Commun. math. Phys. 19, 65—82 (1970)
© by Springer-Verlag 1970

Estimates of the Unitarity Integral

J. KupscH
CERN-Geneva

Received June 18, 1970

Abstract. The elastic unitarity integral is studied for amplitudes which satisfy a
Mandelstam representation without subtraction. The double spectral functions are taken
to belong to function spaces which allow local, even non-integrable, singularities. The
existence of fixed point solutions is derived and the additional restrictions due to inelastic
unitarity are discussed.

1. Introduction

The analyticity domain of a two-particle scattering amplitude pro-
posed twelve years ago by Mandelstam [1] has not yet been derived
from axiomatic field theory. Also an S matrix theory does not exist
which could tell us the analyticity domain of the amplitudes. But a less
ambitious consistency problem has been solved; to prove the existence
of amplitudes which satisfy Mandelstam analyticity, crossing symmetry
for & 7 scattering, elastic unitarity and the inelastic unitarity bounds [2—6].

The elastic unitarity integral was already written as a system of
integral equations for the spectral functions in Mandelstam’s original
paper [1]. In the case of an unsubtracted amplitude, Atkinson modified
these equations to a mapping within a Banach space of Holder continuous
double spectral functions and he showed that its restriction to a subset
of this space was a contraction mapping [2]. Hence a fixed point solution
which satisfies crossing symmetry and elastic unitarity can be obtained
by iteration (under slightly weaker conditions the mere existence of a
fixed point can be proved by the Leray-Schauder principle).

This unitarity mapping is not uniquely defined. It depends on an
inhomogeneous term which contributes to the double spectral function
in the inelastic region s = 16, ¢ = 16 and which can be chosen arbitrarily
within some norm restriction. There is a one-to-one correspondence
between this term and the fixed point solution. This arbitrary function
might perhaps be determined if one includes all the many particle channels
in the unitarity equation, but this is scarcely a solvable problem. However,
without too much difficulty one can maintain the unitarity bounds in
the inelastic region [as Im f;(s) = | £,(s)|* in the case of identical particles].
This condition restricts then the choice of the inhomogeneous term.
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In Ref. [2], Atkinson characterized a set of these functions such that the
fixed point solutions satisfied not only elastic unitarity but also the
inelastic unitarity bounds.

These results have been partly extended to amplitudes with sub-
tractions [3-6] (and also the restriction of Ref. [2] to positive double
spectral functions is no longer necessary). The proof of convergence of
the elastic unitarity iteration goes through without difficulties of principle
for any finite number of subtractions [3]. Including the inelastic uni-
tarity bounds, the problem has been solved for one subtraction [4, 6]
and also for a class of amplitudes with a finite number of subtractions

A(s, )= F(s, t)+ H(s, t) 1.1)

where F (s, t) is a once subtracted Mandelstam representation and H(s, t)
is holomorphic up to the inelastic thresholds [5] (a mistake in [5] has
been corrected in [7]). The class of solutions is still unsatisfactorily
small. So we obtain in any case a decreasing total cross-section and the
amplitudes are bounded by a polynomial of first degree below the
inelastic thresholds, i.e., |A(s, t)] < const(1+ |t]) if s < 16. All the papers
[3—6] take over the proof of the elastic unitarity from Ref. [2], and hence
they only discuss Holder continuous double spectral functions.

In this article we want to remove the last restriction. We study
again the elastic unitarity integral but now for a more general class of
double spectral functions, even non-Lebesgue integrable singularities like

ét)or Pf % are allowed. There is some kind of regularity also for our

double spectral functions: integration over ¢ (or application on a test
function in t) has to lead to Holder continuous functions in s, at least
within the elastic strip 4 <s =< 16.

This assumption is connected with our problem in a quite natural
way. If we take the imaginary part of the partial waves

Imﬁ(s)—~[s(s—4)] ’%jdtQ,<1+ 2t )Q(S 1, (1.2)

121,20, we know from unitarity that Im f(s) is bounded. Hence, the
integration over t smoothes all the singularities of o(s, t). To guarantee
in addition a bounded real part

Refi(9~ 1o g

(1.3)

more information about (s, t) is needed, e.g., Hblder continuity in s
after the ¢ integration in (1.2) has been performed.

For our generalization, it is sufficient to study the scattering of
identical particles without subtractions in the elastic region, or more
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precisely, the function F(s,t) in (1.1) is written as an unsubtracted
Mandelstam representation. In Section 2, the elastic unitarity condition
is formulated as a fixed point problem of a non-linear equation for the
double spectral function. (Here we need only the double spectral function
within a neighbourhood of the elastic strips in the s and ¢ channels.)
This non-linear mapping is discussed on several Banach spaces of
functions. These spaces are introduced in Section 3. The estimates of
the unitarity integral follow in Sections 4 and 5 (with some technical
details in Appendices A and B). As a simple application we prove the
existence of fixed point solutions by iteration in Section 6. This iteration
may start with a function in a rather general Banach space which allows

o(t)or Pf % singularities. But any fixed point solution within this

function space exhibits only Lebesgue-integrable singularities.

If we demand in addition the inelastic unitarity bounds, we remain
only with such fixed point solutions which are Holder continuous in s
and t within the elastic strips 4 <s <16 or 4 <t £ 16 and which possibly
yield singularities for s > 16 and ¢ > 16. There is no general argument
which forbids singularities in the intervals 4 <s<16 or 4<t<16. But
to obtain such singular amplitudes we would need input functions which
satisfy inelastic unitarity bounds and show rather strong singularities
outside their double spectral region. Our methods, see Ref. [7], are so
far not effective enough for this construction.

2. The Unitarity Mapping

We consider the elastic scattering of equal (pseudo) scalar particles
of unit mass. The scattering amplitude A(s, f) is decomposed as

A(s, t)=F(s, t)+ H(s, t) 2.1

where both functions F(s, ) and H(s, t) are symmetric in s,t and
u=4—s—t and satisfy Mandelstam analyticity. Moreover F(s,t) can
be represented as
1
F(Sa t) = F[Q(S5 t)] = —I

TCZ

o8, 1)
(s—s)@E—1
+ crossed terms, 2.2
os, ) =elt, s).
The function H(s, t) is holomorphic in s up to s =16 and vanishes if
|t > oo for values of s in the interval 4 <s < 19. It is convenient to write
o(s, ) =wp(s, 1) +u(t, ) (2.3)
where (s, t) has no symmetry restrictions.

5%

ds' dt’
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We then define a mapping y(s, t) (s, t) = D[y(s, t)] within the set
of double spectral functions by the Eq.(2.1)—(2.3) and the unitarity
integral

2z

ImF[y'(s, £)] = A%(s) % [s(s—4)]—%j at' £ d3 A*(s,t') A(s, "),

//_ ’ tt/ — ! t t/
t'=t+t'+2 - 2‘/tt (1+———S_4)<1+———S_4)cos9.

2.4)

Here, we have introduced a cut-off function A(s) with the properties:
A(s) is Holder continuous and

0ZAE)=1 if 4<s< 0,
AMe)=1 if 45s<17,
AE)=0 if s>19.
The Eq. (2.4) can be transformed in the equivalent relation [1]

w'(s, ) =2%(s) —12; FK(s, 1, 1y, 15) AF(s, £1) Ay(s, t) dty di,  (2.5)

where we use the absorptive part in the ¢ channel

As, D=d(s, )+ D(s, 1), 26)
ds, )= ~gds |1 41 (5,1 @7
% T S s —s S —4+s+t e, b, )

D(s, t)= -217 disc, H(s, {). 238)
The kernel K(s, t, t, t,) is defined as

L (s, t,t,t,) if s>4,t>16,
4<t,<als, t,4)),

= 2.9
K(Sa t9 tl,tZ) 4<t2<O€(S, t, tl), ( )

0 otherwhise
with the functions

L(S,t,tl,t2)=s(s—4)[tz-l-tf+t§—2(tt1+tt2+t1t2)—4 thﬂ (2.10)

tt, t t
— 2\/tt1 (Hﬁ) (1+ p— ) 2.11)

and

oafs, t, t])=t+t; +2
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"We assume a support of (s, t) inside the region 4<s=<19, t = 20.
Such a restriction is reproduced by the mapping (s, £) —>’(s, t) =@ [y(s, 1)]
[the actual support of (2.5) is even smaller].

For any fixed point solution of this mapping (s, £)= @ [y(s, t)] the
corresponding amplitude A(s, ) satisfies crossing symmetry and elastic
unitarity. To derive such solutions one has to study the mapping @ [y (s, )]
in more detail. The first rigorous proof of existence was given by At-
kinson [2]. He restricted the double spectral functions to be elements
of a suitable Banach space of Holder continuous functions and derived
all the conditions to apply the Schauder fixed point principle or even
the contraction mapping theorem.

The subject of our paper is to study this mapping in more general
spaces of spectral functions and to look for fixed point solutions which
are not obtained in [2].

We could include a finite number of subtractions for F(s, t) in (2.2)
and also take charged particles. But, the generalization we are interested
in is independent of the number of subtractions; it can be explained most
clearly in the simple case without subtractions.

We would like to mention that nevertheless the whole amplitude
A(s, t) may need an arbitrary number of subtractions since H (s, t) is not
restricted for s> 19,¢> 19 and can increase in that region.

3. Banach Spaces of Functions

The spectral functions will be submitted to several restrictions which
are most clearly expressed by a norm condition. We therefore define
the following Banach spaces of functions:

a) Z%(a), 1=p<oo, az0

the space of all measurable functions f(x), 4 < x < oo, with the finite

norm
1/p

Lf Gl = @1

T1f G xeP dx
4

b) FP(a,b,p), 1=Sp=0, az0, —co<b<o0,0<u<l1
the space of all measurable functions f(x, y), 4 < x, y < oo, with the finite
norm

1/p

{1/t y)y‘“vdy] '

IfGxpll= sup x7°
450 (3.2)
b [ _ 1/p
# x| 1) fea Py ey
Py *
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The functions f(x,y) of #*(a,b, ) may be characterized as Holder
continuous functions in x with values f(x, y)= f,(y) in £?(a).

The space £*(a, o, p) is also denoted as £?(a, ).

The functions f(x, y)e ¥?(a, b, u) with f(4,y)=0 for almost all y
generate a closed subspace, £E(a, b, p).

c) &a, ), —o<a<oo, O<pu<l

the space of Holder continuous functions f(x), 4 <x < oo, with a finite

norm —
1/l =, sup_x1/(9)
- - 33
s bl e - e O
I;z—l,x12|§1

d) F(a,p, —co<a<oo, O<u<l
the space of Holder continuous functions f(x, y), 4 <x, y <oo with the
finite norm
176 3)le =, sup_ () 71/ G )
+ 4Sx1SB}3y<w(x1y)_"|xz—x1|_”|f(xz, Y) =[x, )l
[EREAES! (34
LS )y =yl TS ya) = 6 )l
[ESEAES
The functions f(x, y) € & (a, ) which vanish if x =4, f(4, y)=0, generate
a closed subspace % (a, u).
The unitarity mapping can be extended to some classes of generalized
functions. In the following we use

e) 6'(a, )
the continuous linear functionals 7(y) on the space &(a, y),
feéap, (0ed'a p
KT ODI=Clif e
f) &y, p), —0<a<oo, 0<py, p, <1

the continuous linear functionals T'(x, y)= T.(y) on &(a, u) which depend
Holder continuously on a parameter x, 4 < x < 00,

) €8, ny), T.(y) e8a, py, ) »
LTINS =F(x)e&0, p1y),
"F(x)”g(o,uz) =Cr ”f”é"(a,ul) .

We denote by & (a, 14;, 4,) the subset of all functionals T(x, y) € &(a, iy, 1)
which have a compact support in x.
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g F'(a, p)
the space of the continuous linear functionals on & (a, p).

With the usual definitions of the norm of a mapping the spaces e)—g)
are also Banach spaces.

Finally, we want to note some simple relations:

L@ Cé(~ap,
L a,w) CE(—a,p ),
Fla,wc L +d,a,p, ad>a,
Ea,wx&a wWCFa,p.

If7,(x)and 7, (x) € &'(a, p) then the product 7, (x) 7, (y) defines a continuous
functional on & (a, 2 u), i.e.,

&'a, p)x &'(a, W) CF'(a, 2 ).

4. The Reduced Unitarity Mapping

As a first step we consider the mapping f x g— B
B(s, 1) =J K(s, 1,11, 15) f(t;) g(t2) dty di, 4.1)

where f and g depend only on one variable and K is the kernel (2.9).
Since our norms (3.2) are asymmetric in the first and in the second
variable we also introduce B(t, s)= B(s, ).

In Appendix A the necessary estimates on integrals over K(s, ¢, t,, t,),
K(s',t,ty,t) — K(s, t, t;,t,)and K (s, t', t;, t,) — K(s, t, t;, t,) are evaluated
to apply the integration theorem of Appendix B. In the following we
list some results.

1 .
41. If fH e (a + 7) andg(t)e & (a + %) then B(s, t) and B(t, s)

1 .
are elements of £ <a+ Py a, u) for the range of the quantities v, w, r,
apvzl,w=lrt=v"14wt+qg ' -2>0 with some ¢, 1 <q=<2,
0<,u<%——;—anda;—%+y.

Furthermore, we obtain the estimates [with the corresponding norms
(3.1) and (3.2)]

IBGS, Olley < ClLF @)y 19O gy »
IB(t, )y S CILL @)l y - 19O oy -
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We note particularly two limiting cases. For v=w=1 this is a mapping
between the spaces

1
3‘(b)><$1(b)—>$8<b~1+;,b—l,u)
11 1 3
22 b>= -1 -1_ 2 .
p 2,b=2+/x.va +w <2thefunc

tion B(s,t) becomes locally bounded. But it is also continuous, and

with 1=5¢g<2,0<u<

F§&(a, a, u) can be read as Hya, p). For % <q=2,b=21- —cll— we obtain
1 2
a mapping £4(b) x L1(b)—~ %, (b -, ,u) withO<pu< % -—.
q q
4.2. Let us consider the case Z*(b) x £ (b)— Z4(...) in more detail.
Since £ * is the dual space of #' we know that B, ,,(s, 1) =K(s, t, t, t5)
-(t;t,) is a bounded function of ¢; and ¢, with values B(s, t) e #¢ for
almost all ¢, and t,. In Appendix A the kernel K(s, t, t,, t,) is shown to
be Holder continuous in the following sense:

|t1 _t/ll_u'K(& L, tla tz)—K(s, L, t/la tl)l = Kt’l(S: L, t1: tz)

allows estimates of the same kind as K(s,t,t;,t,) if only the range of
the Holder indices is restricted. Therefore, the function B, ,,(s, t) is also
Hoélder continuous in t; and t,; and f(f) and ¢(¢f) can be continued
from Z(b) to linear functionals on a space of Hélder continuous
functions. More precisely we infer that Eq.(4.1) defines a bounded

mapping
& (= b, uy) x &' (= b, uy)— L8 (b—1+ %,b—l, u)

if1=g<2,0<p+2p, < % ~ L

5 +u+2u,. By these conditions

N!»—-k

1y is restricted to 0 < py < %

5. The Unitarity Mapping

The integral transform (4.1) is the most subtile part of the unitarity
mapping introduced in Section 2. For a complete discussion we have
to include an s dependence of the functions f and ¢ in (4.1) and to in-
vestigate Hilbert transform in (2.7).

The generalization of Section 4 to a mapping

B(s,0)=[ K(s,t,11,t;) f(s,t;) g(s, t;) dt, dt,,

B(t,5)=B(s, 1) (.1)



Unitarity Integral 73

is straightforward. If f(s, t) and g(s, t) are elements of a space #”(a, 0, p)
or &(—a, u, ') we again derive norm conditions of the type (3.2) or (3.4)
for B(s, t) and B(t, s). The additional s dependence of f and g is easily
estimated by

B(s,, 1) — B(sy, 1)
=[dty dt, {(K(sp, 1, ty, 1) — K(s1, 1, t1, £5)) (525 t1) g(52, 12)
+ K(sy, b ty, 1) (f (525 £1) = (51, 1)) g (525 1)
+ K(s1, b ty, t5) f(51581) (90525 £2) — g (51, £2))}

and we can reduce the problem to that solved in Section 4.
5.1. The result of subsection 4.1 can now be extended to the following
statement:

1
if f(s,t)e & <a+ —i—, ,u) and g(s,t)e &” <a+ W ,u) then B(s, t) and

(5.2)

. 1 -
B(t, s) are elements of Z} (a—i- > ,u) for v=1, w1, r t=v 1 4w™!

+q~1'—220 with some ¢, 1<¢g<2, O<u< 72 and a=— ) + .
The norms of these functions are related by \
1BGs. Dl < C LA Dl 19655 Dl »
IB(&, )¢y = CILS(S, Dll ) N9, Dl o) -

[If r =00 we can take F(a, p) instead of ¢ (a, a, 1).]

5.2. As in 4.2 the functions f(s, ) and ¢(s, t) can be continued to
functionals in the variable t. The corresponding result reads:

the Eq. (5.1) defines a continuous mapping

(5.3

- ~ 1
éa(—ba Hys ,u) X g(—ba His /,L)—%,gg(b—l—i- 'Eab—la .u)

i 1 1 1
— ——=—,b= = 24, .
PR b= > trt2m

5.3. The unitarity mapping of Section 2 also involves the linear
transform (2.7) for the absorptive part in the ¢ channel. Let us first assume
that the s dependence of the double spectral function is described by

w(s, t)e LE(a, b, ), b<0,0<u<1. The mapping

111 1 /
dbp(s, 0] = —Jds' |5+ i) (54)

can then be estimated as in the case of ordinary Holder continuous
functions. It turns out to be a bounded transform from £§(a, b, p) into
PPa,0,u) if b<0 and O<p<1.

1=29<2,0<pu+2u,<
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The contribution of the crossed term {P(s, t) = y(t, s) is evaluated in
the same way if also P (s, ) € L5(a, b, u). Such a property applies to double
spectral functions which are obtained by the elastic iteration (5.1). But
the weaker condition (s, t) € £E(a, u) is sufficient (also for the crossed
term) if we know in addition that the support of (s, t) lies within4 <s< 19,
t = 20 (see Section 2). We denote the corresponding subspace of #*(a, u)
by #?(a, n). The supports of (s, t) and A(s) d(s, f) are then separated and
Y(s, )— A(s) d[P(s, t)] is a bounded operator from .£7(a, u) into #?(a, 1)
ifp=1,0Za<ptorp=1la=1.

Hence we have obtained

I14(s) dLw(s, D)+ w (& I = ¢4 [[ws, D] (5.5

for the spaces £P(a, yy withp=1,a=1orp=1,0<a<p 'andO<pu<l.
These results can be generalized to functions

1P(S, t) € é;(_ a, gy, .u'2)

if the support isrestricted as above for £7(a, ). We denote these subspaces
by &.(—a, s, 115). The mapping

w(s, )= A(S) dLy(s, O +w(E, 5)]

is a bounded operator from &,(—a, iy, i) into &(—a, uy, p,) if0<a <1
and O<py , <1

6. Applications to Fixed Point Solutions

We first discuss the existence of fixed point solutions. For A(s) D(s, t)
e LY a,w), 0<p<i,i+u=<asl, the unitarity mapping is a transform
from #£}(a, u) into £} (a, p) and the estimates (5.3) and (5.5) allow one
to apply the contraction mapping theorem (or the Schauder fixed point
principle) as it has been done in Ref. [2]. If the norms of A(s) D(s,t)e £ *(a, 1)
and y,(s, t) € £ (a, u) are small enough, the series

WO(S, t)’ 1,01(5, t)a ceos Yyt l(sa t) = ‘p[wn(& t)]»

converges to a fixed point solution (s, t) € £ (a, p).

_We can extend this result to generalized functions A(s) D(s, f)
e&(—a, uy, uy) and wo(s, 1) € E(—a, Uy, ty), 0< py <%,0<u, <1. From
Section 5.1 we know that the iterated functions y,(s, t), n=1,2, ..., are
all elements of #*(a, p), p=min(} —2u,, u,). The convergence of this
series follows as above if A(s) D(s, t) and (s, t) are small.

The proof of the existence of fixed point solutions using the spaces
P(a, p) is easier than Atkinson’s method [2]. Compared to Ref. [2]
it has also the advantage that functions which decrease only like (log) ™ ~°
are included in #*(1, p). (This generalization is also possible by a modifi-
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cation of the norm in Ref. [2], see Ref. [6].) But to satisfy the inelastic
unitarity bounds

Imfi(s) = |fi(s)? [1=0,2,...,s>16 6.1)
we need some additional work. The calculations of Section 5 imply (s, t)
1 1 1
and P(s, t)e,?q(a—1+ —a,a—l,,u>, 15g<2, O<pu< — — IR These
q

norm conditions are not sufficient to derive the necessary estimates of
the contribution of (s, t) + (t, s) to the partial waves.

But, before we discuss the problem of inelastic unitarity we explore
the singularity structure of fixed point solutions of the elastic unitarity
integral. The space &(—a, piy, ), 0 < yy <%, allows singularities of the

type o(t) or P f % The unitarity mapping smoothes these local singu-

larities and they do not show up in the fixed point solution. From
Section 5 we infer the following statements for any fixed point solution
p(s, ) e &(—1, uy, 1), 0<2pu, +u< 3 whether it is obtained by iteration
or not.

a) If A(s) D(s, 1) € (—1, py, ) then (s, ¢) is an element of %4 (i, ,u)
with 34+ 2u, + p<qg ' 1. q

b) If A(s) D(s, t) has only #” singularities, 1 <p <%, then (s, 1) is
locally #" integrable for all r with 2p~ ! —3<r 1 <2p 11,

c) If A(s) D(s, t)egq(%,,u), % <q=2,0<u< —;— — % then (s, t)
is an element of Z (0, p).

To obtain ¢ like singularities for the fixed point solution, if they
exist at all, the inhomogeneous term_A(s) D(s, t) has to be taken out of
a more general function space than &(—a, py, p), 0< p; < 3.

At this point we have to remember the inelastic unitarity condition.
Using the proofs [2,4,5] as an advice on how to obtain the bounds
(6.1) the inhomogeneous term H(s, t) has to satisfy (among other con-
ditions):

a) D(s,t) is a positive measure in ¢, which depends analytically on s,
in the strip 0 <s<16;

b) the inelastic bounds (6.1) apply also to H(s, t) for energies above
s=17 [i.e., for those energies with A(s)=+ 1].

In the region 4 < s < 16 and ¢ > 17 the property b) restricts the measure
D(s, t) to an #? function, the values of p depend on s, we can take any p

‘ /1 4
with 1<p< ~S£, [8]. For s <9 we reach values p = 3 and the con-

tribution of this part of D(s, ?) (i.e., s<9,t> 17) to y(s, t) is then Holder
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continuous in s and t. From the other regions the fixed point solution
may however get singular contributions.

But, unfortunately we are not able to prove the existence of such
solutions which satisfy the inelastic unitarity bounds and are not Holder
continuous in the elastic strip 4 <s< 16. To illustrate these difficulties
we first consider the case where also H(s, t) is given by an unsubtracted
Mandelstam representation [2]

1 (s, t)
B 0= I gy =y

w(s, e LY a,a—1,p), 2+ pu<a<l1.

ds' dt’' + crossed terms

Then we can neglect the cut-off function A(s), i.e., A(s)=1 for 4 <s < 0.
The proof of the convergence of the iteration ,(s, t) goes through if
we start with a smooth (s, t). (The fixed point solutions do not depend
on this choice.) For the mapping (5.1) we need D(s, t) € £*(a, u) which
is satisfied. The transform (2.7) is defined for w,(s, t)+ y,(t, s) since
(s, 1) and §,(s, t) are elements of #(a,a—1, p).

A condition like w(s,t)e #1(a,a—1, u) was necessary to obtain
D(s, t) € #*(a, w). But then crossing symmetry, (s, £) = w(t, s) implies that

1 4 1 ]
sS—s S —d+s+t]

D@Q:%JM/ (s, t)

is Holder continuous in s and t outside the support of w(s, t). Hence,
in this simplest case we always obtain Hoélder continuous solutions for
s< 16.

If we use a cut-off function A(s) we are not faced with this problem
due to crossing symmetry for energies s with A(s)=0. But in that region
the inhomogeneous term has to satisfy the inelastic unitarity bounds.
So far all such amplitudes which we can write down (see Ref. [7]), are
locally #? integrable outside their double spectral region, i.e., D(s, t)
is £? integrable for s < 16. This leads to Holder continuous fixed point
solutions (s, t) if 4 <s < 16.

We have seen how the elastic unitarity integral can be estimated in
function spaces which allow local singularities, and we have proved the
existence of fixed point solutions in these spaces. But, if in addition
inelastic unitarity bounds are required our present methods only lead
to solutions which are Holder continuous in the elastic strips 4 <s< 16,
t>4 and 4 <t <16, s>4. In the region s> 16, t > 16 local singularities
are still possible.

Acknowledgements. 1 would like to thank Professors D. Atkinson and A. Martin for
discussions and reading the manuscript.
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Appendix A

In this Appendix we derive estimates on the unitarity kernel
K(s, t,t;, 1)
The function (2.10)

L(s, t,ty,t,)=s(s—4) o(t, t,,t,) —4stt t, (A1)

with
ot ty, t)=t>+t3+15—2(tt; +tt, + 1t ty) (A2)

may be written as

L(s, t,t,ty))=s(s—4) [a(s t, t;)—t,] [B(s, t, t) —t5] (A3)
or

Lis,t,ty, ) =s(s—4) [t—als, 11, )] [t = Bls, t1, 1)1 (A4)

using the expression (2.11) and

tt

1 t 21
— . (AS
P 4—2\/”1 <1+ 5_4)(1+ S_4> (A.5)

If t, >4 and t, >4 we can describe the region where L(s, t, t;, t,) is
positive in the following ways

PG, tt)=t+t,+2

s>4t>16,4<t,<a(s, t,4),4<ty<als, t, ty)
[see (2.9)], or
4tt,t,

Lty >4 t>t + 1+ 2|/t ty, s>4+ ———
(p(tatlaIZ)

or
ti,t>4,5>4,t> f(s, ty,t,)  (>16).

The domain in the variables (s, t, ¢, t,) characterized by these equivalent
conditions is called . We list some estimates which are valid within D:

t
4<0((S,t,t1)< 7471—(5—4),

16<t1t2<%t(s—4),

4 <) —as ), (A6)

t

4S 2 <ﬁ(S,t,t1)<4t<1+~a),

0<o(t, ty,t,)<t>.
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These inequalities give sufficient information about the boundaries of
the region . The unitarity kernel K(s,¢,¢t,,t,) was defined in (2.9) as

K.ty 1) = {L‘%(s, t, by, 1) %f (s,t,t,,t,)€D,

0 if (s,tt,t,)¢D.
For the following we need estimates of the difference K(s,1,1,,1t;)
—K(s, t,t;,t,). We notice that L(s, t, t,,t,) is a quadratic form in each
of its variables, it is therefore sufficient to study Q(x)=(x—a)(x —b)
with a=b>0 and

_ [QMx) if x>a,
Q’lr(x)—{o if x<a.
For Q;(x)— Q3 '(y) we calculate
0<074 (9070150500 [ SR <0 e 22
o) y

with 0 u =<1, ifa<x<y, and

01— Q7 IS =y —x) yIFQT ()

with0ZuZ1,ifx<y, x<a.
The corresponding results for Q;*(x)— Q1 %(y) follow immediately
from |[A* — B}/ <|A—BJ?, A=0, B=0. The unitarity kernel can now
be estimated by
s2st2t,05u<s,
0 é K(S) t> tl’ tZ) - K(Sl9 t/> tI’ tZ)
t'—t

’

—S

2252 > 2s(s—4) 12

n
<IK(s,t, tl,tz)l““{ ' +

|
if (s,t,t1,t,)€D,
K (s, t, by, ) =K (s, £ ty, )| S|K (s, U by, )P T2 [s(s—4) ¢/ (¢ — )|
if (s,8,t,,t,)¢D, (5,8, t,t,) €D, (A7)
IK(s,t, ty,t5) —K(s, t, t;, )| SIK(S, t, 4, t,)|1 T 2R3 (s —s)|*

lf (S, ta tl’ t2)¢ ga (S,, t’ tla tl) € D

These results are also contained in Atkinson’s paper [2]. But we use
somewhat simpler techniques and need (A.5)—(A.7) anyhow for further
reference.
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For different values of ¢, (or t,) we derive in the same way
0< K(S> t: tlla tZ) - K(S, L, tl’ t2)
SIK (s, t, 1, t)| P T4 st(s + ) (8 — )|
if (Sa L tlla tZ)e b) t,l > tl s
|K(S9 L t,la t2) - K(Sa L, tl’ t2)|
SIK (s, b ty, 1) T2 st(s + 1) (6 — 1)
lf (Sa t’ tlla t2) ¢ D, (S’ t9 tla t2) € Qa (A8)
0<u<s3.

For application in Section 4 we calculate integrals over K(s, ¢, ty, t;,).
Let g be a real number, 1< g <2, then

.f ‘tCZ‘K(Sa t’ tlo t2)|th2

can be evaluated using the representation (A.3) for L(s,t,t,,t,) and the
bounds (A.6). Estimates for s or t integrations are most easily derived
from (A.1) or (A.4). We write the results as follows:

(0P Kbty )ty SCos™ 8 (s—dprrt=Senst ), az o
FIs ™K i fdsSC- #1731 700 az = (A9)
FlE7 oK (s, by, 1)1 dt < C-s~ 3 (s— 49143 (¢, 1,)1 79079, g> % —% ,
1=¢g<2.
It is convenient to introduce the g dependent kernel
R(Sata tl’tZ)Z(SI)_a+1_% (tl tZ)HK(S’ ta tla t2)a
1 ) (A.10)

1
1<g<2,a= - ——
=q<2az 35—

then (A.9) can be formulated in a more symmetric way
j. |R(S9 t’ tl) t2)|q dtl,Z é C(Sttl’.,l)_l 5

JIR(s, t, 8y, t,)|7ds S C(tt,t,) 7", (A.11)
FIR(s, t, by, )" dt < C(styt,) ™"
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where the right-hand side of the first and the third inequality can be
multiplied by a threshold factor

s—4\aa—§+1
=T

The unitarity mapping (4.1) is then transformed to
B(s, )= (s0)" """ T R(s, b, £y, 1) 67 £(t,) 39 (62) dtydiy . (A1)

Using (A.11) this integral can be estimated by the theorem of Appendix B.
Four our applications in Sec. 4 we also need bounds for B(s', t) — B(s, t)
and B(s,t")— B(s, t) which easily follow from the inequalities (A.7) as

u

IB(s', ) — B(s, ) < ’2 S—S——S (G(s, )+ G(s, 1)) (A.13)

with
G(s, )= (st)*" [ IK(s, t, £y, )| 2#| f(t1) g(2,)| dt, dt, . (A.14)

This expression can also be written in the form of (A.12),

2 ~ _ _
G(s, )=(st)* " TafR(s, t, ty, t) t7 %1 f(t1) 2 %lg(t,)] dty dt,
with

— _2
R(Sa t: t19 t2)= (St) att 1 +2u|K(Sa t: tla t2))|1+2u(t1 tZ)aa

1 1 1 1
0§,u<q 7 agz q+u.
This kernel R satisfies again the estimates (A.11) (with another constant C
and without the threshold factor). So the problem is reduced to an integral
transform of the type (A.12).

Finally we would like to mention that f(f) and g(t) can also be taken
as generalized functions. If f(¢) is a linear functional on the space of
Holder continuous functions with index u, the mapping (4.1) corresponds
to a transform of integrable functions but the kernel substituted by

'tl - t”—le(S, L1, t2) - K(Ss L tllﬁ tZ)l .
In (A.8) this expression is estimated by

18522 max |K(s,t,x,t,)|'*2"
X=tq,t1

So we have again to handle integrals like (A.14). If f(t) and ¢(t) are

elements of §'(—a, u,) the difference B(s, t) — B(s, t) is majorized by

an expression like (A.13) where the range of the Holder indices is restricted
1

1 1 1
+2 —— = = — — — 4 u+2u,.
toO<pu+2u, < p 3 and a 3 p n+2u,
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Appendix B

In this Appendix we derive a theorem on integral transforms of the
type (4.1). We consider complex valued Lebesgue measurable functions
defined on the real axis. The function spaces #?[c¢], 1=p <00, are
defined as usual [9] with a measure do(x) and the norms

1f 1w =1/ QPds(]?,  1<p<co,
and
1 0 = es5.sup | 19

In the case of the Lebesgue measure do(x) = dx we drop the index o.

Theorem. Given the functions K(xq, x,, X3), f(x) and g(x) with the
Jollowing restrictions
a) the integral kernel K(xy, x,, X3) is estimated by

[ 1K Gey, X0 X9 dxi]7 < 0(x) 9050

Jori=1,2,3, (i,j, k)=perm(1, 2, 3) and a value of q,1<qg<o0;
b) the functions f(x) and g(x) satisfy

PR e, g [p0] " he e

for some real numbers v=1 and w=1, v 14w 1=2—q7 1, then the
bilinear form

F(x3)= [ K(xq, X3, x3) f(x1) g(x2) dx1 dx,
is defined for almost all values of x5 and we obtain
FO) L] *rey, ril=v 4w itg =2
and
L e P P i I
Proof. The Holder inequality for the x; or the x, integration gives

A1, lg - @lls - (x3)

with “lyg7l=1. B.1
1f- ol - lgl, - p(xs) Pt B.1

Fxo) < {

In addition we calculate
[f IF ()" dxs]e.
If g=1 this can be done by an interchange of the order of integration,

JIF®ldx =11 f-olillg- ol

6 Commun. math. Phys., Vol. 19
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If 1<g<oo we multiply F(x) by a function h(x)e £?, the dual space
of #4, and the Holder inequality yields

JIF) )l dx = [hll,- [ f el g el -

Hence we obtain in both cases

IFl,=lfelllgel, 1=g<o (B.2)

Now we define the functions

f(x)z{[q?(x)]l‘qf(x) if ¢(x)>0
0 if @(x)=0

and
F(x)_{[(p(X)]_lF(x) if ¢(x)>0
U if @(9=0

and introduce the spaces #"[o], 1<r =00, with the measure do(x)
= [¢(x)]?dx. The results (B.1) and (B.2) can then be written as

A1 e lgl 1o

nﬁnmé{ 5,019
’ “f”l,o'”g“p,a

and 3 .
IFllgoe =1 11,60G11,0-

The Riesz convexity theorem [97] allows to generalize these inequalities to

1F o S U f o 1G], o

with v, w=1and r '=v '+ w 14 ¢ ' —2=0. But this is exactly our
theorem if we use the original functions f, g and F.
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