(4-X)

24X) =140~

where x4 is the caracteristic function of the set of subsets of A (in the set
of subsets of Z").

We shall write Q,[®] and ¢,[®] when we want to investigate the
dependence of Q , and g, on the activity @. From the property (15) of the
mapping I', we deduce immediately the following scaling properties:

10 Commun math. Phys., Vol. 22
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For all AleC
Qu[P] =27V P, AV 9] (22)
Bpa[®]=pBp,[A" ®]— Logi
04[] =0,[A" ]
EA [ds] =iV EA [/?-N 45] .

This scaling property implies in particular the following:

therefore

Proposition. Consider a system made up only of monomers and an-mers
(n fixed; a=1,2,...) and such that the activity ®(x) of the monomers is
constant P(x) = z.

i) The set of zeros of the partition function Q, as function of the
complex variable z possess the symmetry C, with respect to the origin
(C, = cyclic group of order n).

ii) The domain of analyticity of the correlation function in the complex
variable z possess the symmetry C,.

3. Thermodynamic Limit for the Pressure

To study the existence and properties of this thermodynamic limit,
we shall consider A to be a finite subset of Z* and we shall assume the
activity to be translationally invariant.

The activity will be said to be stable if it satisfies the following con-
dition:

lol= 3 o)

& NX) 23)

3.1. Existence of the Limit

Lemma 1. If the activity ® is stable and non-negative (®(X) = 0V X CZ")
then

i) Logz<Bp,<|®|
where z = ®(x) is the activity of monomers.

ii) for z>0, the function — N(A) p, is subadditive with respect to A.

Proof. i) The lower bound is a direct consequence of the scaling
property (22):

N@y-1
2N Q,[P] =0 [z " P] =1+
»

=1 i
X
1

)4
Y VO] o)1
P i=1
A= X

therefore — Logz + fip,=0.
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The upper bound follows from the stability condition since:

Qlel=ra =3 [l1ex)= 3 12 ﬁg)

A=2X, A=2X; i xeX;

» (X))
é 2p: p' il;Il xeA Xzax N(X) < eXpN(A) “¢”

therefore

Bpa=———~LogQ, =P

N()

ii) QA1+A2=(F¢) (A1 +A2):(DA,F¢) (Az)
=AY A)+ ), ) (Dy,Px---+Dy ®)(S)(T B)(A,~ )

A1=2X;SCA>
S+0
therefore
QAl + Ay g QA1 QAZ
and

=Ny +A)pg 4, S —N(Ay)py,— N(A3) py, -

Theorem 1. For any non-negative, stable activity ®(X) such that
d(x) =20, the following limit exists and is finite

Bp= /}ijrgoﬁm
Logz=Bp =9

when A tends to oo in the following sense [6]

a) A— oo in the sense of Van Hove,
b) there exists C >0 and for each A, a parallelipiped A(b) with sides
(by, ..., by) such that A C A(b), N(A(D))™* N(4)>C >0 and b— .

Proof. Thesubadditivity of — N(A) p ;,andthefactthat — fp, = — || ||
implies that the following limit exists

lim Da@ = SUPPp@ =D
a— oo a

where a— oo means that each side of the parallelipiped 4(a) tends to co.
To show the existence of the limit in the more general sense we con-
sider a sequence of volume A, which tends to co in the sense of our
theorem.
1) By definition of Van Hove Convergence, for all o there exists
unions of parallelepipeds with sides a, say A;, 4} such that:

N(45)

N4y 7°

Aj cA;CAf and

10*
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Introducing the quantity f,=pfp,— Logz, Lemma 1 implies that
f4is positive and — N(A) f, is subadditive; from this follows that

N(47)
faz il g
N(Aj) A(a)
therefore lim inf f,, = sup f,,, = f = Bp— Logz.

2) Let A(b) be a parallelipiped made up of parallelipipeds A(a) and
such that A(b)> A4} D 4;

N(AD)) fawy Z N(A) fa;+[N(A) = NA)] faw>
N(A(b) N(4,) = N(4])
fAj§ N(4)) f= N(4) Sa@-
Since f = sup f,,, for all ¢ >0 there exists a such that f,,, > f —¢;
therefore “ . ®
N(4y) ft N(A™)
N(4;) N(4)

fa, 2

Condition (a) and (b) implies then
limsup f, < f .
Finally using the scaling property (22) we obtain:

Corollary. Theorem 1 remains valid for any activity of the form
EN® G(X) where ¢ is a positive number and ®(X) satisfies the conditions
of Theorem 1.

3.2. Convexity and Continuity Property!

In this section we shall investigate the convexity and continuity
properties of the functions p, and p; these properties are obtained in
terms of the chemical potential u(X) introduced in Section 2 as

Bu(X)=Log&(X).

The condition @(X) is stable and non-negative is equivalent to the
condition u(X)e % where

‘ IS
(€={,u(X)|u(X)eIR XCZ' an XZB:O N(X)<oo}

Since we shall consider p, as a functional of the chemical potential
#(X) we shall write:
pA[®]=P,[u] where &(X)=efr®,

! We recall that we have assumed in this chapter that @ and u are translationally
invariant.
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Finally we introduce the Banach Space # of real chemical potential
v(X) satisfying:
livill = sup p(X)| < o0 . 24
Xczv

Lemma 2. i) The function u— P[] is convex on 6.
il) Forallue€andve %

[Palp+v]—Palpdl =Vl -
Hence for fixed pe® the function v— P,[u+v] is continuous on the
Banach Space 2.

Proof. 1) The convexity of € follows from the convexity of the
exponential; the convexity of P, from Holder inequality.

Qilop+(1—a)v]= Z ePaERX)+B(1—0)Ev(Xy)
A=ZX;

é': Z eﬂfu(Xi)]aI: Z eﬁEv(X.):|1—a,
A A

=ZX|‘ =£X,'
Qalop+(1 =) v]SQa[u]* Q4[] %,
ii) We remark first that for all y e € and ve 4, u + v € € since:

B (X)+v(X)) Sivl Z ePr®)
—— < Pl < 0.
w0  NX) & N(X)
Moreover:
QA [ﬂ + v] - Z B E X ) +v(X)
. . A=3X;
implies

e INDIMIY [u]1<Q [+ v] S fNOIMIQ 1]
= IVl + Palp] = Palu+ vIS VI + Py L]

Theorem 2. With
P[p]= lim P,[u].

i) The function p— P[u] is convex on €.

ii) For fixed ue¥, the function v—P[u-+v] is continuous on the
Banach space %.

This theorem is a direct consequence of Theorem 1 and Lemma 2.

3.3. Thermodynamic Limit for the Tangent Plane to the Graph of P

To conclude this paragraph we shall derive a result concerning the
existence of the thermodynamic limit for the tangent plane to the graph
of P. Following Ruelle [7] we introduce the average correlation func-
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tion g 4(X):

0 4(X X 25
80 = g % eale) (25)
which represents the density of polymer of type X for the system A
(i.e. the density of polymers having N(X) elements and the same oriented
shape as X).

Theorem 3. For fixed pue ¥, we consider the function v— P[u+ v]
defined on the Banach space A. If the chemical potential u(X) is such that
v— P [u+ v] has a unique tangent plane o*[v] at the point v =0, then when
A — o0 in the sense of Theorem 1, we have:

o . X
i lim 3 2400 ]”\f(X))

ii) for every finite X CZ’ the following limit exists
lim % (X) = "(X)

=—ot[v] forall ve4,

and defines the infinite volume density of polymer of type X,
iii) the following limit exists
dp
lim o™ = o™ =
imeP=e"= 2 H®

N(X)=n
and defines the density of n-mers for infinite systems (where % is defined
by Eq. (8)).
Proof. i) For any finite A and any pu e %, the function v— P,[p+v]
has a unique tangent plane at v =0; indeed

dP,[pu+Av] B . N
Tl=o —a4[v]= —Q-— NA) AzZSXi ehz (X)(Zv(Xi))
1
=0, N(A) XZC:A v(X )/1 ;EY-eﬂﬂ(X)eﬁzu(yj)
= o (X)
=N ng V(X) 04(X) = Xgo 3,(X) o

Finally Eq. (21) implies that ) ¢,(X)=<1 and therefore for all ve %,
o4 [v] exists and satisfies X

o v = vl -
The end of the proof is identical to the one given by Gallavotti and
Miracle [8].
i) This follows immediately from part (i).
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We remark that the density of polymer of type X is up to the factor

1

_ he functi . . '

NX) the functional derivative of P, with respect to v(X)

iii) From the definition of ¢’ we have:

1
(n) = o X —_ = —g*
Q4 ; 04(X) NX) g [v,]
N(X)=n

where v,(X) =6, yx) € %.
To conclude this theorem we remark [8] that if

_ dP(u+2v)

Y
7 o a[v]

exists for a certain v € 4 then
lim o [v] =o*[v].
A—

Remarks. 1) The existence of the thermodynamic limit was obtained
only for the case z =+ 0; for the case z =0, it is in fact possible to find two
sequences of volume which tends to oo and such that the pressure con-
verges to different values.

ii) The continuity of the pressure, and the functional derivative, was
obtained relative to the chemical potential v(X); this is connected with
the fact that systems which do not have their activities ®(X) equal to
zero on the same subsets X are different physical systems.

iii) The results obtained in this section are in close analogy with
those obtained for lattice systems; it is however interesting to notice that
in the case of polymers, the functional derivatives do not provide a com-
plete description of the state of the system. (Indeed by functional deriva-
tivation one can obtain §(X) only for those X such that &(X)=+0.)

4. Thermodynamic Limit for the Correlation Functions

To study the existence and properties of the correlation functions
for infinite systems, we shall first derive a set of equations which are
satisfied by the reduced correlation functions of finite systems g 4. From
this set of equations, it is possible to extract several minimal subsets of
equations equivalent to the full set; in particular one of those minimal
subsets is analogous to the Kirkwood-Salsburg equations for classical
continuous systems. We shall investigate this particular set of equations
using the well-known methods of Banach space and Neumann series.

In this section we shall consider A to be a subset of Z'; however we
do not restrict ourselves to the case of translation invariant activities.
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4.1. Equations for the Correlation Functions

From the general properties of the mapping I" introduced in § 2,
we obtain:
(') (Z+Y)=(DyI'P)(Z2)
=IO (Y)ID)(Z)+ Y Y (Dy,@%---xDy ®)(S)(I'D)(Z-S).
Y=Y, ScZ
S*0
If (I @) (A) + 0, writing Z = A — X and with Y C X C 4 we then have:
UX =Y)=(TD)(Y)a,(X)+ 3 3 (Dy,@x---xDy @)(S)@4(X +9).
Y=2Y; SSC#:AﬂfX

Therefore for any finite volume A, and for any activities such that
(I ®) (A) * 0, the correlation functions satisfy for all X and YC X:

(TO)(Y)ou(X)=14(X)2a(X=Y)— S ZS (Y, +5)g,(X +5).
Y= 3 Y, 58,=5%%

i=1 SinSj=¢ (26)
This relation can also be written as ?:

(FP)(Y)@4(X) = x4(X)24(X - Y)— s; [(r®)~ "+ Dy I P1(S)34(X +5)

SnX=0 (27)
At this point we would like to find minimal subsets of (26) that are
equivalent to the full set of equations.

Lemma 3. If g, satisfies (26) for all Y C X such that N(Y)=n, then
it satisfies (26) for all Y such that N(Y)=n+ 1.

Proof. Let Y C X be any subset such that N(Y)=n.

From the relations and identities:

o) Y+{})= Y o +HTP(Y-5) yeX-Y,

Scy
SZY 2({y}+S) o X-Y+S)
= ZY D({y} + ) [oa(X =Y+ 8) +o4X —Y—{y}]
- Y oy +S)oX—-Y+S)
Sn(X—Y)=0
=0, X-Y-{ph— Y o{n+Y,+U)oX+U —(Y-Y))
YicY

UinX=9¢

2 (r®)~! denotes the *-inverse of I' .
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Y (Ie)(U+Y—-8)d({y}+9)

Scy

= Y T®U+Y-5o({y}+S9)

ScY+U

- Z Ie)(U-U,+Y-Y)o({y} + U, +Y;)
vicy
Ui+0

= Dy+y[P)(U)— Z ToU-U+Y-Y)e({y}+U+Y,)
YicY
UicU
Ui¥0

the hypothesis of the lemma implies that for any ye X — Y
() ({y} + Y)aa(X)= ). 2({y} +S)[(I'P)(Y - S) ga(X)]

Scy
=Y o({y}+9) [xA(X) AX+S-Y)

Scy

T+0
TnX=06

= (X)X -Y—={y})
— Y o+ Y+ U (X)X +U; —(Y - Yy)

— Y [I®) '« Dy_sI'PY(T) EA(X+T)]

— 2 (LD %Dy sy TONT)E4(X + T)

+ Y Y Y e(y+U+Y)
YicY UCT Uit

(IO " (T—-U)T®)(U—-U+Y—-Y) o, (X +T)}.
The last term being equal to:
Z Z z o({y}+ Ui+ Y1)

YiCY T+0 UicT
TnX=06 Ui1=0

[(CP)™" * Dy_y, [ ®](T—U) 04X+ T)
= Z oy} + Y, +Uy)

YicY
UinX=9¢
Uio

Y [(F®)~'«Dy_y I'P](S)o4(X+U; +S5).

Sn(X+Uyp =0

145
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We can use once more the induction hypothesis to obtain finally:

(') (Y + {y}) 24(X)
=X oX =Y = {»}) - T; [(I'®)™ " # Dy oy T PNT)24(X +T).
TnX=90

Corollary. The following set of equations is equivalent to the full set
of Egs. (26):
D(x1) 04(X) = 2 4(X) 04(X — x;) — Z D(x; +8)0(X+S) (28)

S*0
ScA—-X

where x, is one of the points of the set X, for example the first in lexico-
graphic order.

This last set of equations are the “Kirkwood-Salsburg equations for
Polymer Systems”. Another subset of equations, analoguous to the
Mayer-Montroll equations, is obtained from (26) by taking Y = X :

(I'P) (X) 24(X) = x4(X) [1 — 2 [P~ *DyI' 1 (S) §A(X+S)]- (29)

S*o

It is expected that this set of equations is also equivalent to the full
set (26).

4.2. Kirkwood-Salsburg Equations for Polymers
Let 4, be the complex Banach space of complex functions f defined
on non empty finite subsets of Z* with the norm

1 (X) 0)

I flle= SL}PW

where £ is a positive number to be chosen later on.
For any finite A, g,(X)=y,(X)7,(X); moreover for non negative
activity

1
04X = .
Therefore for any finite A, and any non-negative activity ®, g, € %:
and satisfies ||g 4[| < 1if £P(x) > 1 for all x.
We define on %, a linear operator K, as follows: with f e 4,

(Ko f)(xy)=— B(x,) S; DP(xy+S8) f(x,+9)
st 31)
Kof)(X)= — - [fX—x)— T (x+ X+ if NX)22.
D(xy) S*o

SnX=90
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Lemma 4. For any activity ® such that Y, EY®|®(X)| < oo for some &

and such that Xox
min |&(x) +0,

the operator K is a bounded operator on A, and its norm satisfies

1 1
1 N(x+8)] 32
[K] < max B & + SSE{X |P(x+S) & (32)

This lemma follows immediately from the definition of K4 and 4,.
Let 4(&) be the set of complex activities @ such that

@il = sup 319X VD < o0

Xax

and (33)
|D(x)| > sup% L+ ) |®(x+S)| ENEFIN=R(E).
x S#x

Lemma S. The operator K defined on the Banach space %, is norm
analytic in @ for @ € A(&); moreover in this same domain

[Koll:<1.

Proof. A very simple calculation shows that
Ko — Kgll: =I1¥ — 2l if @, ¥ed(). (34)

Analyticity follows from the fact that K is of the form:

1
Ko= ——K;
Podkxy) 7

where is the operator defined by

D(x,)
1

1
(¢(x1> 4 ) =Gy /X

for all fe 2, and Kj is the sum of two operators, one independent of @,
the other linear in &.
Introducing the operator y, on 4, defined by:

(4 ) (X)=x4(X) f(X) forall fe 2, (35)
and denoting by o the vector in %, defined by:

1

e (36)

a(X)= 5N(X), 1
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the “Kirkwood-Salsburg equations for polymers” appear as a linear
equation on %, of the form:

Oa=1a%+ 11 Ko04 - (37)
We can now state the main result of this section:
Theorem 4. Let A(£) be defined by (33); then for any @ € A(&).
I) For any finite volume A, the “Kirkwood-Salsburg” equation
4= 142+ 24Ky

has a unique solution in 9,, obtained by iteration. This solution is a norm
analytic function of @ in A(&) and satisfies
-1
} (38)

IT) For any finite volume A, Q ,[®] +0, and the solution of the Kirk-
wood-Salsburg equation coincide with the definition (18).

III) The infinite volume equation

x |P(x)[ & S0

S¢x

lgalle= {1—- max—1 14+ Y [B(x+S) VO

§= o+ K@@
has a unique solution in %, which is also analytic in A(). Moreover if the
activity is invariant under a certain subgroup T of translation then g is
also invariant under T.

IV) If the activity is invariant under a certain subgroup T of transla-
tions such that the quotient group Z*/T is finite (i.e. T is generated by v
elementary translations)

or if the activity has finite range,
then there exists a positive, decreasing function &(A) such that

lim ¢(A)=0
A=
and
[24(X)—2(X)| = E¥Pe(2) (39)

where A is the minimum distance from x;€ X to the boundary of A.

V) if the activity is invariant under a subgroup T of translation (such
that the order of Z"/T is finite), then:

N(Z'/T) _
N ;T 24(tX) (40)

where N(Z*/T) is the order of the quotient group Z*/ T and A tends to infinity
in the sense of Van Hove. Moreover the convergence is uniform with
respect to @(x) on every compact subset contained in A(&).

o(X)= lim
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Proof. Part I follows from Lemma 1 and 2 and the fact that y o is a
vector which is norm analytic for @ € 4(¢).
Part II is a consequence of the fact that g,(x) is analytic in ¢(x) and

d
04(x)= Ad(x) LogQ,.

Part 1II is obtained from Lemma 4 and 5 and the fact that if ¢(X) is
invariant under a subgroup T then o and K are invariant under T.

Using the same argument as Ruelle [9], part IV will be proved if we
can show that for A C A" C A"

%4 Ko xa— xaKoxalle =n(d)

where § is the minimum distance from A to the boundary of A’ and #(J)
satisfies }im n(6)=0.

This inequality follows from:
1£4(X) (Ko 147 ) (X) = 24(X) (Ko x4 f) (X))

1
= 1@(x,)| S;ﬂ |D(x; + S)| [ S (X + )| (1 —74(9)
S#xy

and the fact that @ e A(¢) which yields
%4 Koxar~ xaKoxalle < sup Z |D(x; + S)| EVEFL <y(5)
LT

S#xy
sS4’
where
n@)=sup Y |P(x;+9) VO (41)
X1 S+0
S#x1
S¢Bs(x1)

and By(x,) denotes the ball of radius § centered at x;.

Moreover if the activity has finite range 4, #(6) =0 if 6 > d, where J,
is the diameter of the range; on the other hand if the activities are
invariant under T

n@)= sup Y [Pex+S) VST
teZv|T S*0

S#tx
S¢Bs(tx)

and since

sup Y |®(x+ S)| VO < 0
x S#x

then gim #(0) =0 since the order of Z*/T is finite.

Finally the proof of part V is identical with the one given in reference
[8]1; moreover the limit is uniform on every compact set contained in
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A(¢) since |g4(X)| has a bound independent of X and which can be
chosen independent of @(x) if @ belongs to a compact set in 4(&).

Remark. Part IV of the last theorem can be moreover extended to
all @ e A(£) which are the strong limit (in the norm ||-||;) of ®;

where

o [P00 i x=x|<s forall i
710 otherwise.

In the study of phase transition one is usually interested in the domain
of analyticity of g as function of the monomer activity for fixed value of
the activity of the other polymers. In this case the previous theorem reads:

Theorem 5. The solutions g, and g of the Kirkwood-Salsburg equa-
tions are analytic functions of the monomer activity ®(x) in the domain:

1
@] > max — 1+ ¥ [0x+9 O =RE) 4D
R
where & is the value of & such that R(&,) is minimum.
In particular if the activity is translationally invariant & is the solu-
tion of
1= Y (NO)-1)[2(s) & (43)
S$s0
Remark. In all those types of results, one would be interested to
know how good is the domain of analyticity thus obtained; one can
show that this is in particular the best radius of convergence for systems
consisting of monomers and n-mers (n fixed); indeed there exists special
types of interactions (Van der Waals) for which the radius obtained in
Theorem 4 is the exact radius of convergence.

4.3. Mayer Series and Virial Expansion

From Theorem 4, part V, we have that if 41— oo in the sense of Van
Hove, and if the activity is invariant under translation, then

(1)

: ~_ @
lim N(A)ZQA(X) 0

z

uniformly with respect to z on every compact subset contained in the
exterior of the circle of radius R(&,).
Moreover since

d
N(A) ZQA )— - = E(ﬁPA_LOgZ)
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and lim (Bp,— Logz)=0,

we have
@ 1 1
Bps=Logz— { dz <W§@A(X)— 7)

(1)

. € 1—9
Bp= lim Bp,=Logz+ I dz—
In conclusion we have just proved:
Theorem 6. If A— oo in the sense of Van Hove, then the following
limit exists

. 1
}1_{1010 WLOgQA =Bp,

lim z LogQ,=o"

i-w  dz N(A)
when the activity is translationally invariant and |z| > R(&).
These limits continue analytically to |z| > R(,) the physical pressure
and density defined for z > 0. In particular the Mayer series

Bp=Logz+ Y b,z ™", (44)

n=1
oW=1-3 nb,z™" (45)
n=1

has a radius of convergence of at least R(£,)™ ! inz7 1.

Instead of the Mayer series (44) one would like to obtain an expansion
of the pressure p in powers of the monomer density o), that is the Virial
expansion; in our case o'" being analytic around z~! =0, we shall look
for an expansion in powers of (1 — o).

From

2= 3 (K9
follows that )
t—g=—z ¥ (K0)()
k=1

and therefore the first non-zero coefficient of the Mayer series (45) is
b,, p = 2, where p is the smallest number > 1 such that ®(X) # 0 for some
N(X)=p; moreover in this case

pb,= Y &(X). (46)

X320
NX)=p
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In particular b, =0 and in general p and z will not be analytic in o'V
at o) = 1; however we shall now derive the virial expansion for the special
case of a system made up only of monomers and n p-mers (p fixed,
n=1,2,...). For this special case we have:

1—oW=—2zY% (Ko (x) (47)
=1
that is
1—o®M= % (p)b,z7", (48)
I=1
Bp—Logz= ) b,z " (49)
=1

Since by assumption pb, + 0, we may invert (48) in a neighborhood of
~! =0 and we obtain the virial expansion
pp—Logz= } c,(1—o") (50)
n=1
where
1 dz 1

= — (1))n—1

2im -, z n(l—po

if c is a circle of radius larger than R(&).

From (47) follows that:
IKIIZ?
1— oW 4 z(KPa) (x)) = |1 — oV = pb | £ ——=—
1=+ 2(Kro) (9] =11 =0 = pb,I S s
therefore for |z| > R(¢,) = R (R(&,) defined by (42))
11— (l)l Ipb '__ R?? .
= |z z2p _ zPRP

In conclusion we obtain:

Ipb,| Ipb,)\*
1= oWz o 2|1 = |1+ 57

on the circle |z|"?=R™? —[R?(pb,| + R?)] %
We thus obtain the following theorem:

Theorem 7. The radius of convergence of the virial expansion

o

Bp—Logz= } c,(1—o"y"

n=1

1 lpb! Ipb,|
o= 2 (1 e

is at least
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where
pb,= Y ®(X)

Xs0
NX)=p

and R = R(£,)) was defined in (42).

Finally we shall remark that because of the scaling property:

Bol@1=ppl=" 0],
¢V[@] = o[z "V 0]

we can always choose z=1 and thus obtain the usual form of the virial
expansion:

ﬁp: Z cn(l - Q(U)n .
n=1

To conclude this section we mention the following generalization of
Theorem 7:

Theorem 8. For any polymer system the virial expansion

o) n

Bp—Logz= Y c,(1—g")"
n=1
where m is the smallest r such that &(x,, ..., x,) =0 converges in a neigh-
bourhood of o™ = 1.

5. Monomer-Dimer Systems

For the special case of monomer-dimer systems the domain of
analycity of the pressure and the correlation functions, as functions of the
monomer activity (obtained in §4) can be extended by studying the
zeros of the partition function.

5.1. Zeros of the Partition Function and Extension
of the Domain of p and g

Theorem 9. The partition function Q [®@] is different from zero for
any complex activities such that Re®(x)>0Vxe A or Re®(x)<0Vxe A
and ®(x, y)=0 forall x, ye A.

We shall prove this theorem by induction using the recurrence
formula (14) which gives:

QLT =D(x) Q- [P]+ X P(xix) Quos—, [P]. (1)

xjed
{1 Commun. math Phys, Vol 22 Jj¥i
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1. Let us first consider the case: Re ®@(x) >0, &(x, y) = 0.
1) Q(x} [¢] = ¢(x)>

Q{xl,xz} [@]=D(xy, x;) + P(x;) D(x,)
therefore

Q(x) +0 and Q(Xx,xz) +0
and

Re[Qq),xy[P] Qf[@]] =Re P*(x,) @(xy, x;) + Re P(x,) [D(x4)]* > 0.
ii) Assuming Q4[®]+0 and

Re[Qx[®] Q% - [2]]>0

for all X such that N(X)<n—1 and for all x; € X let us show the same
holds for all X such that N(X)=n; using (51) we have:

Ox[@] Q% [#]= [4>(x,~> Ot Y. P(x;, x) Q] 0% ..

jFi
=P(x) Qx>+ Y Px; X)) OF — 4, Ox—x,—x, -
jFi
Therefore

Re(Qy[®] Q%_, [@])>0 forall x;eX (52)

and Qy[®]=+0.

2. Using the scaling property |Q ,[®]| =10 ,[(— 1)¥ @]| the theorem
is also true for the case Re®(x) <0 which concludes the proof. This
theorem enables us to extend the domain of analyticity of the pressure
and the correlation functions, and we have:

Theorem 10. For monomer-dimer systems such that the activity is
stable, translationally invariant, and satisfies ®(x,y)=0, the following
limit exists

/}IH}OWLOgQA=BP,

lim 3,(X)=a(X)

when A— o0 in the sense of Van Hove and z ¢ [—2i W%, 2i W*] where
W=> ®0,y). Moreover in this domain p and g(X) are the analytic

y¥0
continuation of the physical pressure and reduced correlation function

(defined for z=0).
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Proof. The previous theorems imply that p,= Nz—A)—LogQ 4 and

04(X) are analytic function of z in the plane cut by [—2i W% 2i W*];
moreover p, and g,(X) are uniformly bounded on any compact subset
of the z-plane cut by this segment: indeed from the proof of Lemma 1
follows that

Ny LSl S+ 3w

while relations (51) and (52) yields for Rez >0
104Q% -/ ZReQ, 0% =Rez| 104,17,
1041 = Rezl Q4 Z [Rezl¥0|Q 4

and using the scalling relation |Q,[®]) =|0Q,[(— 1) @] this inequality
remains valid for Rez<0.

Therefore |g ,(X)| < |Rez|~N®,

This result together with Theorem 4 shows that g,(X) is uniformly
bounded on any compact subset of the z-plane cut by [— 2i]/W, 2il/V—V].

Finally Theorem 4 and 6 imply that p,—p and g,(X)—g(X) for
|z] >2W?; we can therefore apply Vitali’s theorem to conclude that p,
and g,(X) converge uniformly on compact subsets to an analytic func-
tion on the z-plane cut by the segment [ — 2i W?*, 2i W#].

Conclusion

No phase transition can occur in monomer-dimer systems if the
activity is stable, translationally invariant and satisfies ®(x) £ 0 ®(x, y)=0.

Finally Theorem 9 and 10 enable us to obtain other properties con-
cerning the functions o) and p.

Theorem 11. The monomer density
Q(U(Z)z Z aj(*z~2)j: Z aj(— C)J
ji=o0 j=o0

is a series of Stieltjes in { = z~2 and therefore

W= | YO
o 1+yz
where f(y) is a bounded, non decreasing function.

11*
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1-— . . .
Proof. Let u= —ITI_—Z—; Theorem 9 implies that g*), as function of u,
zZ

is analytic in the circle |u| < 1; moreover from (52) follows that Reg'* >0
for |u] < 1.
From those properties follows that [12] the function

F(w)= (@ +w)™H)

1
/1+w

is a series of Stieltjes in w; therefore o'*(z) = zg'"(z) is a series of Stieltjes
2

in (z72—1) and also a series of Stieltjes in { =z~ 2.
Theorem 12. Let [N, M] ({) denote the Padé approximant for the
series of Stieltjes of o1 for z real, non negative, the monomer density
satisfies:
[N,N](=2"%)2¢P(@Z[N,N-1]({=27?)
do(2)

d
[N, N] (C=z‘2)§%z3~d—z— < EC—[N,N—l] (=272

d
S d

and the pressure is an increasing continuous function of the monomer
density.

Proof. The first part of this theorem is a direct consequence [13]
of Theorem 11. The last part follows from

dp__ "

dQ(l) - Z dQ(l)
dz

and the evaluation of the first Padé approximants:

1
(L 0Q= 15

[1.010)= Ty

a=W-w=Y &(0,s)

b=W+a.

6. The Association Problem

In this section we want to generalize an argument given by Green and
Hurst [1] to show that the study of any classical lattice system can be
reduced to the study of a polymer system on the same lattice.
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6.1. Lattice Gas

We consider a classical system of particles on Z" such that at each
lattice point there can be 0 or 1 particle; the system is described by the
Hamiltonian:

HX)=—-uNX)+UX) XcCZ

where the potential energy U(X) is assumed to be translationnally
invariant and U(X)=0 if N(X)<2; with u the chemical potential, the
activity z is given by z = ef*,

For any finite volume 4, the partition function Z , and the correlation
functions g ,(X) are defined as:

Z,=Y e PO 3 ND o=pU)
Yca Ycd

71 —BH(X+Y) _ 7—1 N(X+Y) ,—BUX+Y
QA(X)-—ZA z e~ PH( )_ZA Z ZN( ) e~ BU( )
YcA-X YcA-X

Finally we introduce the Ursell Functions ¥(X) defined by:
TY)(X)=e V™, Yix)=1.

Lemma 6. i) The partition function Z , for the lattice gas described
by the activity z and the Ursell function W(X) is up to a factor z¥?
identical with the partition function of a polymer system described by the
activity:

d(x)=1+1 if NX)=1,

(X)=¥(X) if N(X)22

that is:  ZLW%, = N(A)QP"EY;“ p here 800=by.i. (53
A

i) The correlation functions @ (X) of the lattice gas are linear
combinations of the correlation functions g 2™ (X) of the polymer system
described by the activity ®(X) given in part (i):

R (=Y Y HYX+S, )a""‘(y““‘ X +ES). (54)

X=3X; Si,--,5 +y
SCA X
SinS;j=9
Proof. 1) Z %, = Z NOTY)(Y)=T(6+2P) (4)
Yca

therefore:

Lattice Polymer — N(A) Pol
Zien =Qa b vy =2 Qrome

a(2+¥)
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. 1
ii) Q) = Y [DxIE¥)1(Y)

A4,(z,¥) —
@) ZA YcA-X

= YOy Y [EY&X+S)IrEw(y-=8)

Zy yA-X X23X; S108,

S;cY
Slf\sj=0
rEwe(r
-y Y [ewEe+s) ¥ LEHD
X=XX; S1---8q Jj TeA-%-35, ZA
S;jcA—X
SmS,-=¢
But
1

1
7= ¥ TE0) =5 T+ A= X =)= s (X +5).
A TcA—-X-S A

Using the scaling property (22) we arrive at the relation (54) which
ends the proof.

Theorem 13. Consider a classical lattice gas described by the Hamil-
tonian H(X)= — uN(X)+ U(X) where the potential energy is invariant
under translation.

1. If the Ursell functions ¥(X)= ("' e~ #Y) (X) satisfy the conditions
i) P(X)>0,

iy 3 v T

< oo for some >0
&5 Nw <0 S :

then the following limit exists and is finite:

: Lattice __
MmNy LogZat =p-

2. If there exists a real number & such that

2 170, X) "M <0
X350
X*0

then in the domain

1+z
z

<c-111+ > IW(O,X)Ié”‘X’“T
x40
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the following limit exists
hm Lattice X)= Lattice X
lim ™" (X) =" (X)
and is analytic in z.

Proof. Part 1 follows from Lemma (6) and Theorem (6).

To show the second part, we use Theorem (5) which implies that for

S*0

1 1
T2z 1+ Zwosiee
§30

0 P"‘;’“e' (X) and 5;"‘”“” (X) are analytic in z; moreover for any (z, ¥)
4,7 +¥ z +¥

in this domain

o QOIS Y, TIT P0G+ S) Vs grome

X=3X; j S, A, (2 +¥)

which yields

N(X)
i OIS Y qm[z ¥(0,5) ém)“]" llgPebmer |l
” g=1 S 4,(2 +¥)

Therefore the series defining o}, (X) is absolutely convergent;
the rest follows from the uniform convergence of gjiovmer to gFolymer
when A — oo.

6.2. General Lattice System

We recall that with each point x of a finite set A CZ" is associated a
given subsystem whose states are numbered by n, € {0, 1, ..., M}.
The configuration of this system A are caracterised by the N-tuple:

ng=(n,,....,n.) N=N().

X112 ***? "'XN.

The correlation functions are defined by:

) 1
Q}iattlce (nX) — 2 e BH(n4)
QA BA-X
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where Qituec= Y ¢7PHma) g the partition function

na

and  H(ng)=U(ny) — p(n,)
TONEDWTUNE

u(n,) = chemical potential of the state n,
U(n4) = potential energy corresponding to the configuration n, .

In this case the Ursell Functions ¥ (ny) can again be introduced by
means of a x-exponential where the *-product is defined by:

(f1* fo) (ny) = Z fi(ny) fo(nx_y)

Ycx
and we have:

e PO =(IP)(ny) P(n)=1.
We give without proof the following result:

Theorem 14. i) Qe = QFebmer[ @]

where
B(X)= Y P10 P(ny). (55)
i) ’
oy =Y Y [ 3 efrom s W(n, + ) grum(X + Z5)
X=3 X, :lS,Sc{S; Pons

where @(X) is given by (55).

In conclusion from the existence and analyticity property of the
pressure and correlation functions for polymer systems we can deduce
analoguous results for the pressure and correlation functions of general
lattice systems.

References

1. Green,H.S., Leipnik, R.: Rev. Mod. Phys. 32, 129 (1960).
Kasteleyn, P. W.: Physica 27, 1209 (1961). — J. Math. Phys. 4, 287 (1963); — Graph
Theory and Theoretical Physics. New York: Academic Press 1967.

2. Levelt,J.M.H., Cohen, E. G.D.: Studies in Statistical Mechanics, Vol. II. Amsterdam:

North Holland Publ. 1964,

. Ruelle,D.: Statistical Mechanics, Section 2.4. New York: Benjamin 1969.

. Heilmann, O.J., Lieb,E. H.: Phys. Rev. Letters 24, 1412 (1970).

. Ruelle,D.: (Ref. [3]) Section 4.4.

. — (Ref. [3]) Exercice 3D, p. 64.

. — (Ref. [3]) Section 7.3.

. Gallavotti, G., Miracle-Sole, S.: Commun. math. Phys. 7, 274 (1968).

0NN AW



1.
12.

Polymer Systems 161

. Ruelle,D.: (Ref. [3]) Section 4.2.
. Green,H.S., Hurst,C.A.: Order-Disorder Phenomena Monograph in Statistical

Physics, Vol. 5. New York: Interscience 1964.

Kunz, H.: Phys. Letters 32A, 311 (1970).

Baker,G., Gammel,J.: The Padé Approximant in Theoretical Physics, Theorem 10,
p. 18—19. New York: Academic Press 1970.

. — — The Padé Approximant in Theoretical Physics, Theorem 7, p. 11. New York:

Academic Press 1970.

Dr. C. Gruber

H.Kunz

Ecole Polytechnique Fédérale
Département de Physique Théorique
CH 1006-Lausanne, Schweiz





