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Abstract. It is shown for the degenerate B.C.S. -model how in the limit of an
infinite system the exact thermal Greens-functions approach a gauge invariant
average of the one's calculated with the Bogoliubov-Haag method.

§1. Introduction

In a previous paper [1] it was studied in which sense the B.C.S.-
model is solved by the Bogoliubov-Haag [2] method in the infinite

volume limit. We investigated how the B.C.S.-Hamiltonian £/B.CS. eon-
verges towards the Bogoliubov Plamiltonian #B in the infinite tensor

product representation of the field operators. It turned out that ^B.C.S.
converges only in the rather small subspace in which the gap equation
holds. Only in this subspace #B describes the time dependence correctly.
In fact outside this subspace the time dependence is not described by a
Hamiltonian at all for infinite volume since the corresponding unitary

transformation is not weakly continuous. It should be stressed that this
is not a mathematical pathology but corresponds to a physically com-
pletely sound situation. It is analogous to the Lamor-precession of
infinitely many spins.

In this note we shall supplement these somewhat negative statements
by a more useful result. We shall prove that the thermal Greens func-
tions are correctly described by /7B or

lim Tr e-#B.c.s./τ β i<iHn.c.s. A (x.) e~
α^ .̂s. . . m

L

φ. (1)
o

Tr e-^τ e^11* A fo) e~u^ . . . e^J/B A (xn) e~ίtnH^Tΐ β~Ή^Ύ

where Ω stands for the volume and the A's are field operators, φ is a
phase angle over which we have to average to make the procedure

invariant. In other words the representation furnished by thermal ex-
pectation values is one of the good ones where HE gives the correct time
dependence.

* Work performed as consultant to General Atomic Europe.
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For simplicity we shall use the quasi -spin formalism and consider
the degenerate (strong coupling) case only. Our results strengthen previ-
ous findings [3] where it was shown that in a suitable perturbation
expansion the difference of the two sides of (1) goes with l/Ω in each
order. To make this argument rigorous one would have to establish the
uniformity of the convergence of the perturbation expansion for Ω -> oo.
We shall not have this problem since we will calculate both sides of (1)
exactly.

§ 2. The Formalism

With the quasi-spin formalism one can write the B.C.S.-Hamiltonian
in the form :

Ω T Ω Ω

- Σ ™ ¥ ~ Σ 4 Σ <V (2)

Here the σ^ are a set of Ω independent spin matrices1 and σ^ the usual

combinations -~- (σ(a;) ±*σ^) In the degenerate model ε is independent

of p. We are interested in a representation of the algebra of the σ's which
is furnished via the G-N-S- construction by the positive linear functional

yΩ given by the thermal expectation value

= Tr β" ~^H*'™' 4/Tr e~ ~τ HB'C'S' (3)

Since #B.C.S. ac^s m a %Ω dimensional space there is no problem in
defining Tr. A stands for any polynomial in the σ's. The latter can be
generated by

However since #B.C.S. ig invariant under any permutation of the σ^ it is
clear that all information is already contained in2

iJL r σw i±, r α<»> 7 c r σ<«>
AΩ(a, b, c) = e «^ι * e ^»-i * e ^*-ι * (5)

For instance, {σ^) is independent of p and therefore

<^% = -at<^>al — 6 — o (6)

Using (σ^)2 = 1 it is easy to show that the expectation value of any
polynomial can be generated by derivatives of A.

1 We shall henceforth simply call them spins although in this model they a
different physical significance.

2 For Ω = oo there is a difficulty in generating σte) this way. In this case a
less familiar parametrisation than the Euler angles has to be used (F. JELINEK,
to be published).
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In the Bogoliubov-Haag procedure the Hamiltonian is split into

HB = -Σε4z)-2TcΣ (4 <O* + σ~ <σ+>*) (7)
p = l p=l

nm Ω Ω
H' = — ΊΓ Σ (4 - <^>B) Σ (V - <O*) - 2 Tc Ω (σ+)B <a~}B

p - 1 p' = l

(&yB is the expectation value of σ^ with HB which is again independent
of p . Now H' is dropped since its operator part is in some sense small
and a c-number is irrelevant for expectation values. HB can be written as

HB = — TωΣa9κ (8)
p

where the unit vector n and the constant ω is determined by calculating
the expectation value of a.

<σ>B = Tr e-H*'τ <r/Tr e-
Hβlτ = n Thω . (9)

Comparing (7), (8) and (9) we find that ω and the angle θ between n
and the 2-axis are determined by

ω^-J-Thω cosθ^^-. (10)

The azimuthal angle φ of n remains arbitrary. This was to be anticipated
since #B.C.S. *s invariant under rotations around the 2-axis. The latter
corresponds to gauge transformations of the electron operators in the
usual formalism. H% is again invariant under permutations of the σp so
that (A(a, b, c))^ suffices to characterize the representation of the σ's.
However it is immediately clear that (A}Ω Φ {^4)^ since HB and there-
fore { yB is not gauge invariant. For instance, (a^}Ω == 0 but (o^}B

== nW Thω φ 0 for φ Φ π/2. To make { )β gauge invariant we have to
average over φ and thus the best we can hope for is

2π

lim <4fl>β= lim J_ [dφ(AΩ}B (11)
Ω— > oo Ω— > oo Δn J

0

where { }5 is taken with a HB where n has the azimuthal angle φ. Since
the spins are independent in HB it is clear that { }5 becomes independent
of Ω. The latter must be large enough that all σ's in A are contained in
the first Ω ones. Furthermore the limit Ω ~> oo should be attained such
that all derivatives a tα = 6 = c = 0 are equal. We shall see that this is
actually the case.

§ 3. The Right Hand Side of (11)

The evaluation of (A.yB is quite simple like the expectation value of
spins in an external magnetic field in direction n. By an elementary
13*
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calculation we find for one spin

y Sp β ΐ α σ ( 2 ) eiβσ(y) el^(z)eωΆa = Chω cos/? cos(α + γ) +

+ ^Shωfcosθ cos/? sinfα -h y) -f
. (12)

+ sinθ sin β (cos 0 sin(α — y) -f

4- sin0 cos(α — y))) .

For Ω spins we work in the tensor product and therefore we simply

multiply the expressions (12) for the individual spins together. Thus we

have

/ i i -L \\ I b a-\-c / b . a + c
^β(α, o, C)/B = jcos "Q-COS — -̂  — + ^lhω (cost/ cos"ττ sιn "~o -- '

. Λ . b . I . a
+ smθ sin -^ sin 10 4- —

In the limit Ω -> σo this approaches

<^β(α,δ, cJ^^eiThαiαα + Ocosβ + ftsinOsin^) (M)

uniformly for finite values of the argument. Furthermore the limits of

the derivatives are the derivatives of the limit. The gauge-variant nature

of this expectation value is exhibited by its ^-dependence which gives,

f.i. {σ(^)_B = Thco sinθ sinφ. This vanishes on integrating over φ:

2π

(A^a, b, c)>5 = ̂ - { dφ (A^(a, 5, c}}B = JQ(bsinθThoj) X*π J

v Λ (a + c) Th ω cos 0/\ t> .

It should be noted that on averaging over φ correlations between the

spins are introduced. They are not present in (14) since HB is the sum

of Hamiltonians for the individual spins. For instance we have

«>5 = 0 (16)

{A (a, b, C)>2 Φ 0 = <^>5 <σ<?>>^ .

It turns out that these are exactly the correlations created by

where the spins are coupled.

§ 4. The Left Hand Side of (11)

The diagonalization of HBG$ simply amounts to diagonalizing S2

and Sz of the "total spin".

S = 4-j>|) (17)
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Designating the eigenvalues by S(S H- 1) and Sz resp. we have3

— S ^ 8Z g S, 0 ̂  S ^ β/2. The multiplicity of the levels with (8, 8Z)

is found W to be -/j^ __ m', (β/2 + /S + ϊΐΐ ' TllUS WG obtain

The matrix element of ^Lβ occuring in (18) is well-known from the

representations of the rotation group and expressible in terms of a hyper-

geometric function [5] :

(
9 α 90 \ 2 ί a 2ίb 21 c

-Q-, -^ «, δ, ή = (8, Sz \e~^Sze^TSy e~

_ _ B C S

Dividing (18) by Tre τ ' ' 'we see that (AΩy is the average of G

taken with a certain probability measure. In statistical mechanics one

usually replaces such a sum by its leading term. Since we want to estab-

lish our result with certainty we justify this procedure in the following

way: To approach the limit Ω —. > oo we switch over to the intensive

quantities
90 90

η=-Q-, «=^r- Oί*η<l, \n\^η. (20)

Giving unit measure to the unit area in the η-n-plaue the probability

measure is

Ωl(28+l)

Ω\'h ">) = ~~j~2~^~W2

Σ
0 St'=-S' (Ωβ — S') \ (Ωβ + ̂  + 1)!

1 / '2 T \
-p-fieS,' + —~-(S' (S'+ U-S,' (S,'+ 1)))

X e^

2 \ 2
Σ

n', n

3 Λve shall take Ω to be even.
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with

- η) _l±JLln(l + η) ,

T ε 1

τc _ r dtz
rp I g2π< i

fa(η) " "

t , t
-farctg -

ΐ)3
x

To obtain these expressions we have used Binets second formula [6] for

Γ(z). The function φ converges for β — > σo to the harmless expression

=(l- .(! + ,) e

so that the essential β-dependence of (21) is in the exponent. Since / has

for 0 g η g 1, \n \ g ^ one absolute maximum at (^0, w0) if T< Tc/ 1^|0 g ^0

we expect that P goes to a <5 -function : at the maximum it will behave
like

and thus become sharper and sharper for Ω -> oo. This intuitive argu-

ment is made rigorous by proving that the measure of any set not

containing (ηQ, n0) becomes zero for Ω -> oo. For this goal we shall use

the inequalities

(η - ??o)2 I/"M I ^ I/(%)-/M\ ^ (η~^ηo? I/" (η0)I (23)

valid in a neighbourhood of ηQ, \η — ηQ\ < δ, for which

2 ^mί<df"(η) > \ f ' ( η 0 ) \ > ~ sup f"(η) . (24)

Summing only over the region where the exponent is > —1 we get

(always assuming T < Tc, nQ\ < ηQ]

β ύJ 1 4ff ί <γ\ \ Πp IΦ
,Ύl v I \ '/o/ cj -*•

1
. /χ

^ < ,}^

< .̂ Thus we have

which goes to zero for all (η, n) ={= (^0>
 no)

Hence the average of G taken with P should just give G at ηQ, nQ. There

is still the slight complication that G is Ώ-dependent. In fact, for Ω -> co,
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the hypergeometrie function converges uniformly to a Bessel function:

*-}** e*<* + *
f e

Thus we anticipate the equation

lim (AΩ}Ω = (?«, (ί/0, n0; α, δ, c) . (28)
Ώ— >oo

To demonstrate this result one has to apply the usual tricks in ε-tik.

\f dη dn PΩ(η, n) θΩ(η, n\ α, b, c) — G^η^ w0; α, δ, c)|

= I/ dηdn(PΩ(η,n) GΩ(η9n\a»b9c) — P^fari) Goo(η, n; a, b, c))| ̂

^ l/(^-^oo)^^y^l + l/^oo(^™^J^^|. (29)
Here both terms on the right hand side can be made arbitrarily small;
the first because GΩ -> (?«, uniformly and the second because $«, is
continuous and PΩ — > P^ on all continuity sets. Again one sees in the
same manner that all derivatives with respect to a,b, c approach the
corresponding derivatives of G^ in a neighbourhood of the origin.

There remains just some elementary algebra to establish the identity
of (15) and (28). In fact

g
cos θ Th ω = -ψ- — nQ

sinθ Thω =

and thus

lim (AΩ}Ω = J0(δsinθThω)e^α + c)C O S Θ T h ω=: lim (AΩ}z . (31)
Ω—>oo Ω—>oo

§ 5. The Time-Dependence

Our result (31) shows that the thermal expectation values of poly-
nomials of the σ's taken with #B.C.S. f°r Ω ~> °° or with HB and averaged
over φ agree. Speaking mathematically this means they define the same
positive linear functional over the (7* -algebra. We shall now turn to (1)
or the question whether they give the same time dependence. This
warrants separate study in particular since for Ω -> oo the time develop-
ment leads out of the (7*-algebra. Indeed, calculating iσ — [σ, H] with

. We

(32)

where

S \~^ o 4- •*• V~τ / 1* i * 41 \ / O O \

Λ = "2£>~ 2- ff»» ^B = -27J 2. (̂  ± IG ) - (33)
φ=l p=1

Now the operators Sβ do not converge uniformly for Ω -> oo.

f.i.||Sfl-Safl|| =
Ω i ZΩ

Σ GV~~~^Q Σ = 17 for all
Δ
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They converge strongly in some infinite tensor product representations
or in the representations given by the thermal functionals ("thermal
representation"). Thus for Ω -> σo a does not belong to the C* -algebra.
However for our purpose the existence of weak limits of Sβ is sufficient
to establish the analogue of (1) in the quasi-spin formalism. For this end
consider the expectation value of Sβ and some polynomials of the σ's.

X

X σ2h

0

Here ^ is different from the p1 . . . £>w and we have used our previous

results. Thus in the limit 8 can be replaced by -^ Thω. In the thermal

representation (which is reducible) the limit of S is not a c-number since
n is integrated over. (e.g. (^!r) == 0, ((Sx)2y Φ 0). In the same fashion one
finds that also in the expectation value of any (finite) polynomials in

the σ's and S's the latter can be replaced by -̂ - Thω. This result suggests

that HB will give the same time dependence since calculating iσ = [or, H]
with HB one has

— + =^ z+ — z-
( J

— ̂ - ± = -
CO -/

This is identical with (32) if S->-^-Thω since nz =•-

T
x (n® ± inv) -> -jΓ-S^. On iterating (32) and (35) one can generate the

complete time dependence of the σ's but one has to note that S is time-
dependent whereas n is, of course, not ! In fact, from (32) follows

or (36)
SZ

Ω - const, S-Q (t) = S% (0) e-«(2β-4!Γβ5b) .

Thus on calculating the time dependence with HβGt$ we obtain the one

with HB where -^ Th ω is replaced by S plus terms containing the time

derivatives of S :

eitHB a - i t H B = ίσ^yThcα)
(37)

= 2>OP»K,Sfl)
n = 0
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Here Pn is a polynomial of n'ih order and Gn stands for the terms with
the time derivatives of S. From the above discussion it follows that

lim (Gn}Ω =- 0 since in replacing Sz in &+ by-^-Thω we get J§+ — 0
β->co 2

and also all higher derivatives. Furthermore because of (34) the two
kinds of expectation values of all Pn agree. Finally \\Pn + Gn\\ ̂

(const)n °°
< - - j — so that 27 in (37) converges uniformly for all t in the

n = 0

operator norm. Hence we can safely conclude

lim (eίίlJΪB c s σp e~ίίlJ?7B c s . . . e

ίtnH*'c s σp e~ίtnH* c s yΩ
Ω—*co 1

2π

= _JL f
2π J

o

Thus in particular for Greens-functions of gauge invariant expres-
sions Λvhere no averaging over φ is necessary SB.C.S. is equivalent to
any HB.

The author is indebted for useful discussions to Prof. K. BAUMAKN, who
collaborated in earlier stages of this work, and to Prof. K. SCHMETTERER and
Dr. A. WEHRL. Finally I want to thank Miss H.NARNIIOFER for checking some
calculations.
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