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Abstract. It is shown that a necessary condition for an Einstein-Maxwell field
to be of embedding class one is that the electromagnetic field and Weyl tensor
are both null (and non-zero). All Einstein-Maxwell fields of embedding class one
are, in principle, obtained.

1. Introduction

The investigation carried out in this paper was motivated by the
desire to determine whether the dimensionality of embeddings, discussed
elsewhere [1], of certain Einstein-Maxwell fields is minimal. Necessary and
sufficient conditions for embedding class one have been found by
THOMAS [2]. However, these conditions involve extremely heavy alge-
braic manipulations and have not been much used by other workers.
In fact, several papers have appeared recently discussing space-times of
embedding class one, for instance SZEKEKES [3] and STEPHANI [4]. In
particular Stephani has investigated null electromagnetic fields of em-
bedding class one. The present paper completes these investigations and
generalizes them to the non-null case. The results can, in part, be stated
as the

Theorem. Solutions of the Einstein-Maxwell field equations can be
embedded (locally and isometrically) in a five dimensional pseudo-euclidean
space only if the electromagnetic field and the Weyl tensor are both null
and non-zero.

The null tetrad notation of NEWMAN and PENROSE [5] is used to
prove this theorem. The notation is based on a tetrad of vectors
Zα, n", mα, mκ satisfying the orthonormality conditions

l«na = - mαmα = 1 ,

all other contractions being zero. Throughout this paper Greek letters
α, β, γ, . . . denote tensor indices (and range from 1 to 4), Roman letters
m,n9p,... denote tetrad indices (and range from 1 to 4) whilst capital
letters Q, JR, S, . . . denote tensor indices in the embedding space (and
range from 1 to 5). The tetrad components of the Weyl tensor can be
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written in terms of the five complex scalars ψ0, y)1} ψ2, ψ3, ψ^ whilst the
tetrad components of the Bicci tensor can be written in terms of the
ten scalars φmn, Λ (here alone the indices m, n take the values 0, 1, 2).
Solutions of the Einstein-Maxwell field equations are characterized by

-4 = 0, φmn=φm$n (1.1)

where φm are the following tetrad components of the electromagnetic
field tensor Fκβ,

φQ = FΛβl«wP, fa = 1/2 Fκβ(l*nf + mαm^) and φ^ = Fκβm«<nP .

The elegance of the Newman-Penrose notation is in the introduction of
ten functions, called the spin coefficients, which are defined in terms of
the complex Ricci rotation coefficients γmnΐί by

κ = 7i3i> n = - ya41, e = 1/2 (yιaι - y841), ρ = y184, λ = - y244>

o r =yi88» ^=-7243. α= 1/2 (y124-7344), /?= 1/2 (y ιas-7343),

* = - 7242. r = I/2 (7122 - 7342) and r = y182.

An explicit notation is sometimes used for intrinsic derivatives, namely

Dφ= φ,iI1, Δ φ = φ, iU1 and δφ=φ, ^m*.

Continual use will be made of the Newman-Penrose field equations,
the commutation relations for intrinsic derivatives, the Einstein-
Maxwell field equations and, finally, the Bianchi identity in the presence
of an electromagnetic field. All these equations are to be found in the
references [5] and [6] and will not be reproduced here.

2. The Gauss-Codazzi Equations

It is well known [7] that a space-time is of embedding class one if
and only if there exists a symmetric tensor amn satisfying the following
equations.

Gauss equation:
•Bm»ι»(r = 2eαm[l>αβlΛ. (2.1)

Codazzi equation:

βmCn;*] ~ 7[np]
 ama + 7m [A>]« = 0 . (2.2)

In the above ^Rmny)q is the curvature tensor of the space-time, 6 = ^ 1
and square brackets denote antisymmetrization. These equations are the
integrability conditions of the differential equations

ytmn-fyγ&n^^nη* (2.3)
and

iβm =-*,*#'• (2-4)

Here η® is a vector normal to the space-time and y® are coordinates in
the embedding space.



Einstein-Maxwell Fields 3

A necessary condition for embedding class one can be obtained in the
following straight forward manner. Define

Tmn»q=Z8tUVKstmvZuvnq. (2.5)

If the Gauss equation is satisfied

Tmnvq = 4ε8tuυ asmatΐ>aunavq = 4 |α| εmnί&q .
Therefore

-Lmn ~f~ ^mnt = 0 . - (2.6)

The condition (2.6) is very useful when solving the equations (2.1).
Contracting (2.6) on p and q gives

ffStUΌ 7? qΏ — A8 -ftstm -^uvnq—^

This can be written in terms of the Weyl tensor Gmnvq and Ricci tensor

where * denotes the dual tensor. The components of the Gauss equation
(2.1) can be written explicitly as

- aιι ^33) = Ψo (2.7)

- «π ^23) = ψi + Φoi (2-8)

- α14 α23) = y>2 + 2 A (2.9)

- αa2%4) = ψ3 + ̂ 21 (2.10)

- α22 α44) = ̂  (2.11)

- %4 «8β) = Wi - #01 (2-12)

= - #00 (2-13)

= - #02 (2Ί4)

= - ^22 (2.15)

β(«24 ^34 - «23 «44) = Vβ ~ #21 (2 16)

eKι ^22 - «ιa «ιa) = -- Va - Va - 2#u + 2/1 (2.17)

e(α33α44- «34α34) = - ^2 - ^2 + 20n + 2/1 (2.18)

while the components of equation (2.6) can be written

#02 (Va ~ Va) ~ 2^1^12 + 2ψ3^01 - ψ4^00 + y;0022 - 0 (2.19)

- #00 #12 - #02 #10 + Ψi (- Ψz + ±Λ) + 2φol φu + VoV3 = Q (2.20)

~ #22 #10 ~ #20 #12+^3 (~ ^2 + 4^) + 2 ̂ 21 φ^ + ̂ 4 % - 0 (2.21)

#01 (Va + 2^2) ~ ψ3 #00 ~ Vi #02 - 2 ̂  #n + ̂ 0 #21 = ° (2 22)

#21 (Va + 2^52) - ^2 ̂ 22 - ψ3 ^20 - 2^3 φu + ̂ 4 ̂ 01 = 0 (2.23)
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- #oo(Y>2 ~ Va) + 2Ψι #10 ~ 2Ψι #01 + Vo #02 ~ Ψo #20 = 0 (2.24)

- #22(^2 - V>a) + 2^y3 φ12 - 2ψ3 φ^ + γ;4 ^20 - y>4 ^02 - 0 (2.25)

Ψo (Va + 2Λ) - ι̂2 + #01 #01 - #00 #02 = 0 (2.26)

^4 (Va + 2/1) - ^3

2 + ̂ aι ̂ 21 - φ^ φ^ = 0 (2.27)

(Va + Va + 2#ιι - 2^) (Va ~ Va) ~ (% + #01) (% + #aι) /0 OQ.
(ώ.ώo)

+ (Vi + #10) (ψβ + #12) = 0

(Va + ¥2 ~ 2 #11 ~ 2^) (Va - Va) ~ (Vi - #01) (Vs - #21)
( ĵ.^y)

+ (Vi- #10) (Vs- #12) = 0

(Va + ^2 + 2^n ~ 2/1) (ya + ψ2 - 2^n - 2/1) - ̂ 0

+ #00#22 - (ψl + #lθ) (Vβ - #12) + #02#20
(^5.30)

+ (ψa + 2/1)2 - 2 ( Va + 2/1) ( 2̂ +2/1)

- (ψ8+ #12) (V5!- #10) ̂ °

3. Algebraically General Electromagnetic Fields

If a solution of the Einstein-Maxwell field equations represents an
algebraically general electromagnetic field then there exists two null
vectors satisfying the equation

Choosing these vectors as the tetrad vectors lx and n* gives

#o = #2 = 0 . (3.1)

Without loss of generality it can be assumed that φ± is non-zero.
Eqs. (2.19), . . ., (2.30) together with the conditions (1.1) and (3.1) yield
either

V > 2 ^ 0 , W) = ψi = Ψz= ^>4 = 0, 4#ιι = 3^1 (3.2)
or

(3.3)

Substituting (3.2) into the Einstein-Maxwell field equations and into
the Bianchi identities gives

The Newman-Penrose field equation

Dμ- δπ= (ρμ + σλ) + ππ- (ε+ S) μ - π(ά- β) - vκ + ̂ 2 +
 2^ (3 4)

then yields ψz = 0 which contradicts (3.2). The case corresponding to

(3.3) is far more difficult to deal with. Substituting (3.3) into the Einstein-
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Maxwell field equations gives

= -2μφ1

= 2rφ1

δφi = — 2πφ1 .

Substituting (3.3) into the Bianchi identities gives

Δψ0 = (4y - 2μ) ψ0

δψ0 = (-4π + 2τ + 4β)ψ0

δψ0 = (4α - 2π) ψ0

with

2σφ1φ1= - μψ0 (3.5)

2κφ1(j)1 = πψ0 (3.6)

ι (3.7)

(3.8)

Applying the commutators to φλ and ψ0 yields, after simplification,

Δρ = ρ(γ+ γ) + π(τ+ π) + τπ-vκ+ φu (3.9)

Dμ = — μ(ε + e) — τ(π + τ) — τπ + vκ — φlt (3.10)

δρ = ρ(ΰ+ β - π) + πσ (3.11)

<ϊμ= - μ(β+ oc- τ) -τλ (3.12)

Δπ= - vρ-π(μ- γ+ γ) (3.13)

Dr = κμ + τ(ρ- ε + ε) (3.14)

— μ) — π(β ~ ά) — μρ + Iσ — ̂ n (3.15)

τ(α - /J) + ρμ - λσ + ̂ n (3.16)

Q = πμ - τμ - 2πμ (3.17)

0-τρ- πρ-2τρ . (3.18)

The Newman-Penrose field equations

J A - δv = - (μ + μ) λ - (3y - 7) A + (3α + β + π - τ) v - ̂

and

Dμ — δπ = (ρμ + σλ) + ππ — (ε + e)// — π(ά — j8) + ^^+ ̂ 2 + 2/1

now give, using (3.5), . . ., (3.16),

ρμ + ρμ - 2ρμ - 2ρμ - ππ - ττ - 2τπ - 2τπ = 0 (3.19)
and

ρμ + ρμ - 2ρμ- 2ρμ + ππ + ττ + 2τπ + 2τπ = Q . (3.20)
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Suppose ρ == 0. From Eq. (3.11), πσ = 0. If π = 0 Eqs. (3.15) and
(3.8) yields φ1:L — 0 which contradicts the hypothesis that φ1 =j= 0. If
π φ 0 then σ = 0 and from Eq. (3.5), μ = 0. Eq. (3.9) and (3.10) become,
using (3.6) and (3.7),

πτ+ππ + πτ + πτ+ φu = 0 (3.21)

— πτ — ττ — πr — πτ — φu = Q . (3.22)

The imaginary part of Eq. (3.21) gives

πτ = πτ, (3.23)

while Eq. (3.21) plus (3.22) gives

ππ - ττ . (3.24)

Substituting these into Eq. (3.19) gives τ = -l/2π and then Eq. (3.24)
yields ππ = 0. This contradicts the hypothesis that π =f= 0.

Now suppose ρ φ 0. If τ φ 0 Eqs. (3.17) and (3.18) yield

3ρμ + ρ/Z — 2ρμ — 2ρμ = 0. (3.25)

Eq. (3.19) plus (3.20) gives

ρμ + ρμ - 2ρμ - 2ρμ = 0 (3.26)

and comparing these equations, μ = 0. Eqs. (3.12) and (3.8) then give
ρτ = 0 which contradicts the hypotheses. If τ = 0 then from Eq. (3.18),
π = 0. Eqs. (3.15) and (3.16) now become

-eμ + ρfi-$fi-δfi-<hΛ = 0 (3.27)

Qμ-Gμ + Qfi + eμ + Φιι = 0. (3-28)

Eq. (3.27) plus (3.28) gives
ρμ = ρμ (3.29)

while the imaginary part of (3.27) gives

ρμ = ρμ . (3.30)

Substituting these into the sum of the Eq. (3.19) and (3.20) yields

whence μ = 0. From Eq. (3.10) φ^ = 0 which contradicts the hypothesis
that φ1 Φ 0. The space-times considered in this section are therefore not
of embedding class one.

4. Null Electromagnetic Fields

If a solution of the Einstein-Maxwell field equations represents a null
electromagnetic field then there exists a null vector satisfying the
equations
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Choosing this vector as the tetrad vector lx gives

Φ0 = Φι = 0 . (4.1)

Without loss of generality it can be assumed that φ2 is non-zero. Eqs.
(2.19), . . ., (2.30) together with the conditions (1.1) and (4.1) yield

Ψo = Ψi = Ψ* = Ψs = 0 .

The Weyl tensor is therefore null. This completes the proof of the
Theorem stated in the Introduction (the fact that the Weyl tensor must
be non-zero is apparent from the subsequent calculations).

STEPHANI [4] has shown that, if the Einstein-Maxwell field is of
embedding class one, the vector lx is geodesic, hypersurface orthogonal
and expansion free. Space -times admitting a congruence Zα having these
properties have been discussed by KUNDT [8]. In particular the metric is
of the form

ds* = -\dz- 4vsdu/(z + z)|2 - 2dudv - Hdu*, s = + 1 or 0 . (4.2)

The vectors lκ, ri* , m* defined by

Z« = aj, Λ« = - <5f + 1/2 £Γdf - 4sv (z + z)-1 (<5g + ό§), mα =

form a null tetrad. Here (xl, x*, XQ, x®) = (u, v, z, z).
Substituting the coordinates into the commutators yields

α - β = 1/2 τ = 1/2 π - - 1/2

z and y = -

Substituting these values for the spin coefficients into the Newman-
Penrose field equations gives

z)-*dH/dv + 2s

φ22 = - d*H/dzdz- 2Hs(z + z)~*

+ 2sv(z + z)~*dH/dv + s(z + ̂ (dH/dz + dH/dz)
with

a2^/a^2 = - 245(2 + z)~* and d*H/dvdz = 485^(2; + z)-3 .

The Bianchi identities are identically satisfied and Maxwell's equations
yield

The forms of the metric and tetrad are invariant under the trans-
formations
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with
K =•- f I", n"' = /-1 n«, mα/ = mκ , (4.3)

v' = v + / (u) (z + z)2 8, u' = u , z' = z ,

H' = H - 165/2(2 + z)4*-2 - 3 2 v s f ( z + z)2*-2 - 2f(z + z?s ,
with

K - Zα , n01' = n«+ 8s f* (z + z)4s~2 Zα

s/ (z + z)2 •-1 (mα + raα) , mα' = mα (4.4)

and, for s = 0,

3'=» + /(tt), v' = v-ll2(fz + f z ) , u' = u, H' = H + Jz + ' f z - ff

I* = 1* , n"' = nx+ 112 ff I"
(4.5)

+ 1/2 j/2/mα -f- l/2)/2/mα , mα = mα

To complete the present work it is necessary to obtain those func-
tions H for which the metric (4.2) is of embedding class one. This is
achieved by analysing the Gauss- Codazzi equations. The case of em-
beddings with α33 = 0 is fairly straight forward and the results are
summarized in section 5 (for s = 0) and section 6 (for 5=1). The case
of embeddings with α33 φ 0 is far more difficult and the appropriate
functions H, although found in principle, are not displayed in a closed
form. For this reason the explicit calculations are given in section 7.

5. Embeddings of the Space-Time s = 0 with α33 = 0

With α33 = s = 0 the Gauss-Codazzi equations admit a solution if
and only if the function H can be put in the form

H== (Az- Az)* ,

where A is a function of u. One solution of the Gauss-Codazzi equations
is then

β = + l,

α23 = — iγ2A and α22 =••= i (Az — Az)

with all other components zero. The Eqs. (2.3) and (2.4) can be solved
to give

yQ = c* v + Cξu + C$ + 1/2 ]/2 \R<*(u) (Az + Az) - ί S<>(u) (Az - Az)]

where C%, C®, C® are constants and E®, SQ are real functions of u satis-
fying the equations

iS[AA - A A] = - 2 A AR - R[AZ + A A]
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and

A[A(B + iS) + A(R + iS) + A(R + iS)] - A2(R + ίS) + 4 JM iS .

As an explicit example of the embedding consider the case A = -f 1.
Then the space -time

ds2 = — dzdz — 2dudv — (z — z)2 du2

is obtained from the flat space

ds2 = - (dz1)2 + (dz2)2 - (dz3)2 - (dz4)2 + (dz5)2

by the transformation

zl = 1/2 i(z - z) cosh 2u , z2 = 1/2 i(z - z) sinh 2u ,

z3 = 1/2 (z + z ) 9 z4 = l/|/2 (u + v) , z5 = l/|/2 (M - v) .

6. Embeddings of the Space-Time s = 1 with α33 = 0

With &33 = 0, s = 1 the Gauss-Codazzi equations admit a solution if and
only if the function H can be put in the form

H = - I2v2(z + z)-* + A + I/2 iB(z2 - z2) + C(z + z) ,

where A, B and C are real functions of u with A < 0. In this case

α23 = J/2 ί^Vafc + z)-1 , α22 - 1/2
and

(z + ^J-1 - 1/4 JΪQ (s + z)

where M®, R® and PQ are real functions of u satisfying the equations

and

here Cξ is a real constant.
As an explicit example of the embedding consider the case A = — 1,

B = C = 0. Then the space-time

ds2 = - \dz - 4:V(z + z)-1 du\2 - 2dudv

is obtained from the flat space

ds2 = - (dz1)2 - (dz2)2 + (dz*)2 + (dz*)2 - (dz*)2
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by applying the transformation

z1 = 1/2 ί (z - z) , z2 = 2uv(« + z)-1 - 1/2 (z + z) , z3 = ̂  ,

7. Embeddings with α33 = 0

In this case the Codazzi equations yield τ = 0. Therefore only those
space-times (4.2) with θ = 0 need be considered. For these space-times
the Gauss equations (2.7), . . ., (2.18) give

«ιι = «i2 = αi3 = 0 » a^ = Aeiθ, a^^a^e*™ (7.1)
with

A2 - αaaθ84 - - ed*H/dzdz (7.2)
and

e-2iθ d*H/dzdz = d*H/dz* . (7.3)

Using (7.1) the non-trivial Codazzi equations can be written as

Θ ; 84- Θ ; 2α3 4e*θ = 0, (7.4)

A\ 3 ~ ^34; 2 ̂  - <β ; a «84 β<β = 0 , (7.5)

«34;4^° - «34;3β-ίθ + 2iβ ; 4e<βα8 4 - 0 , (7.6)
and

«22;3 - %3;2 - a33l/2)/2dHldz-a2ίl/2}/2dH/dz = 0 , (7.7)

where α34, -4 and α22
 are now independent of v.

If θ;3 = 0 Eq. (7.4) yields 0.2 = 0 and so θ is a constant which can
be made zero by means of the transformation zf = eίθz. Eq. (7.3) then
gives, using the transformation (4.5),

H = H(x9u), (7.8)
where x = z + z .

Equations (7.5) and (7.6) yield

A = dGldu and α34 - - J/2 dG/dx ,

where G = G(x,u).
Only Eq. (7.7) remains to be satisfied. This equation can be written

~
dx / du* \du / dx* du dx du dx

v* dx* dx dx* ^

Space-times given by (4.2) and (7.8) are therefore of embedding class one
if Eq. (7.9) admits a solution for G in terms of H. As an example consider
the case dH/du = 0. Then one solution of (7.9) is
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If θ . 3 Φ θ E q . (7.4) gives
A = Pα34 ,

where
P=[e'β0:i/θ.,].

Eq. (7.6) is identically satisfied while Eqs. (7.5) and (7.7) can be written
in terms of α34 as

JP*B4;8 + P;3α34 - α34;a e<« - ^;2α34e^ = 0 (7.10)
and

- α|4 l/2]/2(e*iθdHldz+ dH/dz) = 0 .

Eq. (7.11) is an equation for α34;3 whilst (7.10) can be rewritten as an

equation for #34;2 The integrability condition for these equations will
give a polynomial in α34. If this is solved and the resulting expression
for α34 is substituted back into (7.10) and (7.11) then two conditions on
H are obtained which, together with

[see Eq. (7.3)], will form a set of sufficient conditions for embedding
class one. This then exhausts all possible Einstein-Maxwell fields of
embedding class one.

The author would like to thank Professor F. A. E. PIBANI for his helpful
comments on the manuscript.
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