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Abstract. It is shown that a necessary condition for an Einstein-Maxwell field
to be of embedding class one is that the electromagnetic field and Weyl tensor
are both null (and non-zero). All Einstein-Maxwell fields of embedding class one
are, in principle, obtained.

1. Introduction

The investigation carried out in this paper was motivated by the
desire to determine whether the dimensionality of embeddings, discussed
elsewhere [1], of certain Einstein-Maxwell fields is minimal. Necessary and
sufficient conditions for embedding class one have been found by
TromMmAs [2]. However, these conditions involve extremely heavy alge-
braic manipulations and have not been much used by other workers.
In fact, several papers have appeared recently discussing space-times of
embedding class one, for instance SZEKERES [3] and STEPHANI [4]. In
particular Stephani has investigated null electromagnetic fields of em-
bedding class one. The present paper completes these investigations and
generalizes them to the non-null case. The results can, in part, be stated
as the

Theorem. Solutions of the Einstein-Maxwell field equations can be
embedded (locally and isometrically ) in a five dimensional pseudo-euclidean
space only if the electromagnetic field and the Weyl tensor are both null
and non-zero.

The null tetrad notation of NEwMAN and PENROSE [5] is used to
prove this theorem. The notation is based on a tetrad of vectors
1*, n*, m*, m® satisfying the orthonormality conditions

*n, = — m*m, =1,
all other contractions being zero. Throughout this paper Greek letters
a, B, y, . . . denote tensor indices (and range from 1 to 4), Roman letters
m, n, P, . . . denote tetrad indices (and range from 1 to 4) whilst capital
letters @, R, S, . .. denote tensor indices in the embedding space (and
range from 1 to 5). The tetrad components of the Weyl tensor can be
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written in terms of the five complex scalars go, ¥, ws, 93, ¥, Whilst the
tetrad components of the Ricci tensor can be written in terms of the
ten scalars ¢,,,, A (here alone the indices m, n take the values 0, 1, 2).
Solutions of the Einstein-Maxwell field equations are characterized by

where ¢,, are the following tetrad components of the electromagnetic
field tensor F,g,

¢0=Fapl“mﬂ, ¢1= 1/2Fmﬁ(l“nﬁ+'n_2“mﬁ) and ¢2=Faﬂm°‘nﬁ.
The elegance of the Newman-Penrose notation is in the introduction of

ten functions, called the spin coefficients, which are defined in terms of
the complex Ricci rotation coefficients y,,,, by

%= Y131 T=— Va1, €=1/2(Y121— V341 @ = V1300 A= — Vasss
0= Y133 K== Yoz %=1/2(Y12a— Vsaa) B=1/2 (Y125 — V343
V== Yasn ¥ = 1/2 (Y122 — V342) a0d 7= py3,.

An explicit notation is sometimes used for intrinsic derivatives, namely

D¢=¢,;l;, Ap=¢, m*and 6= ¢, m?.

Continual use will be made of the Newman-Penrose field equations,
the commutation relations for intrinsic derivatives, the Einstein-
Maxwell field equations and, finally, the Bianchi identity in the presence
of an electromagnetic field. All these equations are to be found in the
references [5] and [6] and will not be reproduced here.

2, The (auss-Codazzi Equations

It is well known [7] that a space-time is of embedding class one if
and only if there exists a symmetric tensor a,,, satisfying the following
equations.

Gauss equation:

-Rmn;nq = 2eam [9%q]n - (2])
Codazzi equation:

Y [n;p] — anpl O g + 7%5 [n@plq = 0. (2.2)
In the above R,,,,, is the curvature tensor of the space-time, e = 41
and square brackets denote antisymmetrization. These equations are the
integrability conditions of the differential equations
y?mn - y?p Vin = e“m'n"?Q (2.3)
and
n?m = —Opm ?/?p . (24)

Here 79 is a vector normal to the space-time and y@ are coordinates in
the embedding space.
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A necessary condition for embedding class one can be obtained in the
following straight forward manner. Define

Tmm»q =&Y Rty Byvng - (2.5)
If the Gauss equation is satisfied

Tmnmq = 4eotuy AsmPipPuntyq =4 la'l Emnva -
Therefore
Tonvet Trmnan=10. (2.6)
The condition (2.6) is very useful when solving the equations (2.1).
Contracting (2.6) on p and ¢ gives
e Rotm Byvna=0.
This can be written in terms of the Weyl tensor C,,,,, and Riceci tensor

R,,, as .
u*vpq — Rt Op*m _
C Cuvpg= B?,07°",, =0,

where * denotes the dual tensor. The components of the Gauss equation
(2.1) can be written explicitly as

e(@3 a3 — @11 Ag3) = Yy (2.7)

e(a1p @5 — Oyy Gag) = Y1 + boa (2.8)

€(a1s O34 — B34 Gpg) = Yo + 24 (2.9)

€(@1p ag — Gas ¥1a) = Y3+ Py (2.10)
€(@gq Bpg — Upp (yy) = Py (2.11)
€(13 @34 — 14 F33) = Y1 — o (2.12)
(@ A3q — @3 0yy) = — ¢oo (2.13)
€(ay3 Ga3 — @15 O33) = — o (2.14)
€(tgy Ugy — Gog Ggy) = — ¢22 (2.15)
€(Bgg @yg — g3 Agq) = Y3 — Pog (2.16)
e(@yy Ggy — Uyg Oyp) = — "/’2—1/’2—245114‘2/1 (2.17)
€(ag5 @gq — 34 A3q) = — Yo — Po + 2655 + 24 (2.18)

while the components of equation (2.6) can be written

boz (Y2 — Pa) — 291612 + 2P3ho1 — Paboo + YoPaa =10 (2.19)

~ $oo P12 — Poa 1o+ Y1 (— Yo+ 44) + 2801 b1y + Yo Y5 =0 (2.20)
~ $aa P10 — Pao 1o+ Y (— Yo+ 44) + 20y by + Yoy =0 (2.21)
Go1 (W2 + 25) — P3 boo — P1 oz — 291 b1 + Yo Par =0  (2.22)

(

Po1 (9o + 2Ps) — Pa bas — Ps Pao — 293 b1 + Ya Por =0 2.23)
1.
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— Poo (P2 — P2) + 291 b1o — 291 o1 + Fo boz — Yo P20 =0 (2.24)
~ $aa(Wo — Po) + 295 b1a — 295 bar + Pa a0 — Yahoa=0 (2.25)
Yo (9o + 24) — p® + o1 bo1 — Poo o2 =0 (2.26)
Yy (9ot 24) — 93 + oy Goy — Paa Pao =0 (2.27)
(P2 + Pa + 2611 — 24) (92 — Pa) — (1 + do1) (Y5 + da1)

2.28
+ (@1 + b1o) @3+ b15) =0 (2.28)
(po + Po — 2011 — 24) (2 — ) — (91 — bo1) (w3 — Ba1) (2.29)
+ (P — b10) @3 — ¢12) =0 '
(Yot Yo+ 2¢11 — 24) (Yo + Po — 2611 — 24) — pay
+ booP2z — (@1 + b10) (Fz — b12) + o220 (2.30)

+ (F2+ 24)° = 2(y, + 24) (P2 + 24)
- (Qpi‘) + ¢12) (1/-)1 - ¢10) =0.

3. Algebraically General Electromagnetic Fields

If a solution of the Einstein-Maxwell field equations represents an
algebraically general electromagnetic field then there exists two null
vectors satisfying the equation

k*F, 5k, = 0.
Choosing these vectors as the tetrad vectors [* and n* gives
0o=10=0. (3.1)

Without loss of generality it can be assumed that ¢, is non-zero.
Egs. (2.19), . . ., (2.30) together with the conditions (1.1) and (3.1) yield
either

Yok 0, Yo=wp=w=y,=0, 4¢f; =3¢} 3.2)
or

Po=0, P=9y;=0, 4‘15%1 == YoYs - (3-3)

Substituting (3.2) into the Einstein-Maxwell field equations and into
the Bianchi identities gives

v=0=A=x=p=1=m=0=0.
The Newman-Penrose field equation
Du—0dn=@u+od)+nanm—(e+ &) u—n(a—p)— v+ p,+24 (34)

then yields g, = 0 which contradicts (3.2). The case corresponding to
(3.3) is far more difficult to deal with. Substituting (3.3) into the Einstein-
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Maxwell field equations gives

D¢, =204,
A¢, =~ 2ud,
0d, =21¢,
¢, = —2nd,.

Substituting (3.3) into the Bianchi identities gives
Dy, = (4e+ 20+ 40) o
Ay = (4y — 2u) yy
0wy = (— 47+ 27+ 4f) o
dpo = (4o — 27) o,

with
20,41 = — uy,
2"‘?51?;1: TYo
V%= — 2'“751‘51
Ay = 29951‘/3-1'

(3.5)
(3.6)
(3.7)
(3.8)

Applying the commutators to ¢, and y, yields, after simplification,

Ao=0(y+ P+ a(r+ &)+ T — 7% + ¢y
Du=—pu(e+ & —t(@w+ 7) — Ta+ 7% — ¢py
do=¢(a+ f— &)+ 7o
Sp=—plf+oa—7~-12
An=—vo—m(i—y+y)
Dr=»u+7(0— &+ e)
S =—ou— @) —a(B—5) — A6+ 16— ¢y
br=ple— o+ v(@—pB)+0i— A5+ ¢y
O=mg— Tu— 2mu
0=1710— 7o — 270.

The Newman-Penrose field equations

(3.9)
(3.10)

Ad=byv=—(u+@DA-= By —PNA+Ba+pf+a—7)r— 9,

and

Dy —dn = (gu+ 0d) + af — (e + Hp — n(@— f) + v+ p,+24

now give, using (3.5), ... (3.16),

ou+ofi—20u—203—ax—-71T— 2t - 277 =0

and

ou+oi—20u—20a4+nA+1T+ 21+ 277=0.
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Suppose ¢ = 0. From Eq. (3.11), e = 0. If z =0 Eqgs. (3.15) and
(3.8) yields ¢,, = 0 which contradicts the hypothesis that ¢, & 0. If
7 = 0 then ¢ = 0 and from Eq. (3.5), u = 0. Eq. (3.9) and (3.10) become,
using (3.6) and (3.7),

AT+ B A RT+ 7T+ ¢1_0 (3.21)
—AT— TT — AT — AT — Py = (8.22)

The imaginary part of Eq. (3.21) gives
7T =nt, (3.23)

while Eq. (3.21) plus (3.22) gives
Am=TT. (3.24)

Substituting these into Eq. (3.19) gives 7= — 1/2 zx and then Eq. (3.24)
yields 77 = 0. This contradicts the hypothesis that 7 =+ 0.
Now suppose g + 0. If 7 & 0 Egs. (3.17) and (3.18) yield

30u+ofn—2eu—20a=0. (3.25)
Eq. (3.19) plus (3.20) gives
ou+ efi — 204 — 2074 ="0 (3.26)

and comparing these equations, u = 0. Eqgs. (3.12) and (3.8) then give
o7 = 0 which contradicts the hypotheses. If v = 0 then from Eq. (3.18),
7 = 0. Egs. (3.15) and (3.16) now become

—ou+ofi— @A — @i — $1=0 (3.27)
op—Qu+ QA+ Qi+ ¢u=0. (3.28)
Eq. (3.27) plus (3.28) gives
o4 = @gp (3.29)
while the imaginary part of (3.27) gives
Gi=ou- (3.30)
Substituting these into the sum of the Eq. (3.19) and (3.20) yields
el =2ep,

whence y = 0. From Eq. (3.10) ¢,, = 0 which contradicts the hypothesis
that ¢, < 0. The space-times considered in this section are therefore not
of embedding class one.

4. Null Electromagnetic Fields

If a solution of the Einstein-Maxwell field equations represents a null
electromagnetic field then there exists a null vector satisfying the
equations

Foph = Fropk,y=0.
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Choosing this vector as the tetrad vector I* gives
$o=1¢1=0. (4.1)

Without loss of generality it can be assumed that ¢, is non-zero. Eqgs.
(2.19), . . ., (2.30) together with the conditions (1.1) and (4.1) yield

Yo=v1=Py=17p3=0.
The Weyl tensor is therefore null. This completes the proof of the
Theorem stated in the Introduction (the fact that the Weyl tensor must
be non-zero is apparent from the subsequent calculations).

SteEPHANI [4] has shown that, if the Einstein-Maxwell field is of
embedding class one, the vector {* is geodesic, hypersurface orthogonal
and expansion free. Space-times admitting a congruence I* having these
properties have been discussed by Kunprt [8]. In particular the metric is
of the form

dst= — |dz — 4vsdu/(z + Z)|? — 2dudv — Hdu*, s=+1or0. (4.2)
The vectors 1%, n%, m* defined by

= 08, n" = — 0 + 1/2 Ho5 — 4sv(z + 7)1 (85 + 6), m* = /2 &5
form a null tetrad. Here (a1, 22, 29, 29) = (u, v, 2, 7).

Substituting the coordinates into the commutators yields
x=p=0c=¢=0,
a=p=127=12a=—1/25)/2(z+2),
A=pu=4sv(z+2)"2,

v =—1/2)/20H/0z and y=—1/49H|0v.
Substituting these values for the spin coefficients into the Newman-
Penrose field equations gives
A=dp=di=po=p1=p=93=0,
Yy = — 02H|[07* — 2Hs(z + Z)~? — 106s2%(z + 2)~*
+ 2sv(z + 2)20H[0v + 2s(z + Z)"10H[0Z
$oo = — 0*H|920% — 2Hs(z + 7)~2 — 106502 (2 + Z)~*

+ 2sv(z + 2)20H[0v + s(z + Z)"1(0H[dz + 0 H[0%)
with

0?H[0v? = — 24s(2 + %)% and 02H/[0vdz=48sv(z+2)3.

The Bianchi identities are identically satisfied and Maxwell’s equations
yield

D ¢2 =0¢,=0.
The forms of the metric and tetrad are invariant under the trans-
formations

W =fw), v =vflu); =2 H =H?+2f}%,
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with
¥ =f1r, 2% =f1n%, m*=m*, (4.3)
vV=0v+f(u)(z+2)?2 w=u, 2=z,
H' = H — 16sf2(z + 2)**2 — 320sf(z + 2)252 — 2} (2 + Z)2¢,
with

=1, n¥=n*+ 8sf2(z + z)2* 21"

— 2)/2sf(z + 22 (m* + W%, m¥ = m* (4.4)

— 2)/2sf(z + Z)2e11%,

and, for s = 0,
¥ =2t fu), v =v— 122 F2), w=u, H=H+[z+fz— ff
=1, o =n*+12ff1

+1/2)/2fm* + 1)2)/2fm*, m¥ = m= + 1)2)/2] 1=
To complete the present work it is necessary to obtain those func-
tions H for which the metric (4.2) is of embedding class one. This is
achieved by analysing the Gauss-Codazzi equations. The case of em-
beddings with ay, = 0 is fairly straight forward and the results are
summarized in section 5 (for s = 0) and section 6 (for s = 1). The case
of embeddings with @5, == 0 is far more difficult and the appropriate

functions H, although found in principle, are not displayed in a closed
form. For this reason the explicit calculations are given in section 7.

4.5)

5. Embeddings of the Space-Time s = 0 with agg =0

With a,, = s =0 the Gauss-Codazzi equations admit a solution if
and only if the function H can be put in the form

H=(4dz— A%)?,
where 4 is a function of u. One solution of the Gauss-Codazzi equations
is then
e=-+1,
Agg = — i]/QZ and @y, =1¢ (Zz — Az)

with all other components zero. The Eqgs. (2.3) and (2.4) can be solved
to give

Y@= C2v+ Cu+ 0P+ 1/2)/2 [Re(u) (AZ -+ Az) — i 89 () (A% — 42)]

where C¢, C¢, C$ are constants and R9, SQ are real functions of u satis-
fying the equations

iS[AA — AA]= -~ 244AR ~ R[AA + 44]
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and
A[AR+iS)+ AR +i8) + AR +i8)] = A2(R +i8) + 442448 .
As an explicit example of the embedding consider the case 4 = + 1.
Then the space-time
ds? = — dzdz — 2dudv — (z — Z)2 du?
is obtained from the flat space
dst = — (d2')? + (d2%)? — (d28)% — (d2?)% + (d25)®

by the transformation

?=1/2¢( —z)cosh2u, 2*2=1/24(z —Z)sinh 2u,

B=12E+7), A=1)2@@+v), F=1)2@u-").

6. Embeddings of the Space-Time s =1 with agg =0

With a,, = 0, s = 1 the Gauss-Codazzi equations admit a solution if and
only if the function H can be put in the form

H=—-120*z+2)2+4+12iB(*—-2%)+C(z+7),
where A, B and C are real functions of 4 with A < 0. In this case
e=+1,

Gos =|/20AYV2(z + )1, ayy=1/2i4-124
and
PR =vM?(z+2)1—1/4M?(z+72)+iRQ(z — )+ PQ

where M?, R? and P9 are real functions of u satisfying the equations
M= — 4BRQ

Re=1/4 BM?
and
PQ=1/2 0 M + ;412 C%;

here C¢ is a real constant.
As an explicit example of the embedding consider the case 4 = — 1,
B = C = 0. Then the space-time

ds?= — |dz — 4v(z + 2) " du|® — 2dudv
+ du? 4 120%(z + 2) 2 du?
is obtained from the flat space

dst = — (A2 — (@22 + (@22 + (d2? — (d°)
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by applying the transformation
A=129(2—2), 2=2uv(+2)1-12(2+%), *=wu,
A=vWR+1)z+2)1-12u(z+7), P=v@—1)@z+2)1-12u(z+7).

7. Embeddings with agg =0

In this case the Codazzi equations yield 7 = 0. Therefore only those
space-times (4.2) with s = 0 need be considered. For these space-times
the Gauss equations (2.7), . . ., (2.18) give

Gy =3 =013=0, ay3=2A¢€" a5;=ay," (7.1)

with
A? — ay90,, = — €02 H|[020% (7.2)

and
e210 929207 = 0°H|0%? . (7.3)

Using (7.1) the non-trivial Codazzi equations can be written as

0.4 — 0,503, =0, (7.4)
A,g—agy,e% —i0,,a5,e9=0, (7.5)
(gq.4 6% — agq.57 0 + 200, %04, =0, (7.6)

and

Gp;5 — Ggg0 — B33 1/2)/2 0H[OZ — 0,,1/2)/20H[0z =0,  (1.7)

where a44, A and a,, are now independent of v.

If .3 = 0 Eq. (7.4) yields 6., = 0 and so 6 is a constant which can
be made zero by means of the transformation 2’ = €%2. Eq. (7.3) then
gives, using the transformation (4.5),

H=H(x,u), (7.8)
where z = z + Z.
Equations (7.5) and (7.6) yield

A=06/ou and a,,=—)206/0x,
where G = G (x, u).
Only Eq. (7.7) remains to be satisfied. This equation can be written
G )2 *2q q )2 26 0@ 0G o*@Q
(_é? our ("67[ bx8 ~ “ 9w 9z ouox

2G o*H oG o*H (8G)3 o0H (7.9)

¢ o2 oz o Fz) 9z V¢

Space-times given by (4.2) and (7.8) are therefore of embedding class one
if Eq. (7.9) admits a solution for @ in terms of H. As an example consider
the case 0 H/dw = 0. Then one solution of (7.9) is

e=+1, |/2¢ =1log(0H[0z).
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If 6.5 + 0 Eq. (7.4) gives
A= Pa,,,
where
P =[e0.,/0.,] .
Eq. (7.6) is identically satisfied while Eqgs. (7.5) and (7.7) can be written
in terms of a,, as
Pagys+ P.gtgy — 34,9 €% — 10, 505,6% =0 (7.10)
and

— €034,302H[020% + €|/2 05,08 H[0220% + o}, (P P,5 — € P,5)
— a8, 1/2)/2 (*i990H[0% + 0H[0z) = 0.

Eq. (7.11) is an equation for ag,,; whilst (7.10) can be rewritten as an
equation for a;,,,. The integrability condition for these equations will
give a polynomial in a,,. If this is solved and the resulting expression
for a,, is substituted back into (7.10) and (7.11) then two conditions on
H are obtained which, together with

(02 H|02?) (0*H|0%?) = (02 H|0207%)?
[see Eq. (7.3)], will form a set of sufficient conditions for embedding
class one. This then exhausts all possible Einstein-Maxwell fields of

embedding class one.

The author would like to thank Professor F. A.E.Prran: for his helpful
comments on the manuscript.
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