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Abstract. In an earlier work, Doplicher, Kastler and Robinson have examined a
mathematical structure consisting of a pair (A, G), where A is a C*-algebra and G is a locally
compact automorphism group of A. We call such a structure a "covariant system". The
enveloping von Neumann algebra sύ(A, G) of (A, G) is defined as a *-algebra of operator
valued functions (called options) on the space of covariant representations of (A, G). The
system (A, G) is canonically embedded in, and in fact generates, the von Neumann algebra
sύ(A9 G). Further we show there is a natural one-to-one correspondence between the normal
^representations of jf(A, G) and the proper covariant representations of (A, G). The
relation oϊjf(A, G) to the covariance C*-algebra C*(A, G) is also examined.

§ 1. Introduction

In an earlier work [2], Sergio Doplicher, Daniel Kastler, and Derek
Robinson have examined a mathematical structure consisting of a pair
(A, G), where A is a C*-algebra and G is a locally compact group of
automorphisms of A. In this paper we shall refer to such a structure as
a "covariant system". (The formal definition is given in the next section.)
In their paper, Doplicher, Kastler and Robinson examine other alge-
braic objects associated with a covariant system. Specifically they define
and study a Banach * -algebra 21?, (which is the analogue of the L^ -group
algebra of a group), and its C*-completion under the minimal regular
norm, which they denote 2IG (and which we shall denote C*(A9G)).
This latter algebra is referred to by Georges Zeller-Meier, as the crossed
product of A by G, [10]. Covariant systems together with their asso-
ciated crossed product (or covariance C*-algebra) have received some
study in the mathematical literature, (cf. [8, 9, and 10].) The important
correspondence of the covariant representation theory of a covariant
system (A, G) and the proper *-representation theory of its covariance
algebra si^ (and hence of its crossed-product C*(A, G)) is presented in
§ HI of [2].

The purpose of this paper is to define and examine other algebraic
objects which may be canonically associated with a covariant system.
In particular we define a von Neumann algebra <<tf(A, G), as an algebra
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of operator valued functions (called options) on the space of covariant
representations of (A, G). This algebra is called the enveloping von Neu-
mann algebra of the covariant system (A, G). The covariant system
(A, G) is isomorphically and canonically embedded in si (A, G). We shall
thus consider the covariant system to be contained in si(A, G). Then
A u G generates si (A, G). Further the restriction to (A, G), of a normal
^representation oϊjtf(A, G), yields a covariant representation of (A, G).
In this way, a one-to-one correspondence is determined, between the
normal * -representations oΪ£/(A, G) and the proper covariant *-represen-
tations of (A, G).

The crossed product C*(A, G), considered in [2], is also embedded
isomorphically in si (A, G). The crossed product C*(A,G) is σ-strong
dense ins/(A, G). Indeed the algebra s4(A, G) may then be identified as
the von Neumann enveloping algebra of the C*-algebra C*(A, G). In
the case where C*(A, G) is separable, the Takesaki duality theory [7]
is applicable and C*(A,G) may be identified as the subset oϊsί(A,G)
of those operator valued functions (options) (defined on the covariant
representations of (A, G)), which are continuous relative to an appropri-
ate topology.

In §2 we give some elementary notions and defintions. In §3 we
develop the theory of the enveloping algebra of a covariant system.
Finally in § 4 we exhibit a few other algebraic objects associated with a
covariant system (A, G).

A portion of this work was done while the author was a visitor at
the Mathematisches Institut der Universitat, at Gδttingen, Germany,
during the summer of 1969, and he wishes to express his gratefulness for
the hospitality of the institute. He also wishes to express his apprecia-
tion for the financial support of the National Science Foundation
(USA).

§ 2. Covariant Systems

Definition 2.1. A covariant system is a pair (A, G) where A is a C*-
algebra and G is a locally compact group of automorphisms of A such
that, for each x in A, the map s -> s(x) is a continuous function of G into A.

Definition 2.2. A covariant representation of a covariant system
(A, G) is a pair (π, U), where π is a *-representation of A and U is a
strongly continuous unitary representation of G such that both represen-
tations act on the same Hubert space ffl and such that

U(s)π(x)U(s)* = π(s(x})

for all 5 in G and x in A.
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Definition 2.3. A covariant representation (π, U) on the space J^(π, U)
is said to be proper if the * -representation π is proper, i.e., if
(π(x) φ : ψ e J^(π, [/), x e ^4} is dense in jf (π, (7).

In this paper we shall restrict ourselves primarily to proper convariant
representations. The next proposition will indicate that this is not a
very major restriction. For this we shall first need the following lemma
on * -representations of C*-algebras.

Lemma 2.4. Let A be a C* -algebra with approximate identity {eλ}.
Let π be a ^-representation of A and let Eπ denote the projection on
Jήf(π) with range equal to the essential space of π. Then the net of operators
π(eλ) converges strongly to £π, in <£(2F(π)}.

Proof. Here, as usual, ^(j-f (π)) denotes the algebra of all bounded
linear operators on the representation space Jf (π) of π.

Since {eλ} is an approximate identity in A, we have that eλ is a net
in A such that \\eλ\\ g 1 for all λ and eλx converges to x, for every x in A.
Since π is a * -representation which is norm continuous, we have π(eλx)
= π(eλ)π(x) converges to π(x) in the norm topology of <£($f (π)), for
every x in A. Thus n(eλ) φ converges to φ for every vector φ of the form
φ = π(x) tp, with x e A and ψ e 2? (π). Hence, by a standard ε — δ argu-
ment, we have that π(eλ) φ converges to φ for every φ is the closure of
the linear space { π ( x ) ι p : x e A, ψeJ4?(π)}, i.e., for every φ in the range
of Eπ. Now let φ be any vector of Jf (π). Then

\\(π(eά-En)φ\\

= \\π(eλ)φ-Eπφ\\

= \\π(eJ(Eπφ)-Eπφ\\-+0.

Thus π(eλ) converges strongly to Eπ.

Proposition 2.5. // (π, 17) is a covariant representation of (A, G), then
the essential space of π is an invariant subspace of the unitary represen-
tation U, and hence the restriction of (π, U), to the essential space of π,
is a proper covariant representation.

Proof. Let {eλ} be an approximate identity in A and let Eπ denote
the projection of J^(π) onto the essential space of π. Since each s in G
is an automorphism oϊA, we have that {s(eλ)} is an approximate identity,
for each seG. Thus by our previous lemma, π(s(eλ)) converges strongly
to £π, for each s in G. Further, for each s, U(s)π(eλ) 17 (s)* converges
strongly to U(s) EπU(s)*. But, for each 5 and each λ

U(s}π(eλ)U(s)* = π(s(eλ)).
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Hence, for each s in G,

U(s)EπU(s)* = Eπ

and thus the range of Eπ is an invariant subspace of 17.

Definition 2.6. Let stf(π, U] denote the von Neumann algebra generated
by the range of (π, 17). The covariant representation (π, U) is said to be

cyclic, with cyclic vector ψ, if the linear space j/(π, 17) φ is dense in
Jf (π, U).

In [2], Doplicher, Kastler, and Robinson define the notion of cyclic
covariant representation slightly differently. They define a covariant
representation to be cyclic with cyclic vector ψ if the set of vectors of
Jf (π, 17) obtained by applying to ψ arbitrary products of operators of
the form π(x), x in A, and U (s), s in G, generates, linearly, a dense subset
of Jf7. It is an easy exercise to verify that this definition is equivalent to
the definition given above.

Notice that this definition of cyclic representation has the curious
property that a cyclic representation need not be proper. (We leave the
reader to puzzle about that.) However Proposition 2.5 tells us that every
covariant representation may be written as a direct sum of a proper
covariant representation and a covariant representation (π0, L70) where
π0 is a zero representation of A, i.e., π0(x) is the zero operator on Jf(π0,170),
for all x in A. Thus a slight variation of the usual proof for C*-algebras
yields the following proposition (cf. Proposition 2.2.7 of [3]).

Proposition 2.7. Every covariant representation (π, U) of a covariant
system (A, G) may be expressed as a direct sum

π = π 0 φΣθπ λ , 17 = l/0θ £ θ l/i
λeΛ. λe/1

where (πλ, Uλ) is a proper cyclic covariant representation for each λ in A,
and π0 is a zero representation of A (of course (π0, 170) appears in the
decomposition if and only if (π, U) is improper).

It is clear that all the usual definitions such as invariant subspace,
irreducible representation, and unitary equivalence have their obvious
analogues for covariant representations. In particular the usual properties
of quasi-equivalence holds (cf. § 5.3 of [3]) and we may define two co-
variant representations (π, U) and (π', 17') to be quasi-equivalent (denoted
(π, 17) ~ (π', U')) if there is an isomorphism φ of <s/(π, 17) onto «s/(π', U')
such that φ(π(x)) = π'(x) for all x in A and φ(U(s)) = U'(s) for all s in G.
Thus one notes that if (π, U) ~ (π', U'\ then π ~ π' and U ~ U'. A similar
fact holds, of course, for unitary equivalence. In the reverse direction,
however, one can apparently conclude nothing about the equivalence
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of covariant representations, from the equivalence of their component
parts.

We conclude these elementary remarks with the following obser-
vation. (Notice that if either π or U is irreducible, then (π, U) is irreducible.)

Proposition 2.8. Let (A, G) be a covariant system and let π be an
irreducible ^-representation of A. Then there exists at most one, up to
multiplication by a one dimensional representation, unitary representation
U of G on J>^(π) such that (π, U) is a covariant representation of (A, G).

Proof. Consider two unitary representations, U± and [72, of G on
J^(π) and suppose both (π, [/J and (π, U2) are covariant representations.
Thus for each x in A and s in G we have

π(x) = τφ~ l(sx)) = U2(s~ l ) τφ(x)) U2(s- 1)*

- U2(s'1)

and hence π(x) U2(s)* U^s) = U2(s)* U^s) π(x). Thus U2(s)*Uί(s) is a
unitary operator in the commutator j/(π)' of π, which is a complex
multiple α(s) of identity operator, since π is irreducible. Thus U^s)
= α(s) 1/2(5) for every 5 in G. Since α(s)/ = [72(s) ί/^s), s->α(s) is a one
dimensional unitary representation.

§ 3. The Enveloping von Neumann Algebra

Definition 3.1. Fix a Hubert space J^0 of sufficiently high dimension
that every cyclic covariant representation of (A9 G) is unitary equivalent
to a covariant representation acting on a closed subspace of J^0. The
concrete covariant dual is the set 0(4, G) of all proper covariant re-
presentations (π, U) of (A, G) such that Jf (π, 17) is a closed subspace
of JT0.

It is an easy, but non-trivial, observation that if A and G are both
separable, then J>f0 may be chosen of dimension K0.

Definition 3.2. We next define the covariance von Neumann algebra
for a covariant system (A, G). Let«sφl, G) denote the set of maps S defined
on the concrete covariant representation space of (A, G) satisfying the
following axioms.

(i) For each covariant representation (π, U) in $(A, G), S(π, (7) is
a bounded linear operator on Jf (π, (7), the representation space of (π, U).

(ii) Sup {||S(π, t/)||: (π, 17) e 0(4, G)} < + oo.
(iii) If (π, [7)60(4, G) and (v, 7) 60(4, G) and jf (π, (7)l^f (v, F)

so that

(π®v,[/ΘF)e^(4, G)

5 Commun math Phys , Vol 17
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then

(iv) If (π, 17) and (v, V) are elements of $(A, G) and if u is a linear
isometry of jV(π, U) onto tf (v, V) such that

π = u*vu and U = u*Vu

then

S(π, LO = w*S(v, V)u.

Any operator valued function on $(A, G) satisfying these properties
will be called an option on $(A, G).

jtf(A, G) is given a * -algebra structure by defining addition, multi-
plication and the adjoint operation pointwise. Thus, for example, if
5, T are options, then S + Tdenotes the element of sέ(A, G) defined by

(S + T) (π, 17) = S(π, U) + T(π, 17)

for all (π, L7) in &(A, G).
The weak topology of £φl, G) is defined to be the smallest topology

such that the functions S-»(S((π, U)ψ, φ) are continuous, for all (π, U)
in ^(v4, G) and all φ, φ in Jίf (π, t/).

Similarly, the strong topology ofjtf(A, G) is defined to be the topology
determined by the family of semi-norms

where (π, U) e ̂ (A, G) and ψeJΊ?(π,U).
The conjugate space Jί* of a complex Banach space X is the Banach

space of all bounded linear functional on X. Richard Arens [1] has
described a natural multiplication in the second conjugate space JΓ**
of any Banach algebra X.

Theorem 3.3. s/(A, G) is a von Neumann algebra. The weak and strong
topologies defined above are the intrinsic σ-weak and σ- strong operator
topologies, respectively. Further s^(A, G) is canonically isomorphic to the
second conjugate space of the covariance C* -algebra, C*(A, G), endowed
with Arens multiplication.

Proof. This is basically an adaptation of a theory already developed
for locally compact groups and for C*-algebras (cf. [4], [6], § 1 of [7]
and § 12 of [3]). More explicitly sέ(A, G) may be represented as a von
Neumann algebra as follows. Let (v, F) denote the universal covariant
representation, which we define as the direct sum of all the represen-
tations in the concrete covariant dual @t(A^G) of (A, G). Let ja/(v, F) denote
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the von Neumann algebra on Jjf(v, V) generated by the range of (v, V).
Then the map Φ, defined by

Φ(S)= Σ ®S(π,U)

is an isomorphism of #ί(A9 G) onto ^(v, V). Further the reasoning of
Remarks 2.6, 2.7 and Proposition 2.8 of [6] applies in this context to
establish the other facts listed in the theorem.

Remark 3.4. By using Theorem 3 of [2] we may associate the concrete
co variant dual &(A, G) with the space Rep(C*(/4, G), J^Q) of all ^represen-
tations of C*(A, G) on Jf0 defined by Takesaki (cf. § 1 of [7]). Indeed
each proper covariant representation (π, 17) of (A, G) may be integrated
to yield a proper ^-representation T of C*(A, G) in the same space
Jf (π, (7). This in turn corresponds to the element of Rep(C*(,4, G), J^0)
whose essential space is Jf (π, U) and whose restriction to J^(π, 17) is T.
This sets up a one-to-one mapping of ^(^4, G) into Rep(C*(/l, G), J>f0)
which is almost onto, except that Takesaki considers the zero represen-
tation to be an element of Rep(C*(/4, G), Jf0), which does not correspond
to an element of &(A, G). However this difference is unimportant for the
first section of Takesaki's paper. Thus si(A, G) is precisely the von Neu-
mann enveloping algebra of the co variance C*-algebra, C*(A, G) des-
cribed in § 1 of [7] and § 12 of [3]. Thus C*(A, G) is canonically and
isomorphically embedded as a σ-strongly dense subalgebra of ̂ (A, G).
The fact that sί(A, G) is pretty roomy is shown by the fact that the covariant
system (A, G) is also embedded in s4(A, G), and its image also generates

l, G).

Theorem 3.5. For each s m G, define the option s on &(A, G) by
s(π, U) = U(s) for all (π, U) in $(A, G). Similarly for each x in A, define
the option x in 3l(A, G) by x(π, 17) - π(x), far all (π, U) in 3t(A, G).

Then s-> s is a group isomorphism and σ-strong homeomorphism of G
onto a group of unitary operators in s$(A, G). Similarly x-+x is a * -iso-
morphism and ίsometry of A into £/(A, G).

Further s(x) = sjcs* for all s in G, x in A and {jc, s : x e A, se G} gene-
rates d(A9 G).

Proof. It is an easy matter to verify that x and s are options in 0t(A> G)
for all x in A and s in G, and that the maps x^x, y-+ y are homomor-
phisms.

Notice that if (v, V) is the universal representation, then {v(x)5

V(s) : x e A, s e G} generates j/(v, V). But under the isomorphism Φ of
sέ(A, G) onto ^/(v, V) we have Φ(x) = v(x) for x in A and Φ(s) = V(s) for s
in G. Thus { x, s : x e A, s e G} generates sέ(A, G).
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Further, for any (π, U) in $(A, G) we have

= U(s) π(x) t/(s)*

= s(π, C7)x(π, C/)s*(π, U)

= sxs*(π, t/).

Thus s(x) = SXS*.

To see that the maps are indeed isomorphisms requires the consider-
ation of a faithful representation of (A, G). The fact that (A, G) admits a
faithful representation is well-known. Indeed if π0 is a faithful represen-
tation of A we may construct the corresponding induced representation
of (A, G) from the identity representation of the trivial subgroup {e} of G,
according to [8]. This is equivalent to the following explicit construction.

Definition 3.6. Let π0 be any non-zero representation of A. Then
the left π0-regular co variant representation (π, L) of (A, G) is defined as
follows: Let μ denote left invariant Haar measure on G. Then ^(π, L)
is L2(G, J^(π0)), the space of all μ-square integrable functions of G into

0). We define (π,L) on L2(G,^f (π0)) by

for all s, ί in G and ξ in L2(G, Jf(π0)), and

for all x in A, t in G and ξ in L2(G, Jf (π0)).
The unitary representation L in the above definition is a faithful

representation of G. In fact, L is unitary equivalent to αL0 where
α = dimJf^πo) and L0 is the left regular representation of G. Indeed the
choice of an orthonormal basis for Jf (π0) enables one to define an iso-
metry of L2(G, J^(π0)) with the direct sum of α copies of L2(G) and on
each of these subspaces, L acts like the left regular representation. Hence
if π0 is a faithful representation of A, then (π, L) is a faithful covariant
representation of (A, G). (By this we mean only that each of the two
component representations are faithful. Indeed if π0 is proper and A
admits an identity i, then clearly π(i) = L(e) and hence (π, L) maps these
two points into the identity operator.)

By Proposition 2.7, the existence of a faithful representation implies
there exist sufficiently many proper cyclic covariant representations of
(A, G) to distinguish the points of both A and G, i.e., the * -representations
which appear distinguish the points of A and the unitary representations
which appear distinguish the points of G. Thus two distinct points of A
determine distinct options on St(A, G), and hence the map x->x is an
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injective map of A into jtf(A, G). But any isomorphism of a C*-algebra
into another C*-algebra is necessarily an isometry (cf. Propositions 1.3.7
and 1.8.1 of [3]). Similarly the map s-^s is an injective mapping of G
intojφl, G).

Thus it remains to show that s->s is a σ-strong homeomorphism.
Recall the σ-strong topology of s/(A, G) is given by the family of semi-
norms S->||S(π, V)ψ\\ such that (π,U}e&(A,G) and φejf(π, U). If
sλ-+s is a convergent net in G, then for any (π, U) in ^(A, G) and ψ in
Jf (π, (7), we have

||(sλ - s) (π, 17) φ|| = || [[/(SA) - l/(s)] φ||

which converges to zero because U is assumed to be strongly continuous.
Thus sλ-*s σ-strongly in J/(/l, G).

Conversely, if sλ-^s in «s/(/4, G), then sλ(π, (7) converges strongly to
s(π, (7) for every (π, U) in M(A, G), i.e., U(sλ) converges strongly to U(s),
for every unitary representation U for which there exists a π for which
(π, (7) e ^2(y4, G). Let (π, L) denote the π0-left regular representation of
(A, G), where π0 is some proper ^representation of A. Since (π, L) is
the direct sum of proper cyclic representations of (A, G), we have that
L(sλ) converges strongly to L(s), Let L0 denote the left regular represen-
tation of G. Since L = aLQ, where α = dimπ0, it follows that L0(sλ) con-
verges strongly to L0(s). But the left regular representation is a weak
homeomorphism (cf. Lemma 2.2 of [6]). Since the strong and weak
operator topologies are identical on the unitary group on a Hubert
space, L0 is a strong homeomorphism. Thus sλ converges to s in G.
This completes the proof of Theorem 3.5.

Since both (A, G) and C*(A9 G) are canonically embedded mjtf(A, G),
we now examine the important correspondence of the representation
theory of these different objects (cf. Section III of [2]). By a normal
^-representation of a von Neumann algebra $4 we shall mean a cr-strongly
continuous ^-representation which maps the identity element of s$ into
the identity operator. Since both A\jG and C*(A,G) generate jtf(A, G)
as a Neumann algebra, a normal ^-representation of (A, G) is uniquely
determined by its values, either on (A, G) or C*(A9 G).

Theorem 3.7. Every proper covariant ^-representation of a covariant
system (A, G) has a unique extension to a normal ^-representation of the
enveloping algebra <%/(A, G) of (A, G). Further the restriction of any normal
^-representation of £/(A, G) to (A, G) is a proper covariant ^-representa-
tion of (A, G). Corresponding representations generate the same von
Neumann algebra. Hence the correspondence preserves most properties
of the representation theory, such as unitary equivalence, quasi-equίvalence,
irreducibility, type /, etc.
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Proof. Let (π, U) be a proper covariant ^-representation of (A, G).
The corresponding extension NπtU ofs/(A, G) may be defined for (π, U)
in 9t(A, G) by

for every option 5 in isφl, G). The verification that ]VπjC/ is a normal
^-representation of stf(A, G) is now straightforward. The extension for
proper covariant * -representations, which are not contained in 0t(A^ G)
is achieved by using Proposition 2.7. Again this extension is necessarily
unique since A u G generates sέ(A, G).

Now let N be a normal * -representation of si (A, G). Lemma 2.4
may now be applied to all the proper representations in &(A, G) to
conclude that the approximate identity in A converges σ-strongly to
the identity element of <stf(A, G). Thus the restriction of N to A yields a
proper ^-representation πN of A. Since the original topology of G is
equivalent to the σ-strong topology of G, when embedded in s/(A, G),
the restriction of N to G yields a strongly continuous unitary represen-
tation UN of G. Finally since N is a ^-representation we have, using
Theorem 3.5, that πN(s(x)) = N(s(x)) = N(sxs*) = N(s) N(x) N(s)*
= UN(s) πN(x) UN(s)*. Thus the restriction (πN, UN) of N to (A, G), yields
a proper covariant representation of (A, G).

Remark 3.8. This correspondence of the proper covariant represen-
tation theory of (A, G) and the normal * -representation theory ofjtf(A, G)
commutes with the correspondence of the proper covariant represen-
tation theory oϊ(A9 G) and the proper ^representation theory of C*(A, G)
established by Doplicher, Kastler, and Robinson in [2]. Indeed the
correspondence of the ^-representation theory of a C* -algebra with its
enveloping algebra is well-known (cf. Proposition 12.1.5 of [3]).

Theorem 3.9. The lattice of all quasί-equivalence classes of proper
covariant representations of a covariant system is lattice isomorphic to
the lattice of all projections in the center of <stf(A, G). In particular the
quasi-dual (A, G) of (A, G), consisting of all quasi- equivalence classes of
factor covariant representations of (A, G), admits a canonical one-to-one
correspondence with the minimal central projections of sέ(A, G).

Proof. The correspondence is generated as follows. Suppose £#(A, G).
is concretely and faithfully represented as a von Neumann algebra acting
on a Hubert space Jf (cf. the proof of Theorem 3.3, for example). Then
each central projection E ofjtf(A, G) gives rise to an induction

(cf. A- 15, page 335 of [3].) Which is a normal ^-representation oΐjtf(A, G).
Thus its restriction to (A, G) is a proper covariant representation. That
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this generates the asserted lattice isomorphism follows from standard
arguments outlined in [5] and Remark 2.9 of [6]. In general, the lattice
of quasi-equivalence classes of normal ^-representations of a von Neu-
mann algebra j/is lattice isomorphic to its lattice of central projections.

Remark 3.10. In the case where C*(A, G) is a separable C*-algebra,
the duality theory of M. Takesaki allows one to identify the elements
of C*(A, G), within jtf(A,G\ as those options which are continuous
with respect to an appropriate topology on St(A^ G). By Remark 3.4
our concrete covariant dual, <%(A, G), may be identified (except for one
exceptional point) with the concrete ^representation space Rep(C*(τ4, G),
3#o) considered in [7]. Takesaki considers the zero representation of
C*(A,G) to be an element of Rep(C*(A G), JT0) and this does not
correspond to any proper covariant representation of (A, G). The natural
topology for Rep(C*(τ4, G), ^f0) is defined in [7]. In a remark at the end
of his paper, Takesaki points out that he does not require this excep-
tional point in his concrete dual if the C* -algebra has a unit. Thus we
may transfer his topology to &t(A, G) directly, in the case where G is
discrete and A has a unit. In the general case, however, we must resort
to the subterfuge of adding an additional point (the zero covariant re-
presentation acting on the zero dimensional space {0}, if you like) to

, G) and extending the domain of definition of every option on
^ G) to this (slightly) larger space &0(A, G), by defining every option

to be the zero operator at this exceptional point. This does not change
the previous theory of^(^4, G) in any way. We may then proceed to trans-
fer Takesaki's topology to &Q(A, G) and hence identify C*(A, G), within
sί(A, G), as those options which are continuous in the following sense.
An option S on &0(A, G) is said to be *-strong continuous if, for each
vector ψ in J^Q (cf. Definition 3.1) this maps

and

are continuous on ^(A, G), where £(π, U) denotes the projection of J"f0

onto the representation space of (π, 17).
It would be most interesting to find appropriate axioms for the

options which would enable one to identify the covariant system within
, G). This could be called the duality question for covariant systems.

§ 4. Other Structures Associated with (A9 G)

In this section we examine the relationship to <tf(A, G), of the other
algebraic objects associated with the covariant system, namely C*(G),
the C*-group algebra of G (cf. § 13.9 of [3]), sf(G\ the enveloping von
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Neumann algebra of G (cf. [4]) and £/(A), the enveloping von Neumann
algebra of A (cf. § 12 of [3]).

We first note that there is a natural map of C*(G) into s$(A,G)
defined as follows. If ge C*(G), define the option g on 9t(A, G) by

g(π,V)=U'(g)

where Uf denotes the canonical (i.e., integrated) proper ^-representation
of C*(G) associated with U (cf. § 13.9.3 of [3]). We leave the verification
that g->g is a *-algebra homomorphism of C*(G) into stf(A, G). Un-
fortunately we do not know whether this is an embedding, i.e., whether
the map g-+g is injective.

Proposition 4.1. The canonical map g-+g of C*(G) into stf(A,G) is
injective if and only if there exists a covariant representation (π, U) of
(A, G) such that U' is a faithful ^-representation ofC*(G\ where U' denotes
the canonical proper ^-representation of C*(G) associated with U.

Proof. If such a (π, 17) exists, then clearly^ =g2 implies U'(gί)=U'(g2)
and hence g1 = g2, i.e., the canonical map of C*(G) into s#(A, G) is in-
jective.

On the other hand, if g -> g is faithful, then there exist enough proper
covariant representations of (A, G) to distinguish the elements in C*(G).
The direct sum of all these representations is then the required covariant
representation of (A, G).

Corollary 4.2. // G is a discrete amenable group, then C*(G) is canoni-
cally embedded, isometrically, in s#(A, G).

Proof. According to corollary 6 of [9], under these circumstances,
the representation L'0 of C*(G) corresponding to the left-regular represen-
tation LO of G, is faithful on C*(G).

Let π0 be any proper representation of A. Then the left π0-regular
covariant representation (π, L) of (A, G) is a proper covariant represen-
tation such that L is unitary equivalent to αL0, where α is the dimension
of ffl (π0) (cf. the proof of Theorem 3.5). Hence the ^-representation L
of C*(G) associated with L, is faithful on C*(G).

We conclude with an examination of the enveloping von Neumann
algebras jtf(A) and stf(G\ of A and G respectively. We define the covariant
enveloping algebra <stfc(A) of A, to be the strong closure of A, mjtf(A, G).
Similarly the covariant enveloping algebra X-(G) of G is defined to be
the von Neumann subalgebra ofjtf(A, G) generated by G.

There is a canonical normal *-homomorphism of jtf(A) onto £#C(A\
defined as follows. The embedding of A into stf(A, G) (Theorem 3.5) is
a * -representation of A and hence (Proposition 12.15 of [3]) admits
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a unique extension to a normal ^-representation of <stf(A\ Since A is
σ-strongly dense in jtf(A), this σ-strong continuous homomorphism maps

onto the σ-strong closure of A, i.e., dc(A).
Similarly there is a canonical normal * -homomorphism ofW(G) onto

). Indeed the embedding (Theorem 3.5) oίGmto<stf(A, G) is a strongly
continuous unitary representation of G and hence (§ 1 of [6]) has a
unique extension to a normal *-homomorphism of stf(G) into stf(A, G).
Since G generates sl(G) (§ 1 of [6]), the range of this homomorphism is
necessarily j/c(G).

By analogy with the definition of a locally compact automorphism
group of a C*-algebra (i.e., the notion of a covariant system), one may
define the notion of a locally compact automorphism group of a von
Neumann algebra. The idea is that in a C*~algebra the norm topology
is the relevant topology, while for a von Neumann algebra, the strong
operator topology is the relevant topology.

Definition 4.3. If G is a locally compact group of automorphisms of
a von Neumann algebra X we say G is a locally compact automorphism
group of eS/if, for each x e X the map s->s(x) is a strongly continuous
map of G into so.

Proposition 4.4. // (A, G) is a covariant system, then G is a locally
compact automorphism group of £#C(A).

Proof. Since jtfc(A) and G are both contained in £&(A, G) we define
the action of G on jtfc(A) by s(x) = sxs* for all s in G. Since G is a unitary
group in j^φl, G), this defines G as a group of automorphisms on X(G).
Since A is invariant under G, and A is strongly dense in s#c(A), each
automorphism maps jtfc(A) onto £#C(A). Since on the unitary operators
the weak and strong operator topology are equivalent, s-»s* is strongly

tinuous. Finally multiplication on bounded sets is strongly continuous
and hence s->sxs* = s(x) is strongly continuous.
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