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Abstract. Equal-time current commutation relations are considered in re-
normalizable field theories. Renormalized currents are obtained by means of
solutions of the Yang-Feldman equations for Heisenberg field operators in perturba-
tion theory. For the computation of matrix elements of current commutators we
apply Jost-Lehmann-Dyson type techniques. The equal time limit is taken with
the help of symmetrical time-smearing functions which interpolate the <5-function.
Our methods avoid any cut-off procedure and lead therefore to unambiguous
results. In order to avoid spin complications, our general methods are applied to
trilinear resp. quadrilinear couplings of isoscalar and isovector spin O-mesons in first
order perturbation theory. We find that the zero-space components of the current-
commutator matrix elements behave for small time separation T like \n(T)

Introduction

It was pointed out by the present authors some time ago that the

concept of equal-time current commutation relations (ETCR) is com-

patible with the general principles of quantum field theory [1]. In order

to understand the dynamical content of ETCR and their general form

allowed within the field theoretic framework it may be helpful to discuss

ETCR for renormalizable field theories in perturbation theory. In this

paper we take up the discussion of this problem.

The first investigations along this line have been undertaken by

JOHNSON and Low [2] and other authors [3]. The procedure used in these

papers we want to criticize for two reasons:

1. No explicitly renormalized currents are used.

2. The ETCR \jμ(x), jv(y)]XoΣ=t/o is computed by taking appropriate

time limits from the time-ordered product T[jμ(x), jv(y)].

* Supported by the U. S. Atomic Energy Commission under Contract AT(30-l)-
3829.
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Now it is well-known that the jΓ-product is a non-unique ambiguous
quantity even if finite currents are used. In particular, the usual perturba-
tion theoretic definition of the jΓ-product of renormalized currents
leads always to finite expressions only if the currents under consideration
participate in the interaction Lagrangian (i. e. Quantum electrodynamics,
Yang-Mills type of theories). In any other theory (the Johnson-Low
model, the pseudoscalar meson-nucleon coupling etc.) the so defined
Γ-products will diverge in general. Instead of really redefining the
T-product, JOHNSON and Low [2] introduced a causality violating
cut-off in momentum space and lift this cut-off after having taken equal
times. The interchange of the two limits cut-off-> oo and T -> 0 is always
questionable, as f. i. by another cut-off procedure (Pauli-Villars regulari-
zation) one may kill every non-canonical term in ETCR [3]. In order to
avoid such dubious techniques, we first compute renormalized currents
by means of iteration solutions of the Yang-Feldman equations for
Heisenberg field operators1. We derive the Jost-Lehmann-Dyson (JLD)
representation for matrix elements:

<Φ\[ΰ(τ)> M - τ
where the JLD-spectral functions are represented by parametric integrals.
We then compute ETCR as the limit:

dxQ fψ (XQ) <^

where

with

f(xo) = /(— xo) a n d / frW dxo=l .

In this paper we restrict ourselves on trilinear and quadrilinear
couplings of spin zero mesons. We introduce the following meson fields:

Ai (x) = ith component of an isovectorial pseudoscalar meson field.
B(x) = isoscalar scalar meson field.

The following couplings between these fields are renormalizable and lead
to a non-trivial isovector-vector current:

Lt = & A9 (x) B (x) L% = <72 4
2 (a;) J53 (a;)

We may also consider combinations of these couplings like f. i.

Lt = g^A^x) + B*(x)γ .
1 In this way some results on ETCR in quantum electrodynamics have been

obtained recently by LANGERHOLC [4].
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The isovector-vector current is defined as usual:

f$(x) - z\εlnm{An(x)X Am(x) . (1)

In theories with couplings Llf2t^ we may define in addition an
isovector-axialvector current, whose most general form (if at most
bilinear terms in the fields are allowed) is given as follows:

ifW = T {β(χ)> dμ AΛχ)} + τ{AΛ*)> SμB(x)} + o dμ A,(x) (2)
The constants a and b will be fixed in zeroth order by the requirement
that ETCR should be as "quark-like" as possible. For certain interactions
there is another interesting possibility for fixing these constants: Consider
L± = g^A2(x) -\- B2(x))2 then the choice a = —b and c = 0 i. e.
fiAi{x)~ {Ai(x)y dμ B(x)) leads in case of equal masses for the A- and
^-particles to a conserved axial vector current. The reason for this
additional law is the fact, that L4 bears a higher symmetry than just
SU(2). In case of the L3 interaction Lagτangian, it has been realized by
Kuo and SCΓGAWAKA [5] and also by one of the present authors (P.
STTCHEL, unpublished) that an axial vector-current involving trilinear
meson-terms can be constructed. Using the canonical commutation
relations formally, one can see that the Ansatz

j$ (x) ^adμAί (x) + β{A* (x) dμ A, (x) - 2Λ (x) dμ A (x) A, (x)}

with α β = - 1 / 4 fulfills the ETCR

because the trilinear terms commute at equal times with itself and the
relative commutator between the linear and the trilinear term yields the
wanted vector current. The argument is, however, completely formal since
field operators cannot be multiplied at one point. In order to obtain
a well defined axial vector current, one must at least take out the short
distance singularities of the two point function. For the special case of
the free field this leads to the well known Wick product. An explicit
computation with the well-defined trilinear Wick product:

:AHx)TμAi(x):
shows the appearance of an additional (divergent) term in the ETCR of
the form:

δ(x — y)fρ (κ) dκ : A{ (x) d0 Ah [x] :

where ρ = two particle phase volume.
Hence, we conclude that a zero order (in the coupling g3) axial vector

current fulfilling ETCR cannot be defined. Within our trilinear Ansatz
the only way out of this difficulty is:

β~ff*
and hence a ~ l/<73.



330 B. SCHROER and P. SΊΊCHEL:

In that case the axialvector current contains a g^"1-orderterm and the
zeroth order ETC would require second order perturbation terms in the
meson field. We want to restrict ourselves in this paper only to first
order meson fields and hence we will discuss the axialvector problem of
L3 in a subsequent paper.

We next compute all ETCR between V- and A-currents in the model
characterized by L%, restricting ourselves in this paper to first order
perturbation theory. Thereby, the ETCR between the zero and space
components of the currents which are bilinear in the meson fields turn
out to be logarithmic divergent, i. e. ~ In (T) gradό (x) for T -> 0 indepen-
dent of the interpolating symmetric test function.

Equal Time Commutators in Zeroth Order and the Form of the

Axialvector Current

It has been noted by several authors [6], that our vector current (1)
leads in zeroth order to a [F, FJ-ETCR, which agrees with Gell-Mann's
simple ''quark result" [7] only for the isospin antisymmetric combination.

The constants α, b, c in the zeroth order axialvector current:

?,L1)(0) (a) = a BW {x) dμ Af (x) + b A[o) {x) dμ JB<°) {x)

( 3 )

we Λvill now fix in such a way that for the combination of ETCR anti-
symmetric in the "internal indices" (i. e. isospin and "kind of current")
we obtain Gell-Mann's "quark result" [7].

From the requirement:

\ )t: =v. - (*" ~ *) = ieiJtrδ (x-y) fjr

we obtain the restriction:
—δ 2 = α 6 = 1 . (4)

Then the ETCR \jfam){x),3um{y)V0~yii contains gradient terms sym-
metric in the isospin indices [7]. The [V, ^-commutator does not lead
to further restrictions. But there again appear gradient terms which are
symmetric in the internal indices [8],

If we put according to (4):
a = —b = i

our axialvector current agrees up to the term linear in A (x) with the
mesonic part of the axialvector current of GELL-MANN and LEVY'S
σ-model [9].

First Order Currents

Within the A2 jB2-theory we obtain from the Yang-Feldman equations
for the first order field operators (for reasons of simplicity we take
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equal masses m for the J.-resp. ί?-particles):

(x) = fd*xf ΔR {x — x') : Λf (xf) B^2 (xf):

BM (x) = J &xr ΔR {x — x') : A w [x) ΰ(°) (x'):

With Zι]j} = 0we obtain by means of equation (1), (2), (5) and the choice
a — —b = i for the first order currents:

0*0 = εinn : A™ (x) ¥μfd*x'ΔR(x-x'): A™ (x')

(*) = i f & x' AR(x~ x') d%( : 4<°>*(a') 4 0 ) (») J5W (.τ;): (6)

— : A[0)(x') BM\x') JB<°> (a;): ) + c

We note that due to their definition our currents contain no bilinear
terms in the free fields in first order.

First Order Commutators

The first order commutators:

IJU (x), #* (2/)](1> = [fμf (aθ, f,P (V)] + ψμψ (a), J%0> (2/)]

contain terms quadrilinear, trilinear, and bilinear in the free fields arising

from single resp. double contractions.
The single contraction terms do not lead to any anormal result.

Either two fields at the points x and y are contracted with each other
leading to a Δ (x — y) function, whose time derivative gives at equal times
normal, finite terms (those terms also contain gradient terms, as they
are of the same canonical structure as the zeroth order commutators), or
x x' resp. y x' contractions take place whose sum leads to the local chain:

fd*x'Pμv(dx,dy)(ΔΛ(x-x')ΔΛ(x'-y)

-ΔR(x-x')ΔR(x'-y)y.B^\x>): ( ? )

where Pμv(dx, dy) is a second order polynomial in the derivatives. By
means of contour integration in momentum space it is very easy to see
that (7) vanishes for x0 = y0.

Therefore we concentrate our effort on the bilinear terms which
follow from double contractions. By means of straight-forward computa-
tion we obtain:

= δik f d* x'Iμv(x, y, x'): B«»* (x'): (8)

^ I & ' I{ V, %') (9)

) 1 ( )

Iμv(x,y,x')
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where Iμv(x, y, x') is defined as follows:

Iμv(x, y, x') = -i{-[AM(y- x') ΔA(x' - x) ±AR(y- x') Am (x' - x)]

• dj dv Δ (x-y) + [ΔΛ (y- x') ΔA(x' -x)-Aa(y-x') ΔR(x' - x)]

•d% dξ A<»(x-y)}.

As the vector current is conserved, Iμv is divergenceless, i. e.:

3g Iμv(x, y, x') = dv

y Iμv(x, y, x') = 0 .

It is amusing to note that according to equation (9) and (10) our axial-
vector current is effectively conserved in the bilinear part of the com-
mutators.

Jost-Lchmann-Dyson Representation for First Order Commutators

Let us consider Iμv in momentum space. We define:

Inserting (10) into (11) one obtains immediately

ΐμv(q,Δ)= (2π)-* f d* k δ(k*- μ

μΐ I* q » I (12)

The imaginary part (i. e. the last term) of eq. (12) vanishes for Δ% < 4tμ2.
In the following we concentrate our effort on this case exclusively.

Then we may rewrite (12) into the form

Iμr(q, Δ) = -i(2π)~3 f d* k <5(F-μ*) ( 1 3 )

•ίε(k)\

- (h - q + A + i εj jί
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Now we apply the formula2

1

with

ρ{8, U, A) = "^-

where

^(*.^ί) = γ / | + i ^ r L (16)

and obtain for (12)

ϊμv{q> Δ) = (2π)~2 j&kδ{h*- μ*) fd*ufds

[ε(k) — ε(Jc~q~u)]δ(s—(Jc — q~ uf) ρ(s,u,Δ) (17)

The ^-integration in (17) may be done by means of standard techni-

ques [10].

In this way we get finally the following Dyson-representation3

ίoτIμv(q,A):

lμv{q, Λ) = (2π)~2Jdίufds ε(q + u) δ(s—{q -f uf)

' )9μv Ψi(s> u> Δ) + (q + u)μ (q + u)v ψ2{s, u, A)
(18)

/ 1 \
+ \uμιιv—^ΔμΔή ψz(s, u, A)

+ [(q + )̂A* (U + 4)V + (g + ̂ " ( ^ ~ 4 ) J ^ ( ^ u, zi)}
with

= ( dsf ρ{s',u, A) f(s, s')^[s*

(19)
= j ds' ρ{s',u,A)f(s,s/)ι

{= dsf ρ(s', u, A) f(s, s')
a2

2 Eq. (14) may be derived easily by means of Feynman's identity =-
]_ QJ ' 0

o
3 After performing the ^-integration by means of the δ-tunction in (15) and

having introduced the substitutions s' -> α? ΞΞ ^ — 1/2, equation (18) becomes a
Dyson-representation of the vertical type [11].
23 Commun. math. Phys., Vol. 8
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and

a) = f [(x - (j/β + μf) (x - (]/"«"- μfl]V* θ(x- (fs + μf) . (20)

We note two important properties of the spectral functions ψi (u, s):

a) Asymptotic behaviour in s:

Due to the fact, that ρ(s') = -^y- ρ(sf) and suppρ(s') is compact

follows ψi (u, s)t^oo0 {s-1) i = 2, 3, 4 and ψλ (u, s)8^oo0 (1)
b) Symmetry in u :

ψi(s,u) = ψifa—u) .

Equal Time Commutators

In the following we collect the main arguments in the final evaluation
of the ETCR starting from the Dyson representation Eq. (18).

A. μ = v = 0

Contribution from ψ1 and ψ2'- We have ψ1(s, u, Δ) s_y^> — TC I dsf

-ρ(s', u, A) + 0 ( 0 ψ2—+-λ.ψl .

Therefore:

Ψl(q + u)\ u, A) + (q0 + u0) ψ2((q + u)\ u, A) -^^ 0((q0 + uo)~*)

i. e. due to ε(q0 + uQ) we have no contribution from ψlt2 to

l/Γ

Contribution from ψ3: As ^3(s, u, A) ̂ ^ 0(5~1) the same argument as
above may be applied.

Contribution from ψ^: This contribution may be written as:
IIT +1/2

Ao lim / dq0 f dκκ(qo + Aoκ) ε{qo+ Aoκ)
τ-+o _ljτ _ 1 / 2 (21)

• θ((q + A κf- (ΫTJκ) + μ)*) g((q + A κ)\ s' (κ))
with:

g is defined as:

and has the asymptotic behaviour
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Now we have by a change of variable:

f dqo(qo + Δox) ε(q0 + Aoκ) d((q + A κf - (}/7Jκ) +- μ)*)
-il T

8'(x)) (22)

with

B± (κ) - ( ~

But only that part of (22) contributes to (21) which is antisymmetric
in κ, i. e. we may use instead of (22) the antisymmetrized expression:

i / B+(κ) B-(κ)\

\B+(-κ) B-{~x)l

Therefore we conclude:
l/T

lim / dqoloo(q,Δ) = 0
τ->o _ljT

i. e. the ETCR for μ = v = 0 gives a vanishing contribution in agreement
with Gell-Mann's conjecture.

B. μ = 0,v = ->

1. ^ gives no contribution.

2. (g0 + u0) u ψ2>4: gives no contribution due to u — Δκ and applying
the same arguments as above.

3. Contributions arising from the terms

/ 1 , Λ . . / z ) 0 '
K i t — -j J o Δ J y>3, (q + ti) K — - 2 -

Due to the asymptotic behaviour of ψSf 4 and the symmetric integration

over qQ we obtain no contribution.

4. There remain the terms

(23)

ro + uo)q{ψ2~ψ^) .

As wd • Oίs"1) (due to the form of wx this asymptotic behaviour does

not become better after performing the ̂ -integration!) the first term
in (23) leads for the ETCR to a logarithmic divergent gradient term,
23*



336 B. SCΉROER and P. STICHEL:

i. e. in configuration space it looks like:

~ lim In(T) grad^ δ{x — y) .

The second term in (23) gives a vanishing ETCR-contribution due to the
following arguments:

1. ^ 2 — Ψi s~co 0(^~2) because with the asymptotic expansion:

one sees immediately, that

- sγ~ 5s μ* + s s')]

2. Due to this asymptotic behaviour, the ETCR-contribution of the
2nd term in (23) may be written as:

q f d*u J dsψ2(s, u, A) — ψ^(s} u, Δ) . (24)

Now, an explicit evaluation shows that:

ds -W P ^ 1 (s2 + 4 (^ - 8>?~ 5s P' + s 5')] - ° (26)
i. e. (24) vanishes.

C. μ} v space-like

Due to the symmetric (^-integration and the asymptotic behaviour of
the ψi we can only have a non-vanishing ETCR-contribution for μ = v
arising from ψv But also this contribution vanishes due to the symmetry
of ψx for u -> —u.

In all these computations of equal time commutators we have
performed a formal symmetric q0 integration. The use of a symmetric
interpolating test function of the type proposed in the introduction does
not change the results obtained by the more formal integration method.

Conclusions

In the case of the coupling A2 (x) B2 (x) we found logarithmic divergent
gradient terms for the ETCR of the zero-space components of current-
current commutators. It is easily seen that the same results hold for the
other quadrilinear couplings.

Concerning the trilinear coupling Az (x) B (x) the linear terms in the
current-current commutators may be expressed by Iμv too. But then
we have to consider in momentum space lμv(q, Δ) for time-like Δ(Δ2

= μ2). Again we obtain the same results as in case of quadrilinear coup-
lings, because our Dyson-representation Eq. (18) for the commutator
matrix element is correct for all A2 with A2 < 4μ2.
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In case of the quadrilinear couplings one would also be interested

to learn something on the bilinear contributions to the ETCR for time-

like A (i. e. A2 > 4μa). But this would require an explicit analytic

continuation of our Dyson-representation in A2, which is a somewhat

involved task. We, therefore, dispense with this.

The isospin-dependence of the divergent terms we have found agrees

with the general conjecture of ADLER and CALL AN [7]. To be more

specific, we find (αz denotes the kind of current)

{ [#(*) ' i:i(y)f1] - U iW, ?;α!(2/)](1)}bilinear = 0 (26)

already for finite time separations.

It would be interesting to check, whether in case of our models

the Adler-Callan conjecture is true in higher orders of perturbation

theory. This question will be discussed by us in the near future.

Note added in proof. After completion of our paper we received a preprint by
N. USYUKINA from Dubna, where similar methods have been applied to ETCR
within the Johnson-Low model.
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