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Abstract. The :Φ4: interaction for boson fields is considered in three dimensional
space time. A space cutoff is included in the interaction term. The main result is
that the renormalized Hamiltonian HτGΐί is a densely defined symmetric operator.
In addition to the infinite vacuum energy and infinite mass renormalizations, this
theory has an infinite wave function renormalization. Consequently the Hubert
space (of physical particles) in which Hΐen acts is disjoint from the bare particle
Γock Hubert space in which the unrenormalized Hamiltonian is defined.
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§ 1. Introduction

1.1. Superrenormalizable problems

In Quantum Field Theory, the renormalized Hamiltonian has the
form

Bnn = H0 + gV + ΣΛiOi (1.1.1)

where H0 is a self adjoint operator and V and the GI are densely defined
bilinear forms. The coefficients α$ are constants which depend on g and
are generally infinite. We introduce a space cutoff by requiring V to
have the form

V = f V(x)h(x)dx,

with h (the cutoff) a smooth function of compact support.
If the summation over i in (1.1.1) is finite, the problem is renor-

malizable; if in addition each oct is a polynomial in g (with infinite
coefficients) plus a finite function of g then the problem is said to be
Superrenormalizable. An important property of HTQτι to be established is
that it is a positive self adjoint operator. From the selfadjointness of
#ren one can define e~iiHw*, and then

is a solution of the Schrόdinger equation

and gives the dynamics for finite times. As a first step, one could show
that HIQn is a densely defined symmetric operator or a closable bilinear
form; this step is the objective of this paper for the interaction we are
studying. For typical interactions in two dimensions, see [2, 6, 8].
Another step is to show that Hιen, as a bilinear form, is positive. Since
one can approximate HIGn by well defined operators (renormalized
Hamiltonians with a momentum cutoff for which the α/s are all finite),
it is sufficient to show that each approximating operator is positive or
semibounded with a lower bound independent of the approximation.
Thus the second step is logically independent of the first. For typical
two dimensional problems this second step has been carried out in [3, 4,
8] using two distinct methods. The Friedrichs extension theorem then
provides a natural self adjoint positive extension. Finally it remains to
be seen whether the Friedrichs extension is the correct extension. (For
example, it might be the only extension.)

1.2 The Domain for Hιeϊl

Considering the very singular nature of the perturbation in (1.1.1)
when one or more of the coefficients α$ is infinite, one expects that the
domains of H0 and HIQn will have only the vector zero in common and
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furthermore that any vector in the domain of #ren must have a compli-
cated structure closely related to V in order that the infinities will cancel.
To construct these vectors we first find an operator T, our dressing
transformation, for which

HI,nT=TH0 + error, (1.2.1)

where the error is a densely defined unbounded operator. According to
the formal theory, the wave operator

W- = lim e

iiHe-'liH°
t->— oo

satisfies
#renJΓ_=ΪF_#0 (1.2.2)

and formal series expansions in powers of g are known for W-, see [1]
for example. These expansions appear to diverge but nonetheless they
are extremely useful. It seems that if one includes only the important
terms or the important part of each term then the series will converge
to an invertible operator T which solves (1.2.1). We then define

as the domain of Hτenί where 2 is a suitable dense subspace contained
in &(HQ) and we use (1.2.1) to define HΐQn.

The infinities (in a model with a space cutoff) are caused entirely by
the interaction of particles of large momentum. Thus the important part
of TF_ is the part corresponding to particles of large momentum, and
we can omit from TΓ_ parts of terms corresponding to particles with
momentum in some bounded region B0. A simple but approximate des-
cription of T can be given by introducing regions B1CB2C ,
lim BJ = R2 in momentum space and omitting from W- parts of terms

corresponding to the presence of more than j particles with momenta in
BJ. Our operator T is close to being the correct wave operator for a world
in which

a) all interactions increase or preserve the number of particles
b) there can exist at most j particles with momenta in B}.

We can describe the definition of T in a more mathematical way by
observing that terms in PF_ corresponding to / particles with moments
in B have a size

and limε,,- = 0. Summing over I gives a divergent series and the lih term

in the series tends to infinity. If we break off the series at I = [εj~l] then
the last terms included in the series and the first terms excluded from
the series are both very small. Since the j + 1st term of Wl} is defined
by a recursion formula involving only the j — 1 and jih terms of W~l,
the error caused by this truncation is (MfεZ1]!)"1/2 and our truncated
i*
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series T is an approximate solution of the same recursion formula. The
recursion formula is essentially (1.2.2) and the approximate solution gives
us (1.2.1). G. Rota has told me that truncations of this nature are
standard in the theory of divergent series.

Our method for finding a dressing transformation T which solves
(1.2.1) is different from the method used in [2]. The present method
seems likely to work for a wider class of interactions.

We remark that the truncations in T complicate the formal or
algebraic aspects of the theory. The compensating advantage, of course,
is that they make possible the estimates which lead to convergence proofs.

1.3 Infinite Renormalizations

The infinite counter terms in HIQn correspond to the infinite vacuum
energy and the infinite self energy of the particles. The vacuum energy
has terms which are quadratic and cubic in g and the infinite selfenergy
is quadratic in g, or in other words the only primitive divergent
diagrams are of second or third order. For the Yukawa coupling in three
dimensions there are fourth and sixth order divergent diagrams also.
In addition to the renormalizations associated with the counter terms,
our problem has an infinite wave function renormalization. If we examine
T or Wl} or just the first order terms of T or PFZ1 we find operators which
map out of Hubert space. These operators are essentially tensor product
operators. They map a function φ into a function proportional to q ® 99,
and q is not in Z/2. For such a q, q ® φ can never be in L2 and can never
belong to our Hubert space. Moreover q fails to be in L2 due to an
insufficiently rapid decrease for large momenta. Thus according to the
philosophy § 1.2, it is just the part of q which must be retained in T which
causes the trouble, and so all vectors in the range of T have infinite norm
(do not lie in the Fock Hubert space). However, we will see that \\Tφ\\
can be written as an infinite quantity which does not depend on φ times
a finite quantity which does depend on φ. In other words the ratios

\\τφ\\l\\τψo\\
are well defined and finite even though \\Tφ\\ is not. We use this fact
to introduce a new inner product range of T :

The resulting Hubert space, ^IGn, is the space on which #ren acts, and
we regard T as a transformation from the original Fock Hubert space
^ to J^ren. These definitions agree with standard methods in peturbation
theory. ̂  is interpreted as the space of bare particles and J^n is the
space of physical particles.
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1.4 The Unrenormalized Hamίltonian

We use nonrelativistic notation. Let ̂ n be the symmetric tensor
product

with n factors ( J^Q is the complex numbers) and let

^ (1.4.1)

be the Fock Hubert space. We introduce the annihilation and creation
operators a(k) and a*(k), normalized so that (formally)

[a(k),a*(l)] = δ(k-l) . (1.4.2)

The interaction term V has the form

V = Σ Vί9 (1.4.3)
? = o

where Vj is the part of V which creates j particles,

. . . α* ft) α(Am) . . . α(fc4) d& (1.4.4)

( Σ ki ~ Σ ki) Π ft-1'2 (1-4.5)
\i = ι ί=^ + l / i = l

We call Vj the numerical kernel of V$ and we call the integrand of
(1.4.4) the operator kernel of V3>. In (1.4.6), μ0 is the rest mass of the
meson; we assume μ0 > 0. fl is the Fourier transform of the space cutoff
function lι\ h is assumed to be smooth with compact support and the
coupling constant has been absorbed into h. V and each Vs are densely
defined bilinear forms, since the numerical kernel vό is a distribution.
V0 + V1 is also a densely defined operator this is related to the fact that
T consists primarily of creation operators and to the more general fact
that annihilators are often more tractable than creators.

To deal rigorously with the subtraction of one infinite quantity
from another, we write the infinite quantities as limits of finite quantities,
take the difference of the finite quantities and then take the limit of this
difference. To find the finite quantities (whose limits are infinite), we
introduce an approximate Hamiltonian Hΐenσ with a momentum cutoff
depending on a parameter σ. The coeficients α^ in Hτenσ are finite, depend
on a and generally tend to infinity as σ -> oo we set

where
V = y Vv a Z-i γ 30
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and Vjβ has the numerical kernel

if |̂ | ^ σ, 1 ̂  i

otherwise (L4'8)

Ciσ and α iσ will be defined in § 4.1. The free Hamiltonian H0 is

HQ = fot*(k)μ(k)a(k)dk.

For an operator or bilinear form W, we use the notation W^ to
denote either W or W*.

1.5 Products and Their Graphs

To an operator of the form

W = fw(kl9 . . ., i,, iί, . . ., C) /7α* (*) /7«(*f) <Z& dk' (1.5.1)

we associate a graph (or diagram) with I lines (called legs) pointing to
the left, m legs pointing to the right, and all legs issuing from a common
vertex, see [1]. The graph specifies the number of creators and annihi-
lators in W and W is determined by its graph together with its numerical
kernel w. For example the graphs of F3 and F4 are given in Fig. 1.

The product W2 Wl of two such operators may not have the same form
because the creation and annihilation operators may occur in the wrong
order, but by use of the commutation relations (1.4.2), W^W^ can be
written as a sum of terms of the form (1.5.1). The term with no δ function
is called the Wick product and is denoted :W2 W^:. Its numerical kernel
is w2 <S> wl9 or in other words the product of w2 and w1 regarded as func-
tions of distinct variables. The term with jδ functions has a numerical
kernel with j contractions and is denoted W2—o— W1 its graph is obtained

by connecting j annihilating (right) legs of the graph of W2 each with
a distinct creating (left) leg of the graph of Wv We write the product
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in graphs in Fig. 2. We will also encounter products

V,

Fig. 2

T Γ = T Γ n ϊ f n _ 1 . . . Ϊ Γ 1 (1.5.2)

with n > 2 factors. If each TF5 has the form (1.5.1) then the product can
be expressed as a sum of terms of this form, again by use of the commuta-
tion relations (1.4.2). Each use of the commutation relations may intro-
duce a δ function and if there are jδ functions in a term then we say that
the term has j contractions. If the δ function arises in the commutation
of operators ai* and of associated with the factors Wt and Wl then we
say that the i and I factors (or vertices) have been contracted. Group
into a single term Γ all contributions to the product which have a given
number c(j, I) of contractions between each pair of factors Ws and W^
Y has a graph with n ordered vertices. The jth vertex together with the
legs leaving it is identical with the diagram of W$ and if j < I then o(j, I)
of the creating legs leaving the jih vertex are joined with distinct annihi-
lating legs leaving the Zth vertex. In other words the legs are connected
according to the contractions c(j, I) which define our term Y. Y also has
a (numerical) integrand y obtained from wn® - ®wl by equating con-
tracted variables and then summing over all possible contractions which
lead to the same graph. If the w3 are symmetric in their annihilating and
in their creating variables then each term in the sum defining y is identical
and we may multiply any term by the number of ways the contractions
may be made. If we multiply y by appropriate factors afi(k^, . . ., we
obtain the operator integrand. Y is uniquely determined by its graph
and its integrand :

Γ = / y(k) ά&fa) . . . α#=(*z) dk . (1.5.3)

The graph and the integrand contain more information than Y itself,
since they express how Y is obtained as a term in the product (1.5.2).
Y may be represented by several different graphs, for example it always
has a graph with a single vertex. This single vertex graph of Y is ob-
tained from the n vertex graph defined above by identifying all vertices
and contracted (— internal) legs into a single point. We get the kernel
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of the single vertex into a single point. We get the kernel of the single
vertex graph from y by integrating y over all contracted (= internal)
variables.

A notable advantage of y and the n vertex graph over the single vertex
graph for representing Y is that y may be finite (i.e. a finite valued
measurable function) when Y is not. In fact Y is finite (i.e. a densely
defined bilinear form) usually in just those cases when y is integrable as
a function of its contracted variables. If Z is a second infinite bilinear
form with the same graph and a finite integrand 2, then we give a well
defined meaning to the difference Y — Z by subtracting the finite inte-
grands : y — z is the integrand of Y — Z. It is not necessary that Z be
a term contributing to a product of n operators but only that z be a finite
valued function of the same variables as y.

A subgraph of a graph is a subset of the vertices of the graph together
with all legs coming from these vertices. Two subgraphs are called dis-
joint if they have no common vertices, although in general they may
have legs in common. Legs which join two vertices are called internal
and the others, which meet a vertex at one end only, are called external.
A leg may be internal in the full graph but external with respect to
a subgraph. If the graph has an integrand y = JJ w3 which is a product

ί
of the kernels associated with each of its vertices, then the subgraph has
an integrand y' — /// w^ where we multiply only over the vertices in the
subgraph. If G is a graph and H a subgraph then we define the quotient
graph G\H to be the graph obtained by identifying all vertices of H and
all legs of H which are internal with respect to H . In general the vertices
of G\H are not ordered. Let /(#) be the set of variables of y corresponding
to legs of G which are in ternal with respect to H. Then / y, the integral

of y over these variables, is the integrand associated with G/H and the
pair G\R, f y defines the same operator as the pair G, y. The quotient

1(0}
GjG is the single vertex graph of Y constructed above.

Let Ξ be a measurable subset of the variables of Y. We call

F = / y(k) α#(^) . . . a#(kl) dk (1,5.4)
Ξ

a truncation of Y. If we truncate each of the terms Y contributing to W,
then the sum of the truncations is said to be a truncation of W or a trun-
cated product. Thus a truncated product is specified by giving a meas-
urable set for each graph which occurs in the product. Y itself is a trun-
cated product, with all the £"s except one equal to the empty set 0.
Vjo is a truncation of Vj. The Wick product :Wn . . . W1: is a truncated
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product as is the attached product

We also define the connected product, denoted

to consist of all terms in the ordinary product W1 : W2 . Wn : in which
each Wj(2 ^ j) has at least one leg contracted with Wί3 see [1]. Let

n = 0

If W contains only creators or only annihilators then ew = :ew:. In [1],
Friedrichs proved that

Wl :ew: = :(Wl_/L :ew:) (:ew:): (1.5.5)

= Σ '(W1_/:Wn:)(:eW:):lnl
n = 0

for n = 0 we define
W1_/_ :Wn: = Wlt

The proof of (1.5.5) is by manipulation of power series and the hypothesis
is that series in (1.5.5) converge absolutely. We need (1.5.5) with :ew:
on the left replaced by a truncated exponential. We write W as a sum
of truncations of W

and then form a truncated exponential : el? : in which W® occurs to at
most the power n(j). Then

WI :e$:

is also the truncation of the right side of (1.5.5) in which W® occurs to
at most the power n(j).

For an operator W as in (1.5.1) we define a new operator ΓW with
the same graph but with the new numerical kernel

/ l \
= Z>(*<)

\ί = ι /
γw --

One can check that
H0ΓW - :(ΓW)H0:^ W

and
H0:e

rw:= :W(:eΓW:):+ :(:erw:)H0: (1.5.6)

on a suitable domain. We need a trincated version of (1.5.6). If we
replace :erw: by :e^w: on the left then we must also truncate the right
side so that W® occurs to a power at most n(j).
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It is important to notice that γw decreases more rapidly at infinity
than w and consequently ΓW is better behaved than W is. For example
ΓV2 and ΓV3 are densely defined operators while V2 and F3 are only
bilinear forms. Similar but different Γ operations were introduced first
by FRJEDRICHS [1] and later by the author in [2].

§ 2. Products of the ΓF/s

2.1 Introduction

The kernels v$ and γVj of the bilinear forms Vj and ΓVj decrease at
infinity, however the decrease is not sufficiently rapid to place Vj or γv3

in L2. As a result, arbitrary products

. . . (2.1.1)

need not be defined. (2.1.1) is a sum of Wick ordered terms, each term
corresponding to a unique graph, and some of the terms may be infinite.
In general the graph is not connected, and is a union of its connected
components. The purpose of this section is to show that as the number
of vertices in each connected component of the graph increases, the decrease
of the corresponding kernel at infinity becomes more rapid, and when each
component has three or more vertices then the kernel of that term is in
1/2 . This improvement of the kernels as the order of the graph increases
seems to be characteristic of superrenormalizable theories and is basic to
the methods of this paper. We also estimate kernels arising from pro-
ducts (2.1.1) where one or two of the factors are F/s instead of jΓF/s.
Qualitatively we find the same behavior, namely that some terms in the
product are infinite and that the remaining (finite) terms have kernels
which decrease more rapidly as the number of factors in each connected
component of the product increases. Since the Γ gives the kernel vό of
Vj an extra power of /α~1, the product (2.1.1) with one or two Vj factors
has more infinite terms and its finite terms require more complicated
estimates than a similar product with no Vj factors.

We will also need to introduce kernels (50ren, o[ ren, <5"ren and <52ren which
are functions of 2 variables and are bounded by

δtfa, kz) < Cβ>Nμ(k1)β-^μ(k2)-^μ(k1 ± *,)-* (2.1.2)

with Gβt jy a constant, β > 0, N = 1, 2, . . . Let Δ% be a bilinear form with
kernel δ% and let ΓΔ% be a bilinear form with kernel yd* = μ(kι)~l δ*.
We now permit (2.1.1) to have an arbitrary number of (ΓV^ and
(ΓΔ*)# factors (2 ̂  i ^ 4) and either Vf and Vs (0 ̂  j ^ 4) or A * and
/I* or neither as factors. We require that the factors occur in the following
order. To the right are all ΓV3 and ΓΔ* factors, next comes ^J^l* or
Vf Vό and finally to the left are the (ΓVj)* and (ΓΔ*)* factors.
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Let Y be a term in a product (2.1.1) with integrand y. We label the
internal variables of y as regular or divergent and among the divergent
variables we have logarithmically, linearly and quadratically divergent
variables. In a connected component of the graph not containing a ¥γ or
Δ& vertex the variables are regular if

rl) the component is not Λ. (See Fig. 3.)

ΓF4

Fig. 3

= (ΓF4)*—o—ΓK4
4

The variables are logarithmically divergent if

In I) the component is Λ.

In a connected component containing one F# vertex the variables are
regular if both

r2) there are at most 2 legs joining V$ with any other vertex;

r 3) the F# component is not in Fig. 4b.

<?a/=

Fig. 4 a

F2

(ΓF2)* F4

Fig. 4b

The variables joining F# to a (ΓV$P vertex are logarithmically diver-
gent if

In2) there are 3 legs joining Vs with a (ΓV$^ vertex.
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They are linearly divergent if
II) there are 4 legs joining F# with a (ΓV^ vertex. (See Fig. 4a.)

Each variable of the F# component is logarithmically divergent if
In3) the F# component of the graph occurs in Fig. 4b.

If a component contains one Δ& vertex, then all variables are regular.
If it contains 2 Δζ vertices, all variables are regular unless: In4) there
are 2 legs connecting these 2 A^ vertices, in which case these variables
are logarithmically divergent. If a connected component of the graph of
Y contains F* and Vό vertices then its variables are regular if r2) holds
and if also

r4) there is at most one leg joining the V* with the F3 vertex;
r&) the F*, F5 component has external legs, or (ΓΔ%)& vertices or
n φ 4 vertices.

If there are 2, 3 or 4 legs joining F* and F^ (fo&5), Z2), #1) then these
variables are logarithmically, linearly or quadratically divergent. If r2)
fails then we are in the case In2) and these 3 variables are logarithmically
divergent. All variables of the component not mentioned in In2) or In5)
are logarithmically divergent if

Inβ) both 12) and r5) fail.
The divergent graphs for a given model are related to the infinite

renormalizations required. The divergent graphs with no F# or Zl jf
vertices give infinite wave function renormalizations. If the graph has
no external legs then the renormalization is division by an infinite
constant:

112 _ \
Hren — 1

The divergent graphs with one F# vertex are related to the infinite
counter terms in the renormalized Hamiltonian. Again the graphs
without external legs give infinite constant counter terms (the vacuum
energy) and the graphs with external legs give infinite operators. In the
model we are considering there are 4 such graphs (In2)), they all have 2
external legs and they give the infinite mass renormalization counter
term. The divergent graphs with two F# or two A# vertices do not occur
in the renormalization of the S matrix and are caused by the fact that
domain of the renormalized Hamiltonian does not contain the simplest
Fock space vectors one customarily works with; in fact it seems likely
that the free and renormalized Hamiltonians have only the vector zero
in their common domain. These domain divergences are cancelled when
one works on the correct domain, and it is the role of the dressing trans-
formation T to define this correct domain.

Formal arguments from perturbation theory predict the following
picture. If there are no divergent graphs then H0 and F have a dense
common domain. As the perturbation becomes more singular, the domain
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graphs will be the first to become infinite. If the wave function and
counter term graphs are finite then H0 and H0 + V are operators but do
not have a common dense domain, while H*12 and (H0 -f F)1/2 do have
a common dense domain. If both domain and counter term graphs are
infinite then H0 + V is not an operator but Hlejί is, and H^2 and Hτen

 1/2

do not have a common dense domain. Finally if there are infinite graphs
of all three types then HQ and Hΐeΐl are operators on different Hubert
spaces.

There are a number of divergent graphs and subgraphs which are
excluded by the restrictions on the order of the terms in (2.1.1). For
example jΓF2 -o- (JΓF2)* is logarithmically infinite but is excluded from

(2.1.1). Let n be the number of factors in (2.1.1) or in some subgraph
under consideration.

Lemma 2.1.1. // n = 3, if the factors are Fjf, (ΓVjz}# and (ΓV^
in some order and if there are no external legs then the graph of Y occurs in
Fig. 4b.

Proof. Suppose the factors occur in the order above. Then the second
and third factors must be ΓVjz and ΓV$Λ because of the order and we
can take the first to be F^ since F0 = F*, etc. We must have fa = 0 and
j3 = 4 to prevent external legs and then?2 = 2 follows for the same reason.
Thus we have one of the graphs of Fig. 4b and the other orderings of
the factors lead to other graphs in Fig. 4b.

Lemma 2.1.2. // n = 3 with factors Ff, F, and (ΓV^ then there are
at least 4 external legs.

Lemma 2.1.3. If n = 3 with factors F*, Ύj ana (ΓΔ*)# then there are
at least 2 external legs.

Lemma 2.1.4. I f n = 4: with factors Vf, F, , (ΓA*)# and (ΓV^f then
there are at least 2 external legs.

Proof. Vf—o— Vj has as many creating legs, 4 — r, as it has annihi-

lating legs. Thus if there is a third vertex placed one side (Lemmas 2.1.2,3)
or two vertices on either side of F*-o- V$ with an unequal number of

legs (Lemma 2.1.4), we cannot have all legs contracted. In case the single
vertex has 4 legs, it can contract at most 4 — r times with F*-o-F^

leaving at least
4 - r + 4 - ( 4 - r ) = 4

external legs.
We note that the number of external legs is always even. Next we

analyze condition In6). The factors must be (ΓV±)* F*F5 _ΓF4 in that
order. If there are r contractions between Vf and F3 , we have V* -o- Vj

as a subgraph, r = 4 is excluded by connectedness and r = 3 is excluded
by the hypothesis that 12) fail, but 0 ̂  r ̂  2 is possible. We have
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r 5^ j ^ 4, but the pairs r = 0,? = 0 or 4 are excluded by connectedness.
All remaining pairs of r and j are possible. In3), In5) and Z%6) are the
only cases in which variables of F2 may be divergent.

2.2 Estimates on Products

Consider a term T in (2.1.1) with graph G and integrand y. Let μq

and μz be the largest of the energies μ(k) of the quadratically or linearly
divergent variables of a given subgraph of type #1), II) or 12). If there
are no such variables, set μq = 1, etc. μϊn is defined as the smallest of
the energies μ (k) of the divergent variables of a given subgraph of type
Inl), . . ., orZ%6). Let//and//denote products taken over the external

e r

or regular variables only, while // is a product over the divergent sub-
d

graphs [of any possible type In I), . . .,#!)]. Let / = 1(0), the set of
internal variables of 0, and let

Theorem 2.2.1. There is an εQ > 0

ίμθ\y\

constant K such that

(2.2.1)

if ε ζ (0, ε0) and ε' > 0. K depends on εf but not on ε.
Proof, n is the order of the graph. For small n we need only prove

that the L2 norm in (2.2.1) is finite; for n = 1 this is clear.
For large n we decompose the graph into a union G = UjHj of disjoint

subgraphs of bounded size. We prove that the norm / μθj \y

associated with a subgraph is finite if its size % is not too small, for
example if % ϊ> 5. Since there are only a finite number of possible graphs
or subgraphs of bounded size, the set of subgraph norms is finite and
hence bounded. We now show that the norm (2.2.1) of the full graph can
be estimated by the product of the norms of its subgraphs. Since there
are at most n subgraphs, we get Kn as the bound on the norm of the full
graph, as required in (2.2.1).

Let y = y^y^. . . where y^ is the integrand of H3 and let

Then

fμθ\y\

j

I Π I
I-UjKHj) j I(Hj)

f Π I
j KB,)

(2.2.2)
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where / is the integral over the variables joining distinct sub-

graphs and the last L2 norm is taken over the external variables only and
is a function of the variables in / — ϋόI(Hό). Substitute

Π f S

in (2.2.2), where the L2 norms on the right refer to the variables of Hj

which are external in G. By the Schwartz inequality in the variables
I - Ulφ) we have

(2.2.3)

where the L2 norms on the right now refer to the variables of H$ which
are external in Hj. As a first application of (2.2.3) we choose the H$ to
be the connected components of G. Then the theorem is true for G if it
is true for each Hj and so without loss of generality we assume that G
is connected.

We give a simplified description of how the subgraphs Hό will be
chosen. We require that

/ μ°< Mel*. (2.2.4)
I (Hj)

Choose a connected subgraph H of minimum size m for which (2.2.4)
holds. We will see that m ^ 5 and so G ~ H has at most 12 components.
Let HI be the subgraph formed by H and all components of G ~ H which
do not satisfy (2.2.4). We will see that these components have at most
3 vertices each and so Hλ has at most 41 vertices. Now proceed by
induction.

Let k be a regular variable in / — UjI3 connecting the jih and lih sub-
graphs. There is a factor μ(k)ε to be placed in μθj or in μθl. Because of
the assumed order of the factors in Y, μ ( k ) will occur in a γ factor

3 \-ι
μi I a"β °ne °r both of the vertices that its leg joins. There is one

l /
exception to this statement, which is when k is the contracted variable
in the product F*-o- Vj. If the vertex in the jih subgraph has μ(k) in

its γ factor then we place μ(k)2ε in the product μθ*. Otherwise we place
μ(k)~ε as a factor in μdι and we will deal with the exceptional case when
it arises.

Let 77 denote a product over regular variables which are internal
r

in the subgraph and let JJ be a product over regular variables which
e±

are external to the subgraph but internal in the full graph and which (+)
occur or (—) do not occur in a γ factor of a vertex of the subgraph. Let
//"be the product over the variables which are external in the full graph.
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Then

'μΓl-ε'μϊ2-ε. (2.2.5)
e r e+ e— d

We call a subgraph (or graph) decomposable if it can be represented
as a union of disjoint connected proper subsubgraphs such that (2.2.4)
holds for each subsubgraph; in making this new decomposition we do
not require that the μθ* factors of the subsubgraphs be given by (2.2.5),
but only that their product give the correct factor μθ of the full subgraph,
as defined above. If a subgraph is decomposable then (2.2.4) holds for
the subgraph.

Let H be a subgraph of G, and define energy factors μθl for H and
μθ* for the complement G ~ H so that μθ = μθlμ°z. Let y± and y2 be the
integrands of H and G ~ H. Then

/ μ°*\yι\ (2.2.6)
I(H)

has the role of kernel times energy factors for the vertex H of G/H. In
other words

/ μθ\y\ = f μ° \to\ f μθl\Vι . (2.2.7)
I(ff) I(GIH)

Thus if (2.2.4) holds for a quotient of a graph, it holds for the graph also.
We abbreviate

ΛJj ~h * * * ~h iCj "'3+1 ' "'I

by Σ ± &$ and μ (kt) by μ{. The starting point for our detailed estimates is

± **)-y (2.2.8)

where CN is a constant and JV = 1, 2, . . . The μ(Σ ± ^)-Jvr comes from
a bound on ίi (Σ ± ^ί) ^ is rapidly decreasing because h is assumed to
be smooth. Also

± **)'* (2-2.9)
\i = 1

As a direct consequence we have

Lemma 2.2.1. yvj (llμ'A μ^ε £L2 # ° ̂  ε* α^ 27 e< < ε < 1/2,

*̂ = 3, 4 or 7" = 2, m = 3, 4. I

ι ± ̂ J"1

±

± l ' ' J
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Similarly

μϊlμ(Σ ± A*)"1 ^ 2μ(θ)-χ&2 ± *8 ± *4)-1 (2.2.11)
Lemma 2.2.2. μ^μξγδ* ζL2 if ^ + ε2 < 1

μ^μξδxζLz if ε 1 + ε 2 < 0 .

/% wΛαί follows, B = fba^(k1) . . . a^(k^ dk will be the operator
defined by a subgraph H and its integrand b. We use (2.2.5) to define the
energy factor, which we denote μθ.

Lemma 2.2.3. Suppose B = (ΓVh)
#~o- ΓVh and 1 ̂  r ̂  4. There

is a positive a, independent of ε, such that

fμe\b\^L, (2.2.12)

and for r = 4 we may omit either or both Γ's.
Proof. If r = 4 the variables are divergent but the integral is finite

by Lemma 2.2.1 because μθ = μ~ε' for some m. Let r = 3. Since the ̂  in
ΓVh is at least 2, we must have # = *, or B = (ΓVjJ* -o- ΓVίt.3

Thus / μβ\b\ is bounded by
KB)

A* ( 1" ± *<) d*i ^^2 ^^3 (2-2.13)
i = 1 \i = 1 / \i = 1

because

/ 3 \-l / 4

^ const. /Λ 27 ± *< ^ 27 ±
\ΐ = 1 / \i = 1

^ const. ̂ 1

as in (2.2.11) and similarly we can transfer powers of the energy from
&5 to &4. We use GN to denote any constant depending on N and h but
independent of ε.

We remark that if we leave out one or both /"s and r = 3 then
B=V}l-o-ΓVi, (ΓF^-o-F,. or F^-o-F,- and / μ«\b\ is

ό ό ό J(jff)

bounded by

*β)-ff (2-2.14)

This is essentially the same bound that we have for δ* and when
B=:Vjι-o- Vjz: (2.2.14) is in L2. The internal variables are linearly

3

divergent in this case and the factor μΓ1"*' in μθ compensates for the
missing Γ.
2 Commun. math. Phys., Vol. 10
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Let r = 2 and let Ίc^ and Jc2 be the contracted variables. The γ factor
in γvji can be replaced by

(μ1 + μ*)-1 (h = 2)
s3ε (h = 3)

As in (2.2.11) we transfer (μ1 -f- μ2)~1 + 9ε to the remaining variables &3

and &4 of F? a or the remaining variables &5 and &6 of F .̂ If μ! and μ2

occur in the γ factor of y^ we similarly transfer (fa + μ2)~1+6ε to the
external variables. Thus / μθ\b\ is bounded by

ON Π μr~ll2μ(kB ± ̂ )~1+9e /^(*6 ± ^)~

UH"
Observe that if we leave out one Γ and r = 2 then the remaining 71

must include contracted variables, because of the restrictions on the
order of the operators in B, and / μθ \b\ is bounded by

Σ ± *<) , (2.2.16)
3 \i = 3 /

which is close to the bound on ΓV2. If we leave out both jΓ's then the
contracted variables are logarithmically divergent and / μθ \b\ is

I(H)
bounded by

CvΠμΓ -ll*μ(Σ±ώ > V W}
i = 3 \i = 3 /

which is better than the bound that we have for V$.
The case r = 1 is similar.
Suppose F# and Λζ are not factors of (2.1.1) and let n ̂  2. We

decompose the graph of B into subgraphs of 7 types. The first three types
consist of a central (ΓΔ*}# vertex contracted with 0 ̂  r ̂  2(ΓVj)#

vertices and the last four types of subgraphs consist of a central (Γ Fz)^
vertex contracted with 1 ̂  s ^ 4 ( Γ Vj)& vertices the (Γ V$£ vertices
may also be contracted with one another. We choose the subgraphs

?
Hv H2, . . . by induction so that the graph Gj = O ~ . U Hi has no com-

ponents consisting of a single (ΓVj)& vertex. If H19 . . ., Hj have been
chosen, we let Hί+1 be a (ΓΔ*j^ vertex in Gj together with all
vertices in Gj which, relative to βf, are contracted only to that
For such a choice of Hj+1, there are r ^ 2 such (ΓVj)& vertices, and for
r = 0 (2.2.4) follows from Lemma 2.2.2. For r = 1 or 2 the subgraph is
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decomposable, which implies (2.2.4). To prove this, one uses Lemmas
2.2.1 and 2.2.2 and chooses the factors μθ* so that the (ΓVj)# receive
extra negative powers μ~a of the energy. In the remaining case there are
no (ΓΔ^f" vertices in G and we choose Hj+1 to be a subgraph of one
of the four remaining types, 1 ̂  s ^ 4, while preserving the induction
hypothesis. If there is a Gj vertex contracted to only one other Gj vertex
α, we take Hj+1 to be α together with all Gj vertices contracted only to
α. Otherwise we take Hj+1 to consist of two contracted vertices α, β
together with all Gj vertices contracted only to α and to β. For the
fourth type of subgraph (s = 1), (2.2.4) follows from Lemma 2.2.3. Now
let 2 ̂  s. If Z = 3 or 4 at the central, or (ΓV^9 vertex then the sub-
graph is decomposable by use of Lemmas 2.2.1 and 2.2.3 because by
a suitable choice of the μθ*9 we can give s — 1 vertices some extra negative
power μ~a of the energy. Thus we suppose I ~ 2. For the same reason
(i.e. the alternative is a decomposable subgraph) we may suppose that
both of the variables of the central (Γ F2)^ which are not in its γ factor
are contracted to distinct (Γ V^ vertices in the subgraph and that these
two vertices are not contracted with each other. If s = 2 the only re-
maining possibility is

(2.2.18)

or its adjoint as the operator corresponding to the subgraph. The next
lemma shows that (2.2.4) holds in this case and that if s = 3, 4 then the
subgraph is decomposable.

Lemma 2.2.4. // B is given by (2.2.18) then

Π μa f μθ\b\ζL2
e + I(H)

for all small ε > 0 and some positive a, independent of ε.

Proof, f μθ \b\ is bounded by

ON Π A*Γ-1/a (Λ + Λ)-1+ββ (Λ + ' ' )-1+9e

ΐ = l

&4± h)~l+ε (2.2.19)
-iV

it Λ?? it «?8/ μ '

where Ίc^ and &2

 are uncontracted variables of -ΓF2, &3, &4, &5 come from
jΓF^ and &6, ^7, ̂ 8 come from ΓVjz. The theorem is proved in the
present case.

As a second case suppose that there is one Δ^ factor in T. (Because
of the reduction to terms with one connected component, it is possible
to have exactly one Δ^ factor.) Our basic lemma is
2*
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Lemma 2.2.5. Let B = Δ* -o- ΓVJ9 r = 1, 2. Then

Πμ* f μ'WtL*

for all small ε > 0 <md some positive a, independent of ε, and we may
include an uncontracted variable of A^ in the product JJ.

e +

Proof. If r = 1 then / μθ \b\ is bounded by

Π μΐe~112 (Λ + ' ' + μj)~1 + 9ε (2.2.20)

where kτ is the uncontracted variable of Δ%. We remark that δ% could
be replaced by the function (2.2.14) without affecting (2.2.20). If the Γ
were omitted then / μθ \b\ would be bounded by

Π μr~ll2μ( Σ ±
ΐ = 2 \ΐ = 1

which is better than the bound (2.2.9) on

If r = 2 then / μθ \b\ is bounded by

± *a)-^ , (2-2.21)

which is as good as the bound (2.1.2) on δ%.
Again we could replace δ% by (2.2.14) and (2.2.21) would be unchanged.

If we take B = Vό -o- ΓΔ* then (2.2.21) is still a bound for / μθ \b\.
2 KH)

If B = A#-o- ΓΔ^ r=l,2, then fj μ* f μθ \b\ ζL2 where ft is
r e I(H) e

a product over all external variables of b. The statement remains true
if we replace the δ* in A# by (2.2.14).

Consider the subgraph H of (Af -o- ΓA*)# or of (Δf -o- ΓVt)# or

the full graph G = H if Zl ̂  is contracted twice to (.ΓF^)* -o- /'Fj. Each
3

component of G ~ H has a single (ΓA*)^ vertex or a single (ΓVj}&
vertex with a least one external leg or the component has at least two
vertices (and no V#, Δ# vertices). Then (2.2.4) holds for H by the above
lemma and remarks and (2.2.4) holds for G ~ H by the previous case
of the theorem. This proves the theorem in the present case. For later
purposes we note that if H' is the subgraph formed by H and one or two
(ΓVj)^ vertices, each contracted at least twice to H, then (2.2 A) holds
for E'.
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Suppose that Δ% and Δ* are both factors in (2.1.1). If these operators
are contracted twice to each other then n — 2 (by connectedness) and
we are in the case Inty of logarithmically divergent variables, μθ = μ^ε ',
i = 1 or 2, fμθ \y\ is finite by Lemma 2.2.2, and (2.2.4) follows. If these
operators are contracted by one variable let H be the subgraph of
Δ^-o- Δ% and pass to the quotient graph GjH. In the quotient, H is

a single vertex with a kernel (2.2.6) bounded by

μ(k1 ± kJ-N

This is better than the bound on the kernel of Δ* and so (2.2.1) follows
from the case of a single Δ* factor.

We have reduced to the case where \Δ %Δ* : is a factor in (2.1.1). We
split the graph into a disjoint union of subgraphs of the type previously
considered, Zl* and Δ* belonging to distinct subgraphs. The theorem is
proved in the present case.

Suppose one V$ is a factor in (2.1.1). The singular case Y = F0 -o- jΓF4
4

was already considered. Let H be the graph of (F^-o-jΓFΛ^ or

(F^-o- ΓΔ^\^. If H is Si subgraph of G then we pass to the quotient

G/H. The integrand of H is estimated in (2.2.14) or (2.2.21) and the
theorem is proved as in the case of one Δ& factor. Thus we suppose that
Vj is contracted at most twice to any (Γ V^ vertex and at most once
to any (ΓΔ*}# vertex. We also assume that Vj is contracted to at least
two (ΓVιf& vertices because otherwise Vj will have at least two legs that
are external in G or contracted to (ΓΔ^ vertices and if we take H to
be the subgraph formed by Vj and adjacent (ΓΔ#)& vertices, then the
corresponding kernel (2.2.6) is bounded by

Cp,N (frμ*)—1'* (μ^μ,)β+Bε~5/2 μ ( Σ ± k) (2.2.22)
\t = ι /

and the theorem follows.
Let n = 3 with no external legs. Then we are in case Zτ&3), with the

help of Lemma 2.1.1 and the above reductions. We have / μθ \y\ bounded
I

by

Adk

> , or

and (2.2.4) follows.
For general n we decompose the graph into a disjoint union of sub-

graphs. There is a subgraph H consisting of Vj contracted to a (ΓVi^
and a (Γ Fίa)^ vertex, and H has at least 2 legs which are external in H.
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Let H' be the subgraph formed by H and all (ΓV^ vertices contracted
four times to H. The parts of the theorem already proved give us (2.2.4)
for G ~ Hf. One can compute that the kernel (2.2.6) corresponding to H
is bounded by one of the f olio wing :

GN(μιμ,)-^2 μ(kί ± kj-x (2.2.23)

CN Πμ3' Π μΓ~ll2^μ ( Σ ± *«) (2.2.24a)
e+ i = l \ΐ = l /

A _ i r v 2 -j- s/ r4 ,£ o 94 M

' - 8 - 1

Π μΓ*-wAμ Z±k (2.2.26a)

^)3*-1 *± &3 ± i*)-1 A*(*5 ±

(2.2.26a)
ΐ = l

The uncontracted variables of (ΓV$£ occur in one of the factors
μ(km± )~a oϊ A and the variables which do not occur in A come from
Vj. One can check (2.2.4) for H' and the theorem is proved in the present
case. For later purposes we note that (2.2.4) holds for any subgraph H"
formed by H and some of the (ΓV^ vertices adjacent to H.

As our final case, we suppose that V* and Vj are factors of (2.1.1).
The divergent graph Y = F0 -o- F4 was considered in Lemma 2.2.3. The

expression V* -o- Vό is also divergent and the corresponding integrand

was bounded in (2.2.14). If H is the subgraph of V* -o- Vj then we pass

to the quotient graph G/H and proceed as in the case of a single A^
factor in (2.1.1). If Vf -o- Vj occurs as a subgraph H then we also go

to the quotient GjH and use (2.2.17) to bound the kernel of H', this case
is then the same as a single F^ in (2.1.1). There are 3 types of divergent
graphs containing a single F3 : In 2), II) and In3). The first two concern 2
vertex subgraphs of the quotient G/H, or 3 vertex subgraphs of G with
F*, Vj and (ΓVjf^ vertices and at most 2 external legs. By Lemma 2.1.2,
such a subgraph cannot occur in G and so In2), II) are impossible in GfH.
The remaining case, In3) in GjH, corresponds to a subcase of InQ) in G
and both graphs have a logarithmic divergence. Thus the estimates for
G/H imply (2.2.4) for G. We now suppose that F* and V} are contracted
with each other at most once.
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Next we consider the graph In 6). If Vj is contracted three times to
(Γ F4)^ then V* is also contracted three times to the other (Γ F4)^, and
(2.2.1) follows from (2.2.14) (with ε = 0). If Vs is contracted twice to
each (ΓVifft then so is V* and we have the bound

0N Π μΓ112 (Λ + μύ~l+^μ(Σ ± *<)-*
i = l

on the kernel of B = Vf-o- ΓF4 or (ΓF4)* -o- Vf. For one of these

.β's the factor μθ is μj~ε' with ks an external variable of B, and (2.2.1) is
bounded by

μJ-1+«* μr* μ(Σ ± *<

which is finite. In the remaining case V$ is contracted twice to one of the
(Γ F4)^ and once to the other (Γ F4)^ and the B above are still subgraphs
of G\ if the factor μθ = μγε' occurs in an external variable of B then
(2.2.1) is bounded by

ON f Π μΐl(μι + μ2)-1+ε'/4(μ2 + μ3)-1+ε'/4 μΓ μ(Σ ± *<)-* die ,
ϊ = l

which is finite. If the factor μθ occurs in an internal variable of one of
the J5's then (2.2.1) is bounded by the finite quantity

0N f N Π μΓ112 μΓB'(μι + ̂ 2)-1+e'/4 tol+'Ί* μ(Σ ± ̂ ~N ̂
ΐ = l

We suppose that the Vf" are not both contracted three times to
single vertices since otherwise we use (2.2.14) and pass to a quotient
graph. For the quotient, (2.2.1) follows from the case of two Δ%.

The kernel (2.2.6) corresponding to

is bounded by

or

and in the second case, k%, k% and &4 belong to a single Vf". This is better
than the bound on V$. If H is the corresponding subgraph then we pro-
ceed in.GjH as in the case of one F3 . The graph II) in GjH corresponds
to In6) in G and has been estimated. The graphs In2) and InS) in (τ/^Γ
satisfy (2.2.4) because of the extra decrease at infinity implied by the
factor A. In the case In2) and A = μϊl + *8 we make use of the fact that
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one of the ~Vγ is contracted three times with T Ύτ and so the other F#
is not contracted three times with a single vertex. Thus we suppose
this H is not a subgraph of G. By similar reasoning we can suppose that
the graphs of

:F?F,:-o-ΓF4

are not subgraphs of G.
If a F# is contracted twice with a (ΓA*)^ or three times with

a (Γ Vif^ vertex then the subgraph H formed by these two vertices has
a kernel bounded by (2.2.21) or (2.2.14) and by the bound on <5*. The
quotient G/H is then in the case of one Ft^ vertex and one vertex, H,
of Zljjf type and by our above restrictions on G, these two vertices are not
contracted to each other. The proof of (2.2.1) is essentially a combination
of the individual cases of one F# and of one A^ previously considered.

We assert that in the remaining cases we can find disjoint subgraphs
H and H* as follows. H& contains F# and r = 0, 1, 2 vertices contracted
with F# and at least 2 — r legs of F# are external in G. Then the kernel
(2.2.6) of H# is estimated by (2.2.22)- (2.2.26). Let H^ be the subgraph
formed by H \j H* together with all (Γ V^ vertices totally contracted
to H \j H*. As before ,(2.2.4) is valid for G ~ Hv We write H^ = H' \j H*r

where H#' contains H# and some of the (ΓV^ vertices contracted to
H# two or more times. (2.2.4) has already been proved for H#f and so
the theorem follows from the assertion.

Suppose B = V* -o- Vj is a factor in Y. Since B annihilates and

creates three particles, we have B contracted with at least four vertices
when no legs of B are external in G. In fact any vertex is contracted at
most twice with B and two vertices are needed to contract the three
annihilators of B, two more are needed to contract the three creating
legs of B. There are at most two vertices in G which are contracted twice
to B if a vertex is contracted twice to V} then it must be in H and then
the remaining vertex in H is unique and H and H* can be chosen as
asserted. If two vertices are each contracted once to V3 and once to Vf
then one goes in H and the other in H* and H and H * can be chosen
they can also be chosen in all remaining cases (if there are no external
legs). For each missing vertex (of the four contracted to B above) there
will be an external leg, and so the assertion is proved for this B.

Suppose B = : V j * Vj : is a factor in Y. Then B annihilates and
creates four particles and at most three of these can be contracted to
any one vertex. Thus if B has no external legs, it must be contracted
to at least four vertices and H and H* can be constructed as above. This
proves the theorem (all cases).
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§ 3. The Dressing Transformation

3.1 Introduction

The infinite wave function renormalization is due entirely to terms
from F4 and is caused by the fact that ΓV± is not an operator on 3F ' .
(ΓV± contains no annihilators and the kernel yv± is not in L2.) Our
dressing transformation T is built up from the bilinear forms F4, F3 and
F2, but for simplicity replace F3 and F2 by zero; then T would be a
truncated approximation to the exponential exp(— jΓF4). To compute
the norm

\Tφ\*=(φ,T*Tφ)
we expand the product

(ΓF4)*ΓF4 (3.1.1)

as a sum of five Wick ordered terms; each term has contractions,
0 < j < 4, and all terms except the last one, with 4 contractions, are
(finite) densely defined bilinear forms. The exceptional term, illustrated
in Fig. 3, is a multiple ΛI of the identity, with

/t = 4!| |yv4 | |2 (3.1.2)
infinite. Thus

(ΓF4)*ΓF4-/U (3.1.3)

is a (finite) bilinear form. If we expanded

exp(- ΓF4 - ΛIJ2)* exp(- ΓF4 - Λlβ) (3.1.4)
in a formal power series, we would find that each term is a finite bilinear
form, after cancellation of infinities, as in (3.1.3). The series appears not
to converge, for reasons described in § 1.2. However using our truncated
exponential T, we find that

(Te~ΛI/2)* (Te~ΛI/*)

is a convergent series, each term of which is a bilinear form. Thus eΛ/2 is
the infinite part of the norm || Tφ\\ and is clearly independent of φ, while

is finite and defines a Hubert space norm on the range of T. In the :Φ4:
interaction in four dimensions, a more complicated wave function renorm-
alization is required because the infinite part of \\Tφ\\ depends on φ.

3.2 The Definition of T

Let the domain £ΰ = @(T) be the set of all vectors φ = φ0, ψι, . . . in
^ with a finite number of particles (φn = 0 for large n) and bounded

/ n \

momentum I φn(k) = 0 for large Σ 1^1 1 -̂ e^
\ i = l /

Q = Λren + ^3 + F^ - (F3 + F2) -O- ΓF4 (3.2.1)
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In this formula zJ2ren

 nas ^ne form

Λren = / <W&1> *2> «* (*l) <** (*a) 1̂ dk*

and <52ren will be specified later and will satisfy (2.1.2). Also

As a formal, or untruncated series, we take

T~ = ΓiίΓa
where

T
and

= _ Γ(QT(

z

n~l}) ,

Then Q and Tg are formal solutions of the equations

(H0 + F2 + F3 + F4 + Zl2ren) Z\ = 7\(#0 + g + F2 - F£) (3.2.4)

(H0+Q)T2= :T2H0:. (3.2.5)
We write

F4 - j; F4ω (3.2.6)
7 = 0

Q = Σ Q(i} (3.2.7)
7 = 0

where in V^ the momentum k of largest magnitude is bounded as
follows :

? > 1

ί-0. (3J 8)

Q<J>) is defined by imposing the same restriction (3.2.8) on the momentum
k of largest magnitude created by F2, F2, F3. or zJ2ren (i«e- F4 momenta
are not considered).

We need two truncations to obtain T. T~ is a power series in F4 and
because of (3.2.6), it is a power series in F4

?λ We retain in T only those
terms which have a degree at most j in F£7λ T~ is also a power series
in Q or in the QW. Furthermore the Q occur in a definite order (from
right to left, in order of multiplication), and so the QW also occur in
a definite order. For each sequence jl9 . . ., jn we have a unique contribu-
tion to T in this term the Q to the extreme right (the first Q) is replaced
by Q^l\ etc. We retain in T only those terms for which the corresponding
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sequence jv . . ., jn satisfies the conditions 1 ̂  j± and

/ p-i N 3/4

(Σii) ^ί»> 2^p^n. (3.2.9)
\i = I I

Roughly speaking, the sequence (3.2.9) are characterized by a strongly
increasing property, and this accords with our general philosophly that the
terms of T refer to sequences of events in which particles of progressively
larger momentum are created. T is defined to be the sum of all terms in
T~ which are retained after the two truncations described above.

To determine the rate of growth of jp with p implied by (3.2.9), we
first note that 1 ̂  j9 and so 0(p3/4) ^ jy. Thus

and 0 (p2l/1G) ^ j^ for large p. Integrating again we find

0(^37/16) <: ^j.
ί = l

and 0(2?27/16) ^ jp for large p. Another integration yields 0(£>15/8) 5j jv

and finally
P2 ^ J9 (3.2.10)

for large p. Further integration would yield p*~ε as a lower bound on the
growth of jp.

We also define a cutoff dressing transformation Ta. To define Tσy

replace F4 by F4tf, F3 by F3(7 etc. in the definition of T. A2TGnσ will be
defined by a kernel <52renσ(&ι> k2) to be given later. The cutoff kernel will
converge pointwise to <52ren

 as <* ~^ °° and will be bounded as in (2.1.2)
with the constant independent of σ.

We observe that T and Ta are invertible because they have the form
/ + A + B where A increases the number of particles and B preserves
the number of particles but increases their total (free) energy by at
least μ0.

3.3 The Eenormalized Inner Product

In this section we define the renormalized inner product on the range
of T we must prove that our definition (by means of a limiting process)
makes sense and that it yields finite values. The inner product is then
easily seen to be semidefinite and bilinear, because these properties are
preserved by taking limits. The inner product is also definite, but this
fact requires a proof. T is a densely defined unbounded linear trans-
formation from ̂  to J^ren, the Hubert space completion of the range of T.

We remark that the annihilation and creation operators act in a na-
tural fashion on J^n and that this representation appears to be inequi-
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valent to the Fock representation. It would be of interest to study
systematically the representations which can be constructed by these
methods.

Q is a sum of six terms and each has a associated graph; the first
three terms have only one vertex in the graph. The next two terms,
F3 ~o- Γ F4 and F2 -o- Γ F4, have two vertices in their graph the ver-
tices are ordered with the F3 or F2 vertex coming last (= left). The
remaining term has three vertices with the F2 vertex last, and the two
identical jΓF4 vertices are not ordered, relative to each other. The bilinear
form T is also a sum of terms and each is associated with a unique graph.
A graph will have n = 0, 1, . . . partially ordered vertices. The vertices
coming from a single Q in the T2 part of T inherit their order from Q,
and otherwise the order is determined by the order of multiplication in
T~, but the identical T± vertices are not ordered, relative to each other.
We note that the graph uniquely determines the corresponding term of
T, once F and our definition of T is given. In the same way we can
write jΓ* T as a sum of terms and each term has a graph with partially
ordered vertices and is uniquely determined by its graph. Some of the
terms in jΓ* T are infinite. In fact a term is infinite if and only if its graph
has one or more connected components equal to Λ. (See Fig. 3.)

The terms of T* Tσ are all finite and associated with the same graphs
that occur for T* T, but of course the operators corresponding to the
same graph of T* Tσ or of jP* T are not the same because the integrands
are not the same.

In addition to the products jP* T, we will need to consider T* V V T
and T* V T, for example. In order to cancel the infinities and obtain
finite quantities, it is convenient to consider different parts of these
products separately. Thus we let W be the bilinear form (1.5.1) and we
let P be a truncation of the product W T. This means that for each graph
of the product W T we give some measurable set Ξ and we restrict the
integration to Ξ. Such a truncated product P is too general to work with
and so we suppose that Ξ depends only on the variables of the Tz part
of T and of the W component of the graph of T. We thus write
Ξ = Ξ' Rl where El is a Euclidean space and the variables mentioned
above span a different Euclidean space, R*9 and 3' C R* As a further
restriction on P we suppose that the set Ξ' is determined by the subgraph
formed by vertices in T2 and in the W component of the graph. Thus if
these subgraphs are identical for two distinct graphs of P, then the sets
Ξ' are assumed to be identical also.

We also suppose that a cutoff operator W0 is defined by means of
some given cutoff kernel wa we require that wσ -> w pointwise and that

w* = sup \wσ\
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be finite. Further conditions will be imposed on w% later. The integrands
rσ associated with a term E0 converge point wise to a limit r. To obtain
bounded convergence we replace vίσ by \Vj\, wσ by w* and ^renσ by the
right side of (2.1.2). The resulting integrand b is called the majorant of
ra\ obviously

sup|rσ g b .
a

If defined, B is the operator with integrand b.
Let Pa be defined as the same truncation of the product WaTa. In

other words, Pa is defined by integrating the integrands of W σ Ta over
the same measurable sets Ξ used to define P.

For any bilinear form E defined by a graph and an integrand r, we
let |.β| be the bilinear form with the same graph but with the integrand
r\. We have

|(γ>, Sφ)\ έ (M, \B\ \ψ\) < (M, B\φ\) . (3.3.1)

We let Eoσ be a term from

T*Tσ, T%Pσ or P*Pa (3.3.2)

whose graph has no Λ components and we let Eja be the term from
(3.3.2) whose graph differs from the graph of E0σ by the inclusion of jΛ
components. E0σ is called a reduced term and its graph is called a reduced
graph; the reduced graph of Eja is the graph of E0σ. We assert that

\(Ψ, Rjaφ)\ £ Λ(σY(jl)-1(\γ\, \Boa\ \Ψ\) , (3.3.3)

i. (3.3.4)

The proof of (3.3.3) is primarily combinatorial. Suppose that the graph
of EQa has n T* vertices and m T± vertices, not counting vertices in the
W* or W components of T* or of T. Then the graph of Ejσ has n -f j and
m + such vertices respectively. The integrand of E0σ acquires (n\m\)~l

from the factorials in T* and T± and the integrand of Eja similarly
acquires ((n + j) ! (m + j) I)"1. In fact suppose the W component of T has

I Tt vertices. These vertices can be selected in I , j ways from the

m + I T1 vertices of T. Since the expontial contributes (m + I) I"1 as

a factor and since (m + Z)!"1! , J = (m!Z!)~ 1, the integrand r0σ

acquires m h1 as asserted, the extra ll~l being absorbed into the integrand
since it occurs in both E0σ and Ejσ. There are

ways to contract 2j vertices into jΛ components and each of the remain-
ing legs must be contracted in a manner determined by the graph of EQσ.
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Thus

^ + ̂  (m + j ^ j l = 4!'(?! nl ml)-

occurs as a factor in Rjΰ and if we replace Λ (a) by its integral definition
(3.3.4), then Ejσ and Λ(σYJ\~1RQσ are bilinear forms with the same
integrand, but integrated over different regions determined by the trun-
cations. The truncation which defines P depends only on the variables
in T2 or in the W component of T and the measurable subset Ξf of
these variables determining the truncation is the same for Roσ and Rjσ

by hypothesis. Thus this truncation has the same effect on Rja that it
has on Λ (σYj !~1.Roσ. The truncations involved in the definition of T* and
T give Rjσ a smaller region of integration. Hence (3.3.3) follows.

We sum over all graphs in (3.3.3) and obtain

e-A(a) |(9,; τ*Taψ)\ £ (\φ\,ΣB M) (3.3.5)

where the summation extends over all reduced terms of the product
T* Tσ. There is a similar estimate for the other operators in (3.3.2).

It will be necessary to consider a second type of truncation of the
product W T. Let Θ be a measurable subset of Rs. Let

Λ(σ, Θ) = 4! | |yv4 σβlll (3.3.6)

k , k * ( * ) * kζ®
4σΘ JQ otherwise .

We substitute

for v4σ in the definition of T and expand. To a graph with m _ΓF4 ver-
tices there correspond 2m terms and we give each term a graph by the
simple expedient of labeling each of these m vertices as either a -ΓF4Θ

vertex or a jΓF4^Θ vertex. (We have hereby changed our definition of
a graph.)

Fig. 5

In defining our truncation P, we now permit Ξ = Ξ' Rl to depend
on the variables of the ?;4σΘ vertices as well as on the variables of T2 and
of the W component of the graph. As before we require that the set Ξ'
be determined by the subgraph formed by the vertices above. In the
product T* P or P* P the graphs do not have Λ components, but they
may have Λ(Θ) or Λ(~Θ) components, see Fig. 5.
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A reduced term Ra is now a term whose graph has no A (~ Θ) components
oo

and Σ Rjσ is now the sum of an* terms from T* Pσ or P* Pσ whose
7 = 0

reduced graph (graph with Λ (σ, ~ Θ) components removed) equals the
graph of EQσ. As before we prove

e-Λ(a.~e) £ \(φ> R.aψ)l <; (M> £M} (3-3-7)

7 = 0

e-*<:~v>\(φ,T*PaΨ)\ ^ (\φ\,ΣB\V\) (3-3-8)

e-Λ(a,~&) |(9>> P*pσy))| <; d^i, Σ B |V|) (3.3.9)

where the summation on the right extends over the majorants B of all
reduced terms of the product T* Pσ or P*Pσ.

We now state the main results of this section.
Theorem 3.3.1. For φ and ψ in 2, the limit

lim (Taφ, Tσψ) e~ΛW = (T φ, ?»ren (3.3.10)

exists.
We define

!?>ll?en = (Tφ, T φ)κn = lim||2>P β-^(«) . (3.3.11)

Theorem 3.3.2. The inner product (,)ren is positive definite on the
range of T.

Let ^"ren be the Hubert space formed by completing the range of T
in the norm [| ||ren.

Theorem 3.3.3. Let P be a truncated product as above. Suppose that
for all φ and ψ in £& the limit,

lim (Taφ,Pσψ)e-Λ("^(TΨ,Pψ)κn (3.3.12)
G — >ΌO

exists and that

limsupKP^pβ-^) ^ (\ψ\,Σ B \ψ\) < °° (3.3.13)
σ

Then (3.3.12) defines Pψ as an element of ̂ ren,

and P T-1 is a densely defined operator on «^"ren with domain
The third theorem follows from the first two, together with the Riesz

representation theorem. The limits (3.3.10) and (3.3.12) are established
using the bounded convergence theorem. If the truncation depends on
a region Θ in the variables of the graph then we require (for the next
two lemmas only) that Θ be bounded and we take σ larger than the
magnitude of any variable in Θ. Consider a fixed reduced graph G and
let rσ = roa be the integrand of this graph. Let rjσ,j— 1,2, . . . be the
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integrands of the other terms having the same reduced graph. Let

fria (3.3.14)
Λ

be the result of integrating rjσ over the variables in the Λ components

of its graph f rQσ = / rQσ\ . Then r0a and / rjσ are functions of the same
\ Λ ) Λ

variables. Let

'00= (£ I*
We know that rQσ converges pointwise to a limit, r0, and is bounded by
the function 6,

|r0β| =£ b . (3.3.15)

Lemma 3.3.1. rGσ converges pointwise to a limit rG and is bounded by
the majorant of roσ:

\rβa\, \rG\ £ b . (3.3.16)

Now suppose the bound (3.3.13) has been proved. Each reduced
graph G, with its associated integrand rGσ, contributes a finite number
of terms to (3.3.12), each of which is an integral of φrGσψ over the
variables of φ, rGa and ψ. (Of course some of these variables will coincide;
the ones which coincide change from term to term.) By Lemma 3.3.1 the
integrands φrGσψ converge pointwise. Consider the family of all inte-
grands {φτGa'ψ}ί where all possible reduced graphs G occur and all terms
associated with a given graph G occur. The family {φrG oψ} is a σ de-
pendent function on a measure space (the direct sum of the measure
spaces El associated with each term) and as a ->• oo, the function con-
verges pointwise. Now by (3.3.13) and (3.3.16), the σ dependent functions
are bounded by a fixed (σ independent) function in Lv By the bounded
convergence theorem, the functions converge in L^ and the limit (3.3.12)
exists. We have proved

Lemma 3.3.2. The limit (3.3.12) follows from (3.3.13). // we take
W = I then Pσ = Tσ is just a special case and so Theorem 3.3.1 will follow
from a bound on the right side of (3.3.5).

Proof of Lemma 3.3.1. We have already proved that \rGσ\ ^ |r0σ|, so
(3.3.16) follows from (3.3.15). Let

and

[see (3.2.6), (3.2.8)]. We let ξ = Jc^ . . . denote the variables of roa and
we choose a fixed value of ξ. If j is large relative to ξ then Γ V^ does
not occur (has order zero) in a power series expansion of rQσ. According
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to the truncations in the definition of T, Γ V^a has order at most j in

Σ ίrla(ξ] -
1 = 0 Λ

As in the proof of (3.3.3), we see that (3.3.17) is a product of
times a function in which Γ V(H has order zero, and for τ > σ,

(3.3.17)

Thus

Let

Σ / n τ ( f ) = /
7 = 0 - 4 j j 1 = 0 Λ

tfexp - Λ,(σ)\

a,} = exp(—

Then 0 < aj <* 1 and % = 1 unless σ ̂  2ί+l < 2τ and

(τ) + Λ,(σ)) exp (/I,(τ) - Λ,(o)).
i

Σ (i - «3

(

Σ

1)!) |r0(f)|

since ||yv^ ||2 is bounded uniformly in j. This completes the proof.
Let b be the majorant of a reduced term Eσ in a product T* Tσ or

P^Ptf. Define Π μ~2 f b as in § 2 25 1 = 1(0) is the set of internal

variables of b or of ra. If Ea has % vertices then

(3.3.18)

where L is a constant which does not depend on R or σ, but which does
depend on ψ and φ. We note that there are at most L(n\)L graphs with
n vertices (with a new constant L).

Proof of Theorem 3.3.1. We assert that for some γ > 0 and some
constant K,

-yni/I . (3.3.19)

With a new constant L, we have from (3.3.18) and (3.3.19)

Σ(\Ψ\>B\φ\)^

enL:L°%n 2-γn"z < oo .
3 Commun. math. Phys., Vol. 10



34 J. GLIMM:

This gives a bound on the right side of (3.3.5) and the theorem follows
by Lemma 3.3.2.

To prove (3.3.19) we introduce an order in the ΓV± and (ΓV±)* ver-
tices. Let πij be the largest of the magnitudes of the momenta of the
jih ΓV± vertex. Then ms is a function of the variables of r and the
inequalities

m1 ^ m2 :£ (3.3.20)

define a subset of the range of the variables of r. We estimate the con-
tribution to the L2 norm (3.3.14) coming from this subset (3.3.20) and
a similar subset of the variables of the (ΓV&)*. Since there are (n\)2

orderings and subsets, this is no loss of generality.
Now we use the truncations in the definition of T. For any value of

the variables of rσ for which b Φ 0, there are at most

and so

vertices from T with the corresponding ml less than 2*. Thus

2'^ Wn-,o-ι)/2 or 6 = 0

2?1'2 ^mi or 6 = 0, (3.3.21)

for large j. To get an upper bound on (3.3.19) we increase the region of
integration by replacing the truncation in the jΓF4 variables by (3.3.21)
(for large j). We apply the same reasoning to the other variables in rσ.
For the £>th F3, F2 or Zl2ren vertex, we have

2*° < |*|

if \k\ is the largest of the magnitudes of the momenta of the created par-
ticles [cf. (3.2.10)]. Thus in the region (3.3.21). 1 rg μ(mtf*-εjl'z and so
the contribution of the region (3.3.20) to (3.3.19) is bounded by

w/4

' Πμ-*fΠμst>

where ]Jμε is a product over the internal variables of δ. There are no
divergent variables in the graph of 6, and so the quantity above is

Πμ~* f μθb\\ 2-γn*12 Kf ^ ̂ 2~^3/2

e I I ]

by Theorem 2.2.1, and the proof is complete.
Our proof of Theorem 3.3.1 also gives us
Theorem 3.3.3. (3.3.13) follows from the bound

sup C < oo (3.3.22)
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where the sup is taken over the majorants b of all reduced terms of the
product P*P. Also

l l jPyllren^ const, c (3.3.23)

where the constant depends only on ψ} ε, K and the number of variables in w.
Proof of Theorem 3.3.2. Let

φ = 0, . . ., 0, φn, φn+1, . . .

with φn Φ 0, φs ζ J^ , φ ζ ®. Let
n

a = inf < Σ μ(*<): * 6 suppt. <pn>

and let ̂  be φn times the characteristic function of the set

n

ζ[a,a + μQ] .

Choose ρ large and write

θ=Tσφ = θ(ρ) + (θ~ θ(ρ)) (3.3.24)

where the j particle component, θ(ρ)j, of θ(ρ) has exactly n particles
n

whose total free energy Σ ft (\ ) *s m tα> a + /^ol an<^ ^ne remaining

/ — n particles have energy μ(k) ^ ρ > a + μ0 The rest of θ, θ — θ(ρ),
violates this condition and so (3.3.24) is an orthogonal decomposition and

Terms contribute to θ (ρ) as follows. Terms from Q act on φ annihilating
and creating low energy (μ < ρ) or high energy (μ ̂  ρ) particles, but
eventually all low energy particles (except m ̂  n of them) must be
annihilated. Then ΓV^ from the T± part of T acts, and creates n — m
low energy particles (Σ μ ^ a + μ0) and the rest of the particles it
creates must have high energy (μ ̂  ρ). The quantity ||θ(ρ)||2 can be
written as a sum of contributions from the graphs of T* T. Let

ΘQ = {&!, . . ., &4: μ(&i) < ρ for some ί} .

By a reduced graph we mean a graph with no Λ (~ Θρ) component. First
we estimate contributions to ||θ(ρ)||2 whose reduced graph contains at
least on T vertex with a particle of high energy (μ ̂  ρ). This contribu-
tion is bounded by

where we sum over the relevant reduced graphs, and it is bounded by

const. exp(/l (σ, - <9ρ)) sup (κ~n Π μ~^ f Π μe° }
{ e I 2)

rg ρ-e const. exp(Λ. (σ, - <9ρ)) sup

3*

Π μ~* f Π μ2ε° }
j
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with the sup taken over the relevant reduced graphs. The ρ~ε occurs
because there is at least one variable k with \k\ ̂  ρ whenever b Φ 0. The
reduced graph may contain Λ(ΘQ) components, but because of our
definition of θ(ρ), such a component is integrated only over θa + μo and
there can be at most n of these components. The integral over each of
these Λ (<9ρ) components is bounded by

4! / \Πμεγv\*
®a+μa

which is finite and bounded independently of ρ, so that the integral over
all of the Λ(Θρ) components is bounded by Kn. By Theorem 2.2.1, the
integral over the remaining variables of the graph is also bounded by
Kn and so the sup above is finite for small ε and large K^. Thus with a new
constant, independent of ρ,

const. ρ~ε exp(Λ.(σ, - <9ρ)) (3.3.25)

is a bound for the contribution to ||0(ρ)j|2 which we are estimating.

The remaining contribution to |(θ(ρ)||2 is the leading contribution and
must be bounded from below. We assert that it is the sum of all terms
with reduced graph 0, the empty set. These terms are independent of
φ — φ'n because φ — φ'n contains too many particles or particles with the
wrong momenta. To occur in θ(ρ) these extraneous particles must be
annihilated by operators from Q. However Q increases the number of
particles or their energy and so Q makes matters worse unless the new
particles created by Q have high energy (μ ̂  ρ) in the latter case there
is a vertex in the reduced graph with a high energy particle. Thus the
remaining contribution to ||θ(ρ)||2 comes only from φ'n. If Q annihilates
particles from φ'n it must either create new particles of high energy or
else new particles incompatible with the definition of θ (ρ). For a term to
occur in ||θ(ρ)||2, these new particles (in the second case) must be annihi-
lated and replaced by high energy particles. In either case the reduced
graph will have at least one high energy particle. Thus our contribution
to ||θ(ρ)||2 contains only ΓV± and (ΓV±)* vertices and these vertices are
integrated only over the region ~ Θρ. If the reduced graph is not 0 there
will again be high energy particles, so our assertion is proved and the
reduced graph is 0. Hence our contribution to ||θ(ρ)||2 can be written in
closed form as

Π**Pi(Λ(σ9 θ, - <9ρ)) IK!2. (3.3.26)
9

For small j, Θ3 ~ Θρ = 0 and as in the proof of Lemma 3.3.1, we see that
(3.3.26) is
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Combining this with our previous estimate (3.3.25), we have

^ exp(- Λ(σ, 6>ρ)) (|[ |̂|2 - 0(1) - const. ρ-ε) .

We choose ρ large enough so that

°<M2- o ( l ) ~ const. ρ-ε

and then let σ-> <χ>. Since Λ(ΘQ) is finite, this completes the proof.

§ 4. The Definition of jffreu

4.1 Introduction

The cutoff Hamiltonian is given by the formula

#re» = #o + V* + Δ (σ) + c2(a)I + c3(σ)7 (4.1.1)
where

c3(σ)/ = - Foσ -o- Γ(F2σ -o- ΓF4σ) (4.1.3)

Δ (a) = dl(a] /: Φσ(x)*: h*(x) dx , (4.1.4)

see Fig. 4. Here Φa(x) is the cutoff field

Φσ(x)= f eiΊύX μ~V*(a*(- Ic) + a ( J c ) ) d k .
1*1 £*

To define ό^(σ ) we first let ζ=(kl + k2 + Jfc8)/3. Then S1/2^ is the distance
from fej, Jc2, Jc% to the linear space ζ = 0 and Ic^ — ζ, Jc2 — ζ, &3 — ζ is the
perpendicular projection of &1? &2, Aj3 onto that linear space. Let

ζ)-* (4.1.5)

where dζk is proportional to Euclidean measure on the space ζ — 0,

Sdζdζk = <#&! cZ^2 6?^ ,

and Z (a) is the subset of the space ζ = 0 defined by

\ki-ζ\<a, l<i<3. (4.1.6)

δfm
2 is any finite number. It represents a finite renormalization to be

determined at some later point in the development of the theory. We
write

Δ(a) = Δ0(σ) + A1(σ) + As(σ)

where Δj(a) is the part of Δ (a) which creates j particles. As σ->oo,
dm2(a) becomes logarithmically infinite, and so

Δ = lim A (a)
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is infinite also. Let

D0(σ) = Voa-o-ΓV3a
o

D{(σ) = Foσ-o-ΓF4σ

D,(o) = Flσ-o-ΓF4σo

D (σ) = D0 (σ) + Pi (σ) + D'{ (σ) + D2 (<τ) ,

see Fig. 6, for example. D is also infinite and its infinite

(4.1.7)

Fig. 6

part coincides with A. This means that the operators

(4.1.8)

have finite limits as σ -> oo, as we will prove in § 4.5.
The main result of this paper is
Theorem 4.1.1. Hτen is a densely defined symmetric operator on ̂ IQn

approximated by the cutoff Hamiltonians in the sense that

lim(ϊ>, #ren(ff) Taφ) e-ΛW = (Tψ, Hιen Tφ)κn (4.1.9)

||̂ ren (σ) Ta ψ\\ 2 e~A <σ> ^ const. (4.1.10)

with the constant independent of σ. The domain of Hιen is T2.
To prove the theorem we consider separately different terms con-

tributing to Hιen, We show that

Λren> ΛIren> Δ'{KΆ (4.1.11)

F2 + F3 + F4 + A2κn + #„ (4.1.12)

F! + 2-% + Δ2- Δzκn (4.1.13)

FO + Δ0 + 2-Mi + e,I + c,I (4.1.14)

are each operators on ̂ "ren and are approximated by cutoff operators.
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4.2 Finite Contributions to HτGn

We consider truncations P and Pσ of products W T and Wa Ta under
the assumptions of § 3. In particular let:

A. W = VQ and the truncation omits all graphs of the following types
a. 11} is a subgraph
b. In 3) is a subgraph and theF2 vertex of this subgraph is the last

T2 vertex of the graph
c. F0 has 3 legs contracted to a Γ F4 in the T± part of T (a subcase

of In2))
d. VQ has 3 legs contracted to a ΓV3 and this ΓV% is the last Q

vertex of the graph (a subcase of In2)).
B. W = V1 and the truncation omits all graphs in which

a. F! has 3 legs contracted to a Γ F4 in the T^ part of T (a subcase
of In2))

b. Fx has 3 legs contracted to a ΓV% vertex and this vertex is the
last Q vertex of the graph (a subcase of In2)).

C. W = F2, F3 or Zlren and the truncation restricts the integration
to the set

\k\ ζ [2k, 2'" +1), \li\ ζ [2W, 2**+1)

/p-l \8/4

?;^ z 1?*
\ΐ = l /

(4.2.1)

where k is the momentum of largest magnitude created by W, lt is the
momentum of largest magnitude created by the ith of the F2, F3 or
zJ2ren vertices [cf. (3.2.9)] and p ~ 1 is the number of these vertices.

D. W = zJ0ren> ^ίren or ^ί'ren With no truncation (P = WT).

Theorem 4.2.1. In cases A, . . ., D, PT~^ is a densely defined operator
on .̂ "ren approximated by PσT^1.

Proof. We need only establish (3.3.22) for graphs with no divergent
variables this follows from Theorem 2.2.1. Thus D is proved because the
only divergent graph, Inty, cannot occur in P* P in view of the fact that
the J's in D create at most one particle. I n l ) never occurs because we
consider only reduced graphs. In C we have

for large \k\ and again (3.3.22) follows from Theorem 2.2.1. In B we have
to consider the remaining cases in In 2), and we have to take into account
the fact that the γ factors in the definition of T2 have the form

:i>) l
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where the summation ranges not only over the variables of a single vertex
but also includes uncontracted variables of preceding vertices. As a typi-
cal case, consider graphs with V1 contracted with 3 legs of a Γ F4 vertex
in the T2 part of T and let the other leg of this Γ F4 be contracted to an
annihilating leg of a -FF3 vertex, for example. Let

/ 3 \-l

=\ Σ μλ V2
\ί = l /

β
δι = I 27

\ΐ = l

and recall that yl is a factor of y in Theorem 2.2.1 while 61 is a factor
of δ in Theorem 3.3.4. Now

t. ( fl μ7A ( Π
\i = l / \ί = 4

const. l μ7 Π μΓ* μ*7 \Vι\
ί = I \i = l / \ί = 4 /

and so (3.3.22) follows from Theorem 2.2.1. The remaining cases are
similar and the theorem is proved.

4.3 Eenormalizίng the Creation Part of V

We show that (4.1.12) is an operator on ̂ ΐQn. There are no infinite
constants in (4.1.12) and this operator is renormalized merely by the
choice of the new domain T@ disjoint from the domain if HQ. We break
the product H0T into five parts (truncated products). The first part,
P! = :THQ: = :H0T: is an operator from & to J^ren for essentially the
same reason that T is. If we write the full product HQT φ as

with the sum extending over all variables of T 99, then the Wick product
:H0 T : is obtained by restricting the range of the summation to variables
of φ which have not been contracted in forming the product T φ. We
note that the variables in T φ have been symmetrized and so it has no
meaning to say that a variable in T φ comes from φ. However the sum
HO — Σ μί is symmetric and so it commutes with symmetrization we

i
apply H0 to the unsymmetrized product and symmetrize later. The
second part, P2, of the product H0 T comes from restricting the summation
in (4.3.1) to variables in the T L part of T. Again we must apply HQ

before symmetrization in order that this make sense. In each of the
remaining parts P3, P4 and P5 we sum over all remaining variables,
those from the jΓ2 part of T9 but we admit only the terms in which the
last T2 vertex is F3 (in case of P3), or F2 (in case of P4) or Δ2IQI1 (in case
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of P6). We show that

F4+PaΓ-ι, Fβ+PsΓ-1, Fa+P4Γ-ι, Λren+^5?7-1 (4-3.2)

are each operators on ̂ ren, as required. In the absense of the truncation
in T, these operators would be zero (with the exception of F2 + P±T~1},
because of (3.2.4) and (3.2.5). The jΓF4 truncation in T does not affect
the last three operators in (4.3.2) because F^ occurs to the same power
in VZT and P3 or in F2T and P4 or in Zl2ren T and PB. Thus F3 -f P3 2

7"1

and Zl2ren + -^δ^7"1 contain only terms introduced by the truncation
(3.2.9) and they are exactly the operators treated in C of § 4.2. F2 + P4T

r~1

is handled in two parts. The first is the operator of C, § 4.2. The second
part is PT~* where P is a truncation of the product ( F2 — V^)T and
the truncation is defined by omitting all terms in which F2 — F^ is con-
tracted with a Tl vertex. This part of F2 + P4 T~l arises from the
presence of F2 (or the absence of F2 - F2) in (3.2.1). To show that P T~l

is an operator we must verify (3.3.22) for reduced graphs of P*P. The
divergent graphs InS) and In 6) of § 2.1 are excluded by the truncation
and In 5) is the only remaining divergent graph involving a F2 vertex.
In In 5), two legs of F* = F2 are contracted with the other F2 vertex.
Let &J and &2 be these divergent variables of F2 and let &3 and &4 be the
other variables. Then

4

Π μl ^ const, μf 8 μ^e μlε μlε

ί = ι

for values of momenta contributing to F2 — F2, by use of the definition
(3.2.3) of F2 and so (3.3.22) follows from Theorem 2.2.1.

The sum F4 T + P2 is nonzero because of the Γ F4 truncation in T.
In fact terms in F4 T + P2 of order j + 1 in F(

4

?) cannot cancel since P2

contains terms of order at most j in F^λ However the terms in F4 T of
order j or less in F^ cancel exactly with the corresponding terms in P2.
Thus F4 T + P2 = P is a truncation of the product F4 T. To describe
this truncation we let P2

?) be the result of restricting the summation
in (4.3.1) to variables of ΓV^ vertices from the 2\ part of T and we let

+
Then

and Ptf) is the truncation of F^^7 defined by retaining only terms of
order j in ΓV^. We assert that for φ £ ̂ ,

ll^ω<p||ren ^ const. ̂  [(?/2) h1 + 2~£^2] (4.3.4)

with a constant independent of j. Each P^) I7"1 will be shown to be an
operator on ̂ τeτί by Theorems 2.2.1, 3.3.3 and 3.3.4 as before and by
(4.3.3), (4.3.4), PT-1^ F4 + PT~l is an operator also. Our proof of



42 J. GLIMM:

(4.3.4) will also give us

\\pMφ\\ e-Λ(o)/2 ^ const. K* [(?/2) h1 + 2~ε^2] (4.3.5)

with a constant independent of j and a. Then for 99 and ψ in ̂  we have

\(Tσψ, Pσφ) e~ΛW - (Tψ, Pφ)ΐ

^ Σ \(T0ψ, P^φ) e~Λ(σ) -
ΐen

^ Σ \(Taψ, P®φ) e-Λ^ - (Tψ,

Σ

We choose J so that the second term is small, uniformly in σ, and then
the first term is small for large σ by Lemma 3.3.2. Thus F4 + P%T~l is
approximated by cutoff operators, as required for Theorem 4.1.1.

We now prove (4.3.4). Let T(l>™) be the sum of all terms in T which
have I Γ V^ vertices in the T± part of their graph and m Γ V^ vertices
in the T2 part of their graph and let

Then

Σ P(i'l} - (4.3.6)

We want to estimate (3.3.13) for the operator Ptf). Recall that the re-
duced graphs may contain (ΓV^)* ~o- ΓV® = Λj components, but

cannot contain Λ — Λj components. We call a graph completely reduced
if it has neither A — Λj nor Λj components. Then (3.3.13) for PW is
bounded by

l-lΣ B(J> l> l'> ") \φ\) > (4 3.7)

where 0 ̂  n ̂  min{Z, I'} ^ j in the first sum and the second sum
extends over all majorants B(j, I, I', n) of completely reduced terms of
the product

nT(*>*-V'\* (4.3.8)

The convergent graphs contribute at most

j
const. Σ Λfnl-12-*"(*-n) (4.3.9)

n = 0

to (4.3.7) by Theorems 2.2.1 and 3.3.4. The factor 2~2ε^ί'-w) arises as
follows. There are 2(j — n) vertices, the ΓV^ vertices, with a lower
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cutoff at \k\ = 2*. In each of these 2(j — n) variables use the estimate

For large / and for n ^ j/2, we have

μ(k)ε ^

We substitute this in (3.3.22) and estimate graphs with divergent sub-
graphs In2), InS), In 5), In 6), II), 12) and ql) by Theorem 2.2.1. As in
(4.3.9), there is a factor 2-2β'<'-n> from the lower cutoffs in the ΓV^
vertices. This factor dominates the factor 28^^~n) above and these
graphs contribute

7/2

const. Σ Λ«n\-12-eW2 (4.3.10)
n = 0

to (4.3.7). For n ^ j/2 and for large j,

μ(k)ε g μ(k)-*-*2*(ί+°)V + V ^ μ(k)-*~ε 8*

and so the graphs above contribute

const. 0'/2) &(ΛS + iy 0'/2) I-1 (4.3.11)

to (4.3.7). We add (4.3.9)-(4.3.11) to get the bound

const, j &(AS + I)* [(j/2) I-1 + 2~e^2]

for (3.3.13) and ||-P(:?Vilren Since ̂  is bounded independently o ί j 9 we
have shown that PW T~l is an operator on ̂ ren and we have proved
(4.3.4).

4.4 Eenormalizing the Annihilation Part of V

We prove that (4.1.13) and (4.1.14) are operators with the required
properties. By Theorem 4.2.1 we may consider instead

F! + Di' + D2 , (4.4.1)

FO + D0 + D[ + ca J + c87 . (4.4.2)

Let PA a be the terms omitted from W T in § 4.2, A a, and define PA &, etc.
similarly. Let PA a be the corresponding term from F^ T and let

dk.

Because of the cancellation we find

== Σ

= Σ
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in the notation of § 4.3. The quantity (3.3.22) corresponding to the
product

is bounded as in § 4.3, and PAa + c2I is an operator approximated by
cutoff operators, as required. The cases PAc + D{, PBa + D2 are similar.

Next consider PA 6 + c3 T. We first explain why there is cancellation
in this expression. The untruncated series T'ζ is a solution of the equation

T2 = I-Γ(QTϊ). (4.4.3)

Consider the terms in Ab of §4.2 for the product F0T~ = Ύ^T^T'ζ.
Since F0 is to be contracted four times with T'ζ vertices, these are the
same terms as the terms of type Ab in the product T^ F0 T£, and using
(4.4.3) we see that they are the same as the terms of type Ab in the
product — TI V0Γ(V2-o- (ΓV^ T%\, the latter terms are nearly

equal to
- cs T~ = - 27 (FO -o- (Γ( F2 -o- Γ F4))) Γ2~ ,

the difference being due to the fact that different variables are affected
by one of the Γ operations in these two expressions. Thus there is
a contribution to PAb + c3I coming from this difference in the Γ factors.
To estimate this contribution let k-^ . . ., &4 be the variables of F0. Then
c3 contains the γ factor

4

« = Σ μt
ί = ι

while PA b contains the γ factor
i

a+ b = Σ Vi>
ί = ι

where k& . . ., kt are uncontracted variables from the T2 part of T.
We have

μ-1 - (a + δ)-1! ^ a~l~ε b* .
Now

b = Σ μt ̂  & Π μtί = 5 ί = 5

for some constant K and so
i

{a-1 - (a + δ)-1! ^ α-1-6 Kl Π μl - (4.4.4)
ί = 5

With this bound, (3.3.22) follows from Theorem 2.2.1 for the present
contributions to PA b + c3 T. There are also contributions to PA & + c3 T
due to the truncations. In fact the integration in c3 is unrestricted while
the integration in the corresponding variables of PA 6 is restricted by the
ΓV± truncation and by the Q truncation (3.2.9). These contributions
can be estimated as in § 4.2, § 4.3 and so PA & + c3 T is an operator.
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The remaining cases PAd + D0T and P£b + D" T are similar. After
cancellation there are terms due to the truncation (3.2.9) and there are
terms due to the difference in the variables affected by one of the Γ
operations both types of terms can be estimated as above. We show that
cancellation does occur. Consider terms of type Ad in the product
V0T~ = V0T?(I - Γ(QT?)). Since the last Q vertex must be ΓF3, it
is equivalent to consider terms of type Ad in the product

- FO ZT Γ((Vt - F3 -o- Γ F4) y2~) . (4.4.5)

However DQT~ = (V0 -o- ΓV^\ TI T'ζ is exactly the sum of all terms

of type Ad in the product F0(ΓF3) T^Tζ. Now

(ΓF3) Tΐ = Tΐ(ΓV3 - ΓF3-o-ΓF4)

and so D0 T~ is the sum of all terms of type A din the product

- ΓVS -o- ΓF4) Tζ . (4.4.6)

Since (4.4.5) and (4.4.6) have an opposite sign and otherwise differ only
in the variables affected by a single Γ operation, cancellation occurs in
PA d + A) T as asserted. The proof that cancellation occurs in PB b + D['T
is similar.

4.5 Renormalizing the Self Energy

Theorem 4.5.1. Let δΐen(a) be the kernel of one of the four operators
Zf0ren(σ), . . ., ^2ren (a) °f (4.1.8). Then <5ren(σ) converges pointwise to a limit

$ren as σ ~^ °° an^ for anU /? > 0 and any N9

\d**(<r, ti, *a)l ^ const. μ{~^ μ~^ μ(k1 + kj~* (4.5.1)

with a constant independent of σ.
Proof. The finite renormalization δfm

2 in (4.1.4) contributes to
(5ren (σ) a function dominated by

which is bounded by the right side of (4.5.1). Thus we can take δfm
z = 0.

We consider the operator A2τeiί(σ). For |&4 , |Z| ̂  σ, the kernel ό(σ, . , .)
of A 2 (σ) is given by

δ(σ, \, I) = 4(4!) / ί*ί(i4 + I) Π μ(k{ - ζ)'1 ( Σ μ(kt ~ C)) '
Z(a) i = l \i = l /

)-1!* dςk

= 4(4!) / K(k, + 30 ί(- 3C + I) Π μ(ki - O-1 (4.5.2)
Z ( σ ) i = l

ϊ112 μ (0
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In (4.5.2), Z(σ) is now the subset of JRβ defined by the same inequalities
(4.1.6) the equality comes from taking 3 ζ = k-^ + k2 + &3 as the variable
of integration in the integral defining ^* K. The kernel da of D2 (σ) is given
by the similar expression

dσ(k^ I) = 4(4!) / ί(i4 + 3C) ί(- 3C + I) Π μΓl (4.5.3)
Γ(cr) < = 1

/ 4 \- l

for |&4|, |Z| ^ σ, where

Integrals over the differences Y(a) ~ Z(σ)9 and ^(σ) ~ ^(cr) are part of
the bound on <5ren(σ). The rest of the bound comes from estimating the
difference between the two integrands over the same region Y(a) r\Z(σ).

We break Z(a) - Y(σ) into two parts: |f| < σ3/4 and |f| ^ σ3/4. If
k £Z(σ) - Γ(σ) and |f | < σ3/4 then

σ ̂  1̂ 1 ̂  σ + σ3/4

σ - σ3/4 g î  - C| ̂  σ ,

for some i9 1 ̂  i ^ 3, for example for * = 1. Also

- C)"1 dkΛ ^ const, i

and so the contribution of (Z(cr) ~ Γ(er)) π {|C| < σ3/4} to (4.5.2) is
bounded by

const, σ-1/* Inσ μ (k^ + I)- N μ±112 μ ( I ) ' 1 / 2 .

Next consider Z(σ) r\ {\ζ\ ^ σ3/4}. If |*4| is bounded by σ1/^ then the
factor ^(A;4 + 3£) is bounded by |C|~^ ̂  or~3-^/4 and our contribution to
(4.5.2) is bounded by

const, tf-3^/4 Ina μ(k± + Z)-^ μ^

If |Jfc4 | is greater than σ1/2 then

μ-1/2 ^ const. ̂ -1/2σ

and the contribution to (4.5.2) is bounded by

const, σ-^/2 Ina μ(k± + l)~N μ^1

In the same way we bound (4.5.3) in the regions ~ Z(σ) and |£| ^ σ3/4.
It remains to bound the difference between the integrands (4.5.2) and

(4.5.3) and it is sufficient to do this in the region

Y(σ)(ΛZ(σ)r\{\ζ\ £ σ3/4} .

Because of the rapid decrease of K(k± + 3 ζ), we may restrict the integra-
tion to the region μ(ζ) 5j μ*. Then

\μi — μ(ki — ζ)\ ^ const. μ(ζ) < const, μl
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for 1 ̂  i ^ 3 and

/ 4 \-l / 3 \

Z>< - 27 (*<-£)
\ΐ = l / \i = l /

/ 4 \-β!2 / 3

^ const. μn Σ μλ Σ
\i = l j \i = ι

[-/

• \ (
L\i =

4 \ -1 + 0/2

Σ
= l

and the desired bound on the difference between the integrands follows.

The same estimates together with the bounded convergence theorem

shows that the difference of the integrals (4.5.2) and (4.5.3) converges to

the integral of the difference of the integrands, or in other words (3ren (a)

converges pointwise.
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