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Abstract. The problem of the combined space-time and internal symmetry of
elementary particles is investigated from the view-point of the Lie algebras deforma-
tion theory. It is demonstrated that the deformations of the direct sum of the
Poincare and internal symmetry algebras conserve the structure of the direct sum,
if the internal symmetry is semi-simple or is described by the special type of algebras
with abelian ideal. So the internal and space-time characteristics of the system
remain independent.

I. Introduction

Difficulties of the group-theoretic description of elementary particles
are often connected with non-relativistic character of usually used in-
ternal symmetry groups. This forced the attempts of the joint description
of the space-time and internal properties. If the inhomogeneous Lorentz
group, which is supposed to be a subgroup of the generalized symmetry
group, is its direct factor, all the particles belonging to the internal sym-
metry multiplet must have the same mass. All the deviations from this
simplest scheme have not yet given positive results. The so called no-go
theorems are proved within quite general suppositions [1—5]. In this
connection it is interesting to consider a certain class of Lie algebras, in
which the structure of the direct sum and Poincare subalgebra appear only
after the contraction [6—9]. First of all they would not contain Poincare
subalgebra before the limiting transition and no-go theorems would be
unapplicable to them. On the other hand after the contraction they would
turn into the direct sum P © A so that the physical interpretation of
their operators would be possible. The existence of the limiting transition
indicates the closeness [6] of the initial and contracted algebras. Experi-
mental errors often make close algebras undistinguishable. So if one is
not satisfied with the initial algebra it is possible to substitute it by the
close one. Thus the problem of the relativization stimulates the search
for the algebras that are close to the direct sum P © A. Were they found,
such algebras would be useful for the investigation of the physical spaces
[13] and mass spectra of elementary particles [10—12].

Using the contraction procedure it is impossible to reconstruct all the
Lie algebras which form the neighbourhood of the given algebra. The
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effective method to find all such algebras, based on the theory of deforma-
tions of Lie algebras [14], was proposed by LEVY-NAHAS [15]. Here the
deformations of P © A -type algebras are investigated. The methods
used depend essentially on the properties of algebra A. Deformations of
P © 8 algebra, where the internal symmetry algebra 8 is semi-simple
are considered in § 2. In § 3 the special class of internal symmetry al-
gebras A = 8 © I with abelian ideal / is studied. These examples describe
almost all physically interesting cases. It is proved that all deformed
algebras conserve the structure of the direct sum. Space-time and internal
characteristics of the system remain thus entirely independent, so that
it is impossible to construct physically interesting generalized symmetry.

II. Semi-Simple Internal Symmetry

Let the internal symmetry of the system be described by the semi-
simple algebra 8. What are then the deformations of the direct sum
P © £ ?

We shall first suppose, that the dimension of the 3-cohomology group
is equal to zero.

dim#3(P © 8, P © 8) = 0 . (1)

Then the number of non-trivial un-equivalent deformations of the first
order coincides with the dimension of the 2-cohomology group H2 (P © 8,
P © 8). For calculations we use Serre and Hochschild's formula [16]

H«(G9M) = £

where M is a free (?-modul,
K is an ideal of (r-algebra such, that GjK is semi-simple,
F is the ring over which 0 is defined,
Hj(K, M)Q is the group of ^-invariant elements in Hj(K,M).

Let us write the decomposition P = T © L for the Poincare algebra.
For this case the 2-cohomology group may be simplified

H2(P © S,P® 8)= H*(T, P © S)p®s . (3)

Suppose Q denotes the map T-^~> P © 8. Then b i B*{T, P © 8), if
and only if

As it was shown in [15] the condition (4) is satisfied for all maps cp of
TNT into T. Thus B2{T, P © 8) = Kom2(E{T), T), where E{T) is an
exterior algebra of i£-modul T.
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Now, the 2-coboundaries being defined, we can use instead of the
P © /S-invariance condition for the elements rj £ H2(T, P © 8)

{a • rj) (ti9 y == [a, rj(ti9 y ] - rj{[a, *<], tk) - rj(ti9 [a, tk]) = 0

8 ( )

the corresponding relation for the cocycles cp £ Z2(T, P © 8)

(a • cp) (ti9 y e B*(T, P®8)= B.om2(E(T), T) . (6)

Before we find out what are the homomorphisms T A T -» P © 8
that form the group Z2(T, P © $), let us investigate the relation (6) for
all the elements / £ Hom2(i2(T), P © $). According to the domain of
values let / be represented in the form / = fT + fL -f /^. It is not difficult
to show that in addition to fT £ Hom2(E(T), T) = B2{T, P© 8) the
relation (6) is satisfied also for fL and fs such that

[i, fz(tt, h)] - fL([i, hi tk) - fz(th [i, y ) = o,

[«, fs(h, h)] = o, (7)

where I ^ L, s i S. It follows from the semi-simplicity of the algebra 8,
that Eq. (8) is true only for zero map fs.

Finally the dimension oiH2{T,P® 8)p®s and the first order defor-
mations of the Lie algebra P © 8 (the condition (6) being fulfilled) are
entirely defined by those linearly independent functions that satisfy the
Eq. (6) and belong to Z2(T, P© 8). Inasmuch as both the arguments
and the values of these functions are in P, the deformations connected
with them may only change the Poincare algebra and cannot deform the
internal symmetry or modify the structure of the direct sum. Such
deformations are of no physical interest.

In that case the investigation of H3(P® 8, P © 8) becomes un-
necessary. For if dim/P(P © 8, P © 8) 4= 0, then the number of non-
trivial deformations may only decrease compared with dim#2(P© 8,
PeS).

As for the deformations of the higher orders all of them are trivial.
Indeed, the conditions obtained by LEVY-NAHAS [15] in the case of the
Poincare algebra coincide with those presented by the Eq. (7) and the
requirement fL £Z2(T, P © 8). For the Poincare algebra there are only
two infinitesimal deformations, these are the simple algebras $0(1,4)
and 80(2, 3). Hence the direct sums 80(1, 4) © 8 and 80(2, 3) © 8 are
the only first order deformations of the P © 8 algebra. It follows from
their semi-simply city that the next order deformations are trivial.

Whatever semi-simple algebra one takes to describe the internal
symmetry, the deformation theory does not give the possibility to con-
struct algebra close to P © 8.
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III. The Special Case of Internal Symmetry

Let us try to obtain physically non-trivial deformations via com-
plication of the internal symmetry algebra. Suppose now A = 8 © I,
where 8 is simple and / is abelian ideal. Suppose also that

dim#3(P e i , P © i ) = 0 . (8)

We are interested in the 2-cohomology group H2(P © A, P© A)
which may be calculated using the Eq. (2)

H*{P ® A,P® A) = H2(T © / , P © A)P®A . (9)

First let us find the 2-coboundaries B2(T © / , P © A). As well as for
a semi-simple internal symmetry (§ 2) all the elements of Hom2(i?( T), T)
are coboundaries. Besides that the elements of Hom2(i7(/), I) may also
belong to B2(T © I, P © A). To avoid cumbersome calculations, we
shall consider that B2(T © I, P © A) contains all the homomorphisms
of Hom2(Z£(/), / ) . This leads to certain restrictions on the structure of A.

All necessary algebras A can be obtained by means of /JF-contrac-
tion of Lie algebras corresponding to the 80(m,n) groups. If LPQ is
their standard Lie basis, then the contraction should be such that a set
of elements LJ)Q with q fixed form an abelian ideal ( p = l , 2 , 3 , . . . , # — 1,
q+ 1, . . . , m + n— 1).

If we consider now only these algebras of internal symmetry, every
element of Hom2(^(I), / ) will be a coboundary.

The elements of Horn (I A T, I © T) form the third set of the cobound-
aries. By definition the map bT@I(ik, tn) belongs to B2(T © / , P © A) if
and only if

where Q is the homomorphism T © / -> P © A. Let us write the func-
tions b and Q in the following form

(11)

where i, t, I and s are the basis elements of subalgebras I, T, L and S
respectively. Let C be the structure constants of P © A, then it follows
from the Eq. (10) that

Only those homomorphisms of Horn (/A T, I © T) are coboundaries
which have in the decomposition (11) coefficients satisfying the Eq. (12).
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Now we may investigate P © A -in variance for the elements <f)(jv j2)
of Z*(T@ I, P® A)

[y, ?>0'i, h)] - <p{[y, hi h) ~ vtiv \5* vi) £ B*(T © J> P © A)
( • * • " )

r)£P®A;j£T® I.

For the same reasons as those mentioned in § 2 it is convenient to
study first the invariance of the whole group ~H.om2(E(T © I), P © A)
and then to search for 2-cocycles.

Functions /y(£1? t2) and fj(iv i%), the elements of Hom2(2£(T), T) and
Hom2(i£(/), /) respectively, are evidently invariant.

It follows from the Eq. (13) that the maps fT(t, i) and fj{t, i) are
T © /-invariant. But only two sets of these functions are //-invariant.
The first one consists of the functions belonging to B2(T © / , P © A),
i.e. satisfying Eq. (11) and (12). The second set contains those maps for
which $\n and /}%n are the only non-zero coefficients in the decomposition
(11) (j8jjiw are equal for n fixed and this is also true for all f¥fen with k
fixed). Among these two ^-invariant sets only the first is /^-invariant.
That is, functions /y©/(^^) are P © A -invariant only if they are
2-coboundaries.

For the homomorphisms /x(^, t2) only L- invariance is essential thus
we have

[*,. h{h, *»)] - h([lr, h~\ , Q ~ h(tk, [lr, «„]) = 0 . (14)

Similarly, fs(ik, in) are P © A -invariant if they satisfy the following
equations

Or, fsiH> in)] - fs([*r, H~\ , O ~ fstfk, [«r, *n]) = 0 . (15)

It is not necessary to verify the invariance of fL(t, i) and fs(t, i), for,
as we shall see later they are not the 2-cocycles.

Indeed, using the explicit form of the condition fz@s(^ i) € %2(T © / ,
P © A) we obtain finally the equations

*)] = 0 , (16)

If the parameters in (16) and (17) (i and t respectively) are fixed one
may consider functions jL and fs to be the homomorphisms T -» L and
I -> 8 and the Eqs. (16) and (17) have then the meaning of dfxJ= 0 and
dfg= 0. On the other hand it follows from the structure of P and A that
fLiZ1{T, P) and fs^Z1^, A). Hence the Eqs. (16) and (17) have no
other solutions than zero and /_&(£, i)9 fs(t, i) do not belong to Z2( T © / ,
P © A). Thus their invariance is of no importance.
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Among the invariant functions only fL(t, t) and fs(i, i) are not
cohomologous to zero. They are 2-cocycles if the following relations are
realized

Z [«», fi(tm, h)] = 0 , (18)
P(n,m,k)

Z [*»J5(*«.»»*)]=O, (19)
P(n,mtk)

where P(n, m, k) is the circular permutation of n, m and k.

Finally, all essential first order deformations are described by the
solutions of the Eq. (14), (15), (16) and (17). But all of them have such
arguments and values that the corresponding deformations cannot
change the structure of the direct sum in the initial algebra. Therefore
the minimal complication of the internal symmetry algebra studied in
this section do not help to discover physically applicable close algebras,
when the first order deformations are considered.

Just as in the previous case the condition dimH3(P 0 A, P 0 A) = 0
becomes unimportant.

The higher order deformations may be non-trivial only if in the first
order we do not obtain semi-simple algebra. The solutions of the Eq. (14)
and (16) perform the deformation of the Poincare algebra into simple
De-Sitter algebras [15]. In the general case the Eq. (15) has the unique
solution fs{ik, in) ~ 8kn, where 8kn is the generator of rotations in the
&w-plane. This function is the 2-cocycle, i.e. (17) is satisfied. Only
for algebras A of dimension 10 (the Poincare algebra is among them)
there is an exception. In this case (15) has two solutions but one of them
is not the 2-cocycle. Therefore the system of the Eq. (15) and (17) always
has the unique solution and the first order deformations of the algebra A
are 1-dimensional. On the other hand there must be a deformation of A
which is a procedure inverse to the IW-contraction that generates A.
That means that the deformations of the first order transform A into
the simple algebra that was contracted to obtain A,

If the deforming function contains both fL(t, t) and fs(i, i), the first
order deformation gives the semi-simple algebras 80(1, 4) 0 S0(m, n)
or 80(2, 3) © 80(m, n). If we take fs(i,i) alone, the result will be
P 0 80 (m, n). As it follows from § 2 the deformations of this algebra
are 80(1, 4) 0 80(m, n) or 80(2, 3) 0 80(m, n). Using fL(t, t) as the
deforming function one obtains algebras #0(1, 4) 0 A or 80(2, 3) 0 A.
The results similar to those of § 1 can be very easily obtained for these
algebras and that makes evident that the only possible deformations are
80(1, 4) 0 80(m, n) or 80(2, 3) 0 80(m, n). In all cases the algebras
obtained are semi-simple, and the higher order deformations are trivial.
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