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Abstract. Using the uniqueness of the K.M.S. automorphism, we investigate the set
of automorphisms that commutes with it. The results are applied to gauge invariant quasi-
free states of a fermion system.

§ 1. Introduction

The purpose of this note is to investigate some properties of K.M.S.
states especially with respect to other possible symmetries.

Let us first recall briefly some definitions and basic features of a
K.M.S. state. We refer to [1, 2] for more details.

Definition 1.1. For a given state ω, the representation t^at of the
additive group of real numbers in the ^-automorphisms group of stf with
the property that ω(AatB) is a continuous function of t, is called an
evolution.

Usually such an evolution is a grand-canonical evolution in the
sense that it contains the chemical potential. Typically for a system in
a finite box V, with Hamiltonian Hv and particle number operator Nv,
one has

of (A) = exp i(Hv - μ Nv) t A exp - i(Hv - μ Nv) t

for any bounded operator on Fock space relative to the finite box V.

Definition 1.2. A state ωβ of a c*-algebra s$ is said to be a K.M.S.
state with respect to an evolution ί-xx, of ̂  at the inverse temperature
β>0,β<ao if

+ 00 +00

J f(t-iβ)ω(AatB)dt= f f(t)ω(atB.A)dt
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V^4, B E s/ and for every function f the Fourier transform of which is
in

Given a K.M.S. state ωβ then one has the following structure
i) a representation Rβ of j/ with a cyclic vector Ωβ

ii) Ωβ is separating for Rβ(sf)"\
iii) an antiunitary operator J such that

JΩβ = Ωβ

iv) a unitary strongly continuous group ί-» L/^(ί) such that

and which implements ί -> αt

v) the K.M.S. boundary condition extends to the weak-closure
Rβ(j/)" of R0(«s/) with respect to the mapping A-*Uβ(t)AUβ( — t),

vi) Let H be the generator of Uβ(t) and let T = expl - - H l then

= JTRΩ \/R e /

vii) The center of Rβ(^}" is point wise invariant. Let £ be a central
projection, then we have

i.e. we can decompose ωβ into two states that give rise to two disjoint
representations and which again satisfy the K.M.S. boundary condition
at the same temperature as ωβ with respect to the same evolution.

§ 2. Consequences of the Uniqueness of the K.M.S. Automorphism

With respect to the K.M.S. automorphism we have the following.

Theorem 2.1. Let ω be a state of a simple C*-algebra or a faithful
state of an arbitrary C*-algebra that satisfies the K.M.S. boundary condi-
tion for two evolutions ί-^α/ (respectively t-*af) at two temperatures βί

(respectively β2) then

The proof of this theorem can be accomplished by using the structure
properties as compiled in § 1 ([3] Chapters III. 1, III. 4; [2,4]). In an
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appendix, we shall give a proof without appealing directly to the structure
as described in § 1 .

The following lemma is an easy consequence of the K.M.S. boundary
condition :

Lemma 2.2. // ω is a K.M.S. state of stf with respect to an evolution
ί— >α r at a temperature β, if furthermore α is an arbitrary ^-automorphism
o/j/, then ω°a is a K.M.S. state at the temperature β with respect to the
evolution α~ 1α ία.

The previously discussed uniqueness has strong consequences on
the symmetries linked to a given evolution. Let us give first two defini-
tions :

Definition 2.3. Let ω be a K.M.S. state of a C*-algebra j/ with
respect to an evolution ί->αr; then we define the two subgroups of ^-auto-
morphisms of j/

i) the stabilizer of ω, Sω

Sω = {α e *-aut sϋ\ ω ° α = ω} ,

ii) the commutant of the evolution, <6

^ — {α e *-aut s0 ααt = αf α} .

Then we have the following result:

Theorem 2.4. Let ω be a faithful K.M.S. state of a C*-algebra <$/ with
respect to an evolution ί->αr; then

The proof is an application of the two previous theorems. Let α e Sω

then according to Lemma 2.2 ω°α = ω is a K.M.S. state with respect
to α~1α ία; but due to the uniqueness of the K.M.S. automorphism
α~ 1α ία = αί.

Corollary 2.4. If ω is a faithful uniquely defined K.M.S. state of a
C* -algebra j/, then

which means that the symmetries of the system are not broken when we
have a uniquely defined K.M.S. state.

Corollary 2.5. // α 1*5 a ^-automorphism which connects two K.M.S.
states with respect to the same evolution at the same temperature, then
αe^7; consequently it is a permutation of the K.M.S. states.
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Combining these results with those that can be found in [2, 3], one
has immediately the following corollary:

Corollary 2.6. Let Ux be a strongly continuous group of unίtarίes
implementing some group of automorphisms of ̂  and such that UXΩ = Ω
then

i) UxUt=UtUx,
ii) For the generator P of Ux one has JPJ = —P.

Ut denotes the group of unitaries which implements the time evolution.

§3. Some Applications to the Clifford Algebra

In this section we want to apply the results of the previous section
to the class of quasi-free states of the Clifford algebra. Such states have
been studied in [5, 6]. For the sake of completeness let us give some
definitions and easy results.

Let H be a real separable Hubert space equipped with a scalar product
S(φ, ψ), φ, ψ E H and let J be a complex structure in //, viz an R linear
operator such that

J2=-l J+ = -J. (3.1)

There exists a mapping from H onto a complex Hubert space HJ

with scalar product

(Γjψ, Γjψ)j = S(φ, ip) + iS(Jφ, ψ) (3.2)

it is clear that
Γj(a + bJ) = (a + i b ) Γ j (3.3)

for any a and b real.
Since the dimensions of the various complex Hubert spaces, obtained

from different J's by the given procedure are all the same (namely \ dim//),
there exist isometries Urj from HJ onto HJ such that

jψ^. (3.4)

Moreover V defined through:

Uj,jΓj = Γj,V (3.5)

is an orthogonal operator given by

V = Γj,lυrjΓj J' = VJV+. (3.6)

Notice that Γj is invertible from (3.2).
The Clifford algebra is the C*-algebra generated by the selfadjoint

elements B(φ\ φ e H that satisfy:
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With respect to a given complex structure J one defines creation and
annihilation operators

for which:

Every isometry Urj defines a ^-automorphism of the Clifford algebra
[7, 8],

Such transformations are indeed generalized Bogoliubov transformations
viz

or
xJ.ja-(ΓJφ) = a-(Vl

F! and V2 are respectively linear and antilinear operators on HJ with
the properties:

V* V2 + V* Vι = 0 , ^2 PI* + F! F2* = 0 ,

F* F! + F2* F2 - 1 , F! Ff + F2 F2* = 1 .

Conversely every generalized Bogoliubov transformation gives rise to
an orthogonal operator F on H that satisfies (3.5) and (3.6).

One can define by means of the complex structure J a gauge group (viz
a one parameter abelian compact group of ^-automorphisms)^:

A state ω of Clifford algebra is said to be gauge invariant whenever it
is invariant under at least one gauge group βj

a. This definition is a slight
generalization of the conventional one, namely one has :

i = l j = l

whenever n φ m.
A state ω of the Clifford algebra, when restricted to the products

B(φ) B(ψ), gives rise to a unique antisymmetric real linear operator A
bounded by one on H such that

Whenever ω is gauge in variant A has to commute with at least one complex
structure J and consequently the kernel of A must be of even or possibly
infinite dimension.
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A quasi-free state ωA is a state such that the truncated functions are
zero except ω(B(φ)B(φ))τ = ω(B(φ) B(\p)) and

Π ^A(B(φik} B(φjk}}

where χσ is the parity of the permutation σ

II 2 ...2n-l 2n

Since quasi-free states are uniquely defined once the operator A is given,
we see that a quasi-free state is gauge invariant iff ker^4 is not of odd
dimension; so that translationally invariant quasi-free states are gauge
invariant [6].

Let us now come to the first result of this section.

Theorem 3.1. Let ωA be a quasi-free state and assume it is gauge in-
variant, then it is primary.

Proof. Let us assume first that ker(l-fv4 2) = {0}, then by [9], Theo-
rem 1, there exists a unique one parameter abelian group of *-automor-
phisms ί-»αt such that ωA is the unique K.M.S. state of ί->αf at the
temperature β = 1. Hence the result follows immediately since any non-
trivial projection E in the center of the von Neumann algebra generated
would give two disjoint K.M.S. states (§ 1, vii) contradicting the uni-
queness.

For the case when ker(l + A2) Φ {0}, one gets the result by using
the first part of this proof combined with [6] Lemma 2.3.12.

Theorem 3.2. Let ωA be a gauge invariant quasi-free state. Assume
moreover that ker(l + ^42) = {0}; then the stabilizer of this state is just
the commutant of the group of ^-automorphisms generated by the ortho-
gonal operators

Z - Arcth(4) .

The result is obvious from Corollary 2.4 and [9], (Theorems 1 and 2).

Appendix: Proof of Theorem 2.1

Theorem 2.1. Let ω a state of a C* -algebra si be a K.M.S. state for
the evolution ί-»αj (resp. t-*atf) at the inverse temperature βv (resp. β2)
then, for $$ simple or ω faithful, we have
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Proof. Up to a trivial change of scale, we can assume that βv = β2',
indeed if ω is K.M.S. with respect to f-χχf at the inverse temperature β
then ω is also a K.M.S. state with respect to αAf(0 < λ < oo) at the inverse
temperature λ'1 β.

Consider now / and g in^ with Fourier transform in Si. According
to the invariance of the K.M.S. state ω,

is a continuous and bounded function, moreover

through repeated use of the K.M.S. boundary equation and invariance
of the state. Using now the density of Q>R®@R in ®R2 the previous
equation tells us that the Fourier transform of

has its support on the vector subspace ω1 + ω2 = 0 so that ω(A^(x.2LuB)
depends on t — u (by a theorem of Schwartz (cf. [10], p. 101) and by the
boundedness of the function). We have therefore :

so that outside the kernel of πω, which is the two-sided ideal of elements
of A such that

the automorphism for which a given state is a K.M.S. state at a certain
temperature is uniquely defined.

In the cases where ω(A*A) = Q implies A = 0 (e.g. in the case of a
simple algebra) the K.M.S. automorphism is uniquely defined.

In particular this is true for the quasi-local algebra (which is simple
[11]), or the Clifford algebra, or in the case where one discusses the
modular automorphism of a von Neumann algebra with a cyclic and
separating vector (cf. [3, 2, 4]).
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