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Abstract. We consider a lattice of spin -^ ions, described by the discrete form

of the current commutation relations J*J(i) = "TΓ? [«/£, J%] = iδ{} eP PY Jp where

α = 1,2, 3 and i label the lattice sites. The algebra is realized as the Clifford algebra
01 over a Hubert space. The equations of motion are specified by a formal Hamil-
tonian of the Heisenberg form: H = Σ fu!_i' £_o> where fi} <] 0 and only a finite

i,i
number Q of ions are linked to any given lattice site. We prove that the Hamil-
tonian is non-negative in a representation of 91, and has a ground state Ω exhibiting
ferromagnet ism. The time displacement group acts continuously on 21, inducing
automorphisms. 21 is asymptotically abelian with respect to the space translations
of the lattice.

The model is an example of an algebraic quantum field theory and possesses
a broken symmetry, the rotation group 0(3). The consequent Goldstone theorem
is proved, namely, there is no energy gap in the spectrum of H.

1. Introduction and Summary

In this paper we apply the ideas of local quantum theory [1—4] to the

theory of the Heisenberg ferromagnet [5]. The intention is to discuss

the axioms of quantum statistical mechanics [6—8] with reference to

this particular model.

Denote by Zd (where Z is the group of integers) the regular arrays of

points in d dimensions, d = 1, 2, 3. The lattice is invariant under trans-

lations by Zd. The points of Zd will be called lattice sites. At each lattice

site is placed an ion with spin -^~. That is, the states of a single ion i ζ Zd

can be described by the vectors in a two-dimensional Hubert space Jίfi

carrying the fundamental spinor representation of 8U2> the covering

group of the rotation group in three dimensions (we use the same

description of spin whether the ions are arranged in a chain, a plane or a

cube). In the model under consideration the motion of the ions, even the

lattice vibrations, are ignored. The "observables" describing an ion i

comprise the three Pauli matrices o\9 σf, σf where Ji = -^ σ* measures
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the spin in a fixed but arbitrary frame of reference, assumed chosen the
same for each ion. The observables for the lattice site i generate a
O*-algebra 9lz , equal to B(J>ί?i), the set of all linear operators on f̂\ .

By taking tensor products of 0i{ we can define the (7*-algebra 21 (K)
for any finite subset KcZd (see Section 2). These algebras correspond to
the local algebras of quantum field theory. The collection of ail the local
algebras generate by the inductive limit [9] a unique abstract (7*-algebra
21, the algebra of all quasi local observables. 2ί is isomorphic to the
Clifford algebra over a Hubert space [10, 11, 12], that is, the O*-algebra
of the anti-commutation relations [13]. But for the magnet the physical
interpretation is entirely different; the localization in real space given
by the map K -> 21 (K) from subsets of Zd to subalgebras is such that
operators for different regions commute for the magnet, whereas the
localization chosen for a fermi-field is such that the fields anti-commute
at space-like separated points. Another difference is that the spins of
the lattice sites are observables, but the fermi-fields themselves are not,
so that the algebra of observables in that case is a subalgebra of 2ί. We
summarize the properties of 01 proved in Section 2.

(i) To each finite KcZd there is an assigned subalgebra Oi(K)Cθi,
and Oί = U 0i{K) (local structure).

(ii) lίK^J, Oί(K)^0i{J) (monotony).
(ϋi) If K r\ J = β, then [91 (Z), 91 (J)] = 0 (local commutativity).
(iv) There exists a homomorphism g -> oc(g) of Zd into Aut(9l) such

that if A ζ Oi{K), Ag ^ oc(g) A ζ Oi(gK) for all g ζ Zd, KcZd. The auto-
morphisms oc(g) of Oί correspond to spatial displacements of the lattice
sites.

(v) If A, BinOί, then lim || [A, Bg]\\ = 0 (21 is asymptotically abelian).
g-+oo

These properties are purely kinematical, that is, hold independently
of the choice of Hamiltonian. In Section 3 we prove that the Heisenberg
form for the Hamiltonian can be made into a non-negative self-adjoint
operator H in a certain faithful representation π0 of 01, chosen by physical
intuition. Defining U(t) = eiΞt it is proved that if A ζ 91.

(vi) U(t)πo(A)U-Ht)ζπo(0l).
(vϋ) Defining At = πo\ϋ(t) πo(A) U-1^)) we have

\\A-At\\->0 as ί - > 0 .

The representation π0 is given by a cyclic vector Ω, invariant under
U(t), with the physical interpretation as the ferromagnetic ground state,
with all the spins aligned in the same direction of space. The carrier
space J f for π0 can be written Jti? = Θ ̂ f7

n; in J^n> the vectors are charac-
terized by having exactly n spins flipped from the ground state, and
physically correspond to the presence of n spin-waves. We show yfn is
invariant under U(t) = eiHt, that is, the number of spin-waves is a



Heisenberg Ferromagnet 235

constant of the motion. Moreover, the maximum energy per spin wave

must be less than j/lO fQ.
In Section 4 we prove there is no energy gap in the spectrum of H.

The technique follows the usual method of proof of the Goldstone
theorem [14] making use of an idea to be found in [15]. There is a con-
tinuous automorphism of 21 induced by rotating the spins, which is
not implemented in the representation π 0 . This automorphism commutes
with space-time translation and maps each of the local algebras 01 (J)
onto itself. Thus rotations have the general properties of a spontaneously
broken symmetry [16]. Finally we remark that macroscopic properties
of the magnet such as direction of magnetization and orientation of the
boundaries of magnetic domains, can be described by parameters
labelling inequivalent representations of 2ί. At infinite temperature the
thermodynamic state is the central trace on 01, and defines the hyper-
finite IIx factor.

2. The C*-algebra of the Spin— Lattice

If K = (iv i2) . . ., ik) CZd, define a 2k-dimensional Hubert space

•3T* = ^ ff ^ , ® ® # V (1)

Clearly, 3?κ carries the tensor product of the spin -^ representation of

8 U2 with itself k times. A complete orthonormal basis in M?

i consists
of two vectors, which may be taken as the eigenstates | ± X of of = (λ — 1).
An orthonormal basis in J^κ is then given by the 2fc distinct products

\±iλ, ±i2, . . . ±ik} = | ± > f i ® |±> ί g ® ® \±\ . (2)

In J^κ we define the operators

/ ί = l<g>l <g>l<g)yσ,<g>l <g>l. (3)

These operators satisfy the current commutation relations

The vector generator of the representation of S U2 carried by Jfκ is then 1

The C*-algebra generated by all Ji = (Jt\ Jϊ, J*) for i ζ K will be
called the algebra of observables 01 (K) associated with the points of K.
Since all the spaces 3%7g are finite-dimensional, we have 01 (K) = B(<3ή?κ).
If / C K any operator in 21 (/) may be identified with an operator in
Oί(K), by writing J^κ = J^x g" J^K-T, and identifying A ζ 31(1) with
A ® 1/ί-/, where for any J C%d, l j is the identity operator in ^f j . This

1 J denotes the 3-vector (J1, J2, J3).
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induces a natural norm preserving injection of the algebras iIK : 2ί(/)

We define the abstract C*'-algebra of the spin -~- lattice to be the in-

ductive limit [9] of all the algebras 2ί(J), JcZd and J finite, relative to

the injection iJK, and we write Qi(Zd) for this limit. Clearly, one could

analogously define an algebra whatever the spin of the ions on the

lattice. The algebra Qί(Zd) can be regarded as the norm closure of the

union of subalgebras 21 (J) for all finite subsets J of Zd. This proves

axiom (i). Axioms (ii) and (iϋ) also obviously hold. The transformation

Jf -> Jg\ for all α = 1, 2, 3, for all i ξ Zd and for some g ζ Zd induces an

automorphism of 21, in accordance with axiom (iv). To prove property (v),

choose A and B and ε > 0. Since £8 — U 21 (J) is dense in 21 there exist
j

operators Ax ζ &, C ζ β& such that \A - Ax\\ < TΓ^IT a n ^ IIB ~ 1̂1 < ^ O T '

If \g\ is sufficiently large, g ξ Zd, then [A1} Cg] = 0, by axiom (in). But

then

\\[A, Bg]\\ ^\\[A- Alt Bg]\{ + l[Av (B - C)β]\\ + {{[A,, Cg]\\ <

\\f l|AlΓ
This proves (v).

A large set of irreducible representations of 2ί but not all ([12],

Prop. 2.12) can be obtained by considering the infinite tensor product

[17] 3? = 77 <g> J f .̂ The elements of £F are represented by sequences

w — (wΛ with Wj ξ ffiA. such that 77 ||m, ||2 is convergent to \\w\\2 say, in

the sense that to any ε > 0 there exists a finite subset KcZd such that

- IIMII 2 < ε for all finite subsets K1CZd containing K. The

scalar product of two vectors ψ == {ψ^ and φ = {φj in Jf7 is defined to be
(ψ, φ) = IJ {ψi, ψi) if this converges in the above sense)

* \ (5)
= 0 otherwise .

We need consider only those sequences {ψ{} with no zero elements, since

if ψi = 0 for some i then ψ = {ψi} represents the zero vector in f̂7, and

the same goes for sequences {ψi} such that Π\\ψi\\2 = 0. Modulo the se-

quences of zero norm, the sequences define a non-separable Hubert

space J^.

If {ψi}, {ψ,^} represent distinct vectors in f̂7, VON NEUMANN writes
φ ~ ψ if Π (φi} ψi) converges, and shows that this is an equivalence
relation. The set b (ψ) of sequences equivalent to ψ form a separable
subspace of Π^ J^it known as the incomplete tensor product and written

b



Heisenberg Ferromagnet 237

It is trivial to show that for any finite set KcZd we may write

^ - ^ x ® IJb' ®&i (6)
iζZa— K

where 3^κ is given by (1), and b' is the equivalence class of the sequence
{ψi}ίez*—K obtained from ψ by omitting elements in K. One may then
define a natural norm-preserving map from 21 (Z) into B(J^h) by

A -> A <g> \v = A (7)
where \b> is the unit in 3tifv. The O*-algebra generated by all such A
defines an irreducible representation πh of $l(Zd), since the JF*-algebra
generated by it is B{#?h) [17].

If IJ\(ψi,ψi)\ converges we say the sequences {φ^ and {ψ{} are
ζ

weakly equivalent [17], written φβtψ. Then every sequence in b(φ) is
weakly equivalent to every sequence in b(ψ) and we write b(ψ) XL b(φ).
The following theorem holds ([12], see also [18, 19]).

Theorem 1. Two representations πbχ and πbz of $l(Zd) are equivalent if

and only if b-^βϋ b2.

The central problem of the theory is to define a 1-parameter auto-
morphism group of 21 (Z) which, in some representation, has a non-
negative self-adjoint generator. This operator is to be interpreted as the
Hamiltonian, and the group as the time-displacement group. In the
Heisenberg model the Hamiltonian is defined in terms of the abstract
elements of $l(Zd), the Jit by the usual formula

HF = Σ tali • It (8)
all i,j

where the fij are some numbers. We assume |/£ί | ^ / for all i,j. In inter-
esting cases, for example if one has translation invariance, an infinite
number of terms enter, and the expression (8) as it stands has no meaning
(it will not converge in norm). If all the j ί 5 are negative, then on physical
grounds we would expect the energy to be least in states with all the
spins aligned; thus the system would exhibit ferromagnetism. Define

Ω ζ & by the sequence [xp^ where ψi= | + )ΐ £ ^t> s o ^ n a ^ an* ^ n e spins
are in the direction 3 at all lattice sites. We denote by Jf = Jfb{Ω) the
corresponding incomplete tensor product, and by π0 the corresponding
representation, which we call the concrete C*-algebra of the ferromagnet.

The abstract algebra 2ί possesses the following automorphisms: for

any hζ SU^ let U^h) be the s p i n y representation on J^{. This induces

a rotation of an}^ operator At ζ B(J^?

i), and tensor products of it k times
gives an automorphism of 21 (K). Since this is norm preserving it induces
an automorphism h on the inductive limit 21. The automorphism is
continuous in the parameters of SU2, that is \\Ah — A\\ -> 0 as h -> e
= identity in SU2. The automorphism h has the property of mapping
each local algebra into itself: $ί(K)h — 21 (ϋΓ), and so restriction of h to
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01 (K) is implementable in any representation of 01 (since 01 (K) is a finite
matrix algebra). Indeed, the generators of this "local" rotation group
are given b}̂

ίζK

Theorem 2. // h φ e ζ S U2, h is not implemented in τιQ.
Proof. Let πh{A) = πo(Ah) be the representation of 01 obtained by

using the state Ωh = Π®(PiΨ) I + X) m t n e Gelfand-Segal construction.
Since clearly Ω and Ωh are not w-equivalent, πh and π 0 are inequivalent,
by theorem 1. But if A —.> Ah Λvere implementable in π0, then πh would be
equivalent to π0. Therefore h is not implemented in π0, and similarly,
not in any πhχ, h1ξ:SU2.

The algebra 01 possesses another group Γ of automorphisms namely
the permutations of Zά. This commutes with any rotation h and is
implemented by W(γ) say in all the representations πh since Ω and Ωh

are invariant under JΓ. Ω is the only vector up to a phase in J^f^ that
is invariant under ZάcΓ (Proof: obviously the following cluster property
holds:

-* (Ω, Jλ. . . JjΩ) (Ω, JJ+1 . . . JlcΩ) as ^ c o ,

where we have written J\ for π°{Ji). The proof of uniqueness of Ω then
follows [20], p. 124). This immediately gives an alternative proof of
theorem 2. For if h is implemented by a unitary operator V(h) say, then
W{γ) V{h)Ω= V(h) W{γ)Ω= V(h)Ω. Thus V(h)Ω is invariant under
Γ, so

by the uniqueness of Ω. But then for A ζ 01

(Ωh,AΩh) = (Ω,AΩ), h
which is clearly false unless h = β, proving theorem 2. We shall see later
that the automorphisms h ζ 8 U2 of Oί commute with the time-displace-
ments obtained from the Hamiltonian (8), and so define a symmetry of the
theory. Since h is not implemented in τr0, it defines a spontaneously
broken symmetry [16]. The non-implementability can be seen heuristically
by noting that the total spin of the ground state Ω is infinite, so that (9)
diverges as K -> σc. According to the general theory, the representations
πh, hζ SU2 all are such that the Hamiltonian is non-negative and this
is easily checked in this model.

3. The Hamiltonian

It is convenient to introduce the operators J f = J} ± iJf; then we
have

[Jf. Jf] = 2δtj; [J+, Jfl = - δuJt [JΓ, J?l = δifJΓ • (10)
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The state Ω is then uniquely determined by Jf Ω = 0, JfΩ = -ψΩ9 an

the relations (10).
As shown in [17], a complete orthonormal basis for Jί?(Ω) = Jf is

given by the set of vectors ψκ, where (ψg)i = | + ) t if i^K and

The properties (10) then show t h a t

ψκ = JΓ1Jι

r

2. JΓkΩ (11)

where K = (&1? &2, . . . &/c). We define a dense domain Do in J f

A , = U 3 l ( Z ) β . (12)

The formal Hamiltonian (8) becomes

HF = Σ tu \\- (Jΐ Jf + K H) + J!Jf] (13)

Suppose that fiS — 0 for fixed i except for at most Q values of j . Without
changing the dynamics we may assume that /z; = ]H and fii = 0. The
Hamiltonian (13) is only formal since, as it stands, it diverges when
acting on _D0. We now show that a consistent definition of an operator
H on Do can be written

HAΩ^[HF,A]Ω (14)

for all A ζ U Qί(K). The idea is that we "renormalize" HF by subtracting

a constant, so that [H, A] == [HF, A] and HΩ = 0. In order for (14) to
define an operator, we have to show that if AΩ = 0, then [HF> A]Ω = 0.
To this end, define an approximate Hamiltonian Hf to be the sum
Σ fij ίi ' dj, where the sum is taken over the neighbours of the points
in K. This is then a finite sum, and so is a bounded operator on «̂ f. Since
J* Ω = 0 for all i and β is an eigen-vector of Jf, we see from (13) that Ω
is an eigen-state of H§. Since H§ is bounded, we may modify HF to Hκ

by adding a finite constant (depending on K) so that J ϊ z ί 3 = 0. We then
see that

HKAΩ= [HK,A]Ω . (15)

Now for any A ζ 21 (i£) it is clear that

[Hε^A]=[H^A]=[HFiA] (16)

for all KXCK since any extra terms in HKχ have no neighbours in K, and
so commute with A. If now ̂ 4β = 0, then

[HF, A]Ω = [Hκ, A]Ω - HKAΩ ~ AHKΩ - 0 .

λVe may therefore unambiguously define an operator H on Do by (14) it
is symmetric but not necessarily bounded.

Suppose from now on that all the j i i are negative. Let 3f]t be the
subspace of ̂ f7 which is spanned by all the vectors ψκ for some K with k
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elements (ily . . ., ik). The action of the Hamiltonian is

H ψ = [HF, J - . . . J~] Ω = Σ J ~ . . . Jr [HF, J - ] Jr^ . . . J ζ Ω ( 1 7 )

One easily computes

[H, Jf] = Σ ίiA^nJUΓ - δnJfJf ~ δnJΓJ? + δjιJfJf} . (18)
u

Now J^+i . . . Jjk Ω is an eigen-vector of all Jf with eigen-value ± -^ .

In fact, since all the i^ . . . ik are different in (17), all the Jf occurring in

(18) have eigenvalue + -s" on J~+ί . . .J^Ω. We see that Hψ is a

linear sum of vectors with exactly k products of different "creation
operators" J~ (if any J~ is repeated in (11) it gives zero, since {Jϊ~)2 = 0).
Therefore the set Jfk r\ Do is invariant under H. We call J^lc the space

oo

of states of k spin waves, and write Jf = φ ^f fc.

Theorem 3. The operator H defined by (14) is non-negative.
Proof. Since H is reduced by Θ ̂ %, it is sufficient to verify that

(ψ, Hψ) ̂  0 for each ψ ζ DQ r\ 34?'k and then each k. Each such ψ has the
form (finite sum)

ψ — Σ CA j . \L ... iΊ,y

and using (18)

^ Σ ίijΣγCίι...ik{(ψ\ h - Λnh - - -hΐ)hiι +

~T~ \ ' φ ϊ i ) . tj » 1 . . . . %!«/ On n . \ ^ ^ Ί • ^ ' 7 5 ? 5 ^1" / On Λ ,

This is exactly the same functional of Giίtmmik as is obtained from the
manifestly positive operator

if one uses the fact that all iv . . . ik are distinct. This proves the theorem.
By a theorem of Friedrichs, H possesses a natural self-adjoint exten-

sion, which is also non-negative. We denote this extended operator
again by H. Thus, U(t) = exipiHt is a 1-parameter group on J^} which
we take as the time-development of the system. I t is not immediately
obvious that if A £ πo(2l), then U(t) A ϋ'1^) ζ πo(3ί). We prove this in
theorem 5.

Theorem 4. Restricted to 3tif k, H is bounded.

Proof. A dense set in J^k is obtained by linear sums ψ = Σ ^iΨv
Λvhere / has k elements, and all |αΣ| are different. We may order the
sets / by writing J > I if |αj| > \ocj\. Then

(ψ, Hψ) <Z Σ W 2 (Ψi, Hψd + 2Σ l^αjl \(ψv Hψj)\ .
I
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Looking at (13) we see that (ψv Hψ^ is a sum of terms, the number
depending on Q, h but not J, and each term is bounded by /. Hence

In the term (ψI} Hψj), for fixed / only those J give a non-zero contri-
bution that differ from / in one or two places. Hence the number of

J 's that enter in Σ faiα«/l I (ψi> Hψj)I ^s limited by k -f ^ ~~—~ . For each
J>i 2

fixed J the number of terms i, j in the sum JΓ /^(J^ — Jj)~ (J* — Jj)+ψj
is limited to those which are neighbours of points in J or points in /. We
may limit this number by a function M (k, Q) independent of / and J.
Each term is then limited by /. Hence

2 Σ |δ iαj | Ky j , HΨJ)\ <= 2M{k, Q) f Σ

<2M(k,Q)f Σ\κι\2

I

Hence | | # | | ^ fN + 2/Jf on JfV
Remark. A more detailed investigation shows that

on ^ if \<k<Q+l

if ^ ^ e + 1 , and ||JΪ|| ^ 2/Q on ^ .

Corollary. Do is a domain of analytic vectors for H, on which H is
essentially self-adjoint. The radius of convergence of

is infinite. Each of the subspace J^h is invariant under U(t) (see [21]).
Remark. It is clear that each J^k is invariant under W(γ) for all

γZΓ.
We now come to the key lemma in our discussion of time translation.
Lemma 1. // \t\ < (2fQ)~1 we have

Proof. We see for the commutator

= Σ n^βyiδnJlη + δaJ
which is a sum of at most 4 Q terms, each quadratic in / (for fixed α each
(β, γ) can have two values, and for fixed Z, fijδji is non-zero for at most
Q values of j). More generally,
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is a sum of 4nQ terms, each a product of n + 1 J's. Thus, proceeding
successively, \H\H, J ] ] is a sum of 4Q-2(4(2) terms, all cubic, and
[H[H[H, J]]] is a sum of 4 $ 2(4©) 3(4©) terms, all quartic, etc. By
induction the n'th multiple commutator is a sum of nl(4:Q)n terms each
of degree n + 1 in J, and involving a product of n /'s. Hence its norm is

( 1 \ n+ i 1

y I fn (4 ©)n, since each J has norm y . Now consider the
series

(it)2

J« + it [H, J«] + ^r [H, [H, J-]] + . (19)

Each term in the series is a bounded operator, and the general term is

bounded by ~— n!. Thus the series converges in norm if

\t\ < (2fQ)~λ. But on the dense set Do, which is invariant under Jf, we
have (writing J{ for πo{Ji))

U(t) J? U-^ήψ == {Jt + it[H, Jn +'-)ψ (20)

showing that the series (19) converges to U(t) J^?7~1(ί), which therefore
lies in πo(Ql). This proves the lemma.

Theorem 5. The time-displacements A -> At — U(t) A Ό'1^) form a
group of automorphisms of πo(Ql), and therefore of 01, satisfying the con-
tinuity axiom (7).

Proof. Any A ξ U <Ά(K) is a finite linear combination of products of

operators J?\ then applying the lemma, U (t) A TJ-1^) ζ πo(9l), at least
for small t. Since this is a norm preserving map, it can be extended to an
automorphism of 2ί. The group property U(tx + t2) = Ufa) U(t2) shows
that the map A -> At is an automorphism for all t.

We note that

a) 21 is countably generated,

b) H is self-adjoint in one representation of 2ί.

These properties imply axiom (vϋ) [6], which can also be seen directly
for this model.

4. The Goldstone Theorem

The importance of this theorem is that it enables one to deduce
properties of the spectrum of H, an unbounded operator not in πo(2l),
from an apparently unrelated phenomenon, the fact that Ω is not in-
variant under rotations. Proofs in other situations can be found in [15,
16, 22]. We must first prove that rotations are a symmetry, that is

Theorem 6. The automorphism A -> hA, h ζ S U2, commutes with time
translations.
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Proof. It is sufficient to prove this for small t. We then see for local
A, and small t

(hA) (t) = lim \hA + it[H, hA] + -f — Γ [H . . . [H, hA}

If, hA] + + —- \H§, . . . [H§, hA] .

where K, depending on n, is chosen large enough. But Hf is rotation
invariant, so

(hA) (t) - lim \h(A + it[H$, A]+'" + ~ [ffj., . . . [ff*, A] . . .])} .

But any automorphism is continuous, so we can invert the order of the
limit and the automorphism giving.

(hA) (t) = hA(t) .

Thus hthr1^1 is a continuous map 21 -> 2ί coinciding with 1 for local A.
Hence it is the identity. This proves the theorem. It is a common physical
situation that the ground state Ω is the only vector (in the representation
in question) invariant under time displacements. In a Lorentz invariant
theory this is connected by the Lorentz group to the fact that Ω is the
only vector invariant under space-translation but here the two proper-
ties are independent. Thus the second was proved in the last section,
using the cluster properties of the Wightman functions, but we have
not succeeded in finding a proof of the first. We shall prove a weaker
form in the next lemma, which is all that is needed for the Goldstone
theorem.

Lemma 2, If H is invariant under space translations, then there is no
vector invariant under U (t) of the form

Ω' = ΣCιJfΩ> Σ\Cι\2<™-

Proof. If HΩ' = 0 then Σ c ι lH> JΓ]Ω = °> g i v i n g f r o m (18)>

Σ(Czfij~Cjfij)J-Ω = 0.

But all the Jf Ω are independent vectors, so that

ΣiCifu^CiΣttti for all/.
Thus Cj is the weighted mean of its neighbours, impossible if fίό all have
the same sign and is translation invariant, unless all the Cj are the same.
But then Σ \^ι\2 would diverge. This proves the lemma.

The next theorem shows that lim Jκ is, in some sense, the generator

of a transformation which commutes with time-translations. In order to
unify the proof in 1, 2 and 3 dimensions, we shall change the notation
slightly. We assume we have a linear, square, or cubic array; a box
containing the origin at the centre, and having size (2R)d, d = 1, 2, 3
respectively, will be denoted by VR. We assume that if A ζ 01 (VR) then
[H, A] ζ 21(7^+^), where q measures the range of interaction.
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Theorem 7. Suppose f(t) is a continuous function such that for any N
there is a number F such that \f{t)\ <F(A+ \t\)~N. Then if A ζ $ί(Vno)
we have

lim (12, [JR, A (f)]Ω) = (Ω, [JB; A]Ω) / /(<) dt
It —•> oo

where A{j) = f A (t) f(t)dt and JR = Σ li-
iζVE

Proof. Since AΩ is analytic for the energy with infinite radius of
convergence, we have

(β, [JR, A (t)]Ω) = {JRΩ, A (t)Ω) - {A (t)*Ω, JRΩ)

= Km \(JRΩ, {A + itHA + + — H»A) Ω) -

i + itHA + ••^ΓH»A\*Ω, JRΩ) (21)

= Jirn^ Ω, {[J* A] + it[[JR, H], A] +

+ .-• + %•[...[I*,H]...H],A]}Ω).
Since Hμ is rotation invariant, JR commutes with all the terms in (13),
the expression for HFy unless i ζ VR, j $ VR or vice versa. But since the
range of the forces is q, we see that [H, JR] ζ Qi(VR-a)'. Then
[H, [Hy J

R]] ζ <2ί{VR-2g)' etc. Here the dash denotes the commutant.
In fact, [H . . . [H, JR] . . .] (k brackets) is in the algebra associated

with the boundary of the box VR, to a thickness kq each side. Therefore
[H, . . . [H, JR]...] commutes with A ξ Qi{VRo) provided R - kq> Ro

i.e. k < (R — R0)lq. Letting n go to infinity in (21) the only non-zero
terms, apart from (12, [JR, A]Ω), are

it

(22)

with k ^ (R — R0)lq. For simplicity we choose 12 so that (12 — 120)/# is an
integer, k.

Now \\JR\\ = Y (212+ l) d for each component, since || J/ j | = y . More-

over ||IP.4121| ^ ^ l l^ l , where E is the maximum energy in AΩ. Since

(A; + n)~x < w1 we may bound (22) by

| ^ (23)

There exists an F such that for all t

| / ( ί ) | < - F ( l + | ί | ) - β * - 2 . (24)

We may split / into two parts, / = /i + /2> where

= 0, |ί| ^ S and (25)

/,(*) = 0, |«|<-Sf.
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We may bound f f2{t)dt{(Ω, [JR,A{t)]Ω) - (Ω, [JR,A]Ω) easily by
CO

2 J ΌQ ~\~ 1
S

Since d ^ 3 this goes to zero as R -> oo. There remains

J/iOO ί*{(β> k P , 4(*)]12) - (12, [JR, A]Ω)} ^
c 2 r

EΓ/'

-> 0 as 7? -> oo .

The cases where i? -> but (i£ — R0)jq is not an integer can be proved along
similar lines. This proves the theorem.

It follows immediately that if / = g or g then

Km (12, [JR, A (/)]12) = 0 for any local A .

Suppose now, if possible, that there is an energy gap in the states in f̂l3

the states of one spin wave. We will show that this leads to a contra-
diction. Obviously lemma 2 implies that Ω is the only vector in 3F not
orthogonal to all JRΩ. We may therefore follow the proof of [15],
lemma (iii), to prove the following

Lemma 3. For every local A there exists a local B and a continuous
rapidly decreasing function g (t) such that for all R

(JRΩ, AΩ) = (JRΩ, B(g)Ω) + {JRΩ, Ω) (12, -412)

if there is an energy gap in 3tfx. Similarly

(4*12, JRΩ) = (B(g)*Ω, JRΩ) + (4*12,12) (12, JRΩ) .

This lemma immediately gives a contradiction to the hypothesis of a
mass-gap. For using it

(12, [JΓ\ 4 ] 12) - (J*12, B(g)Ω) + (J*12,12) (Ω, AΩ)

- (B{g)*Ω, JRΩ) - (A*Ω, Ω) (Ω, JRΩ)

-=(Ω,[JR,BQ)]Ω).
Hence

lim (12, [JR, 4 ] 12) = lim (12, [JR, B(g)]Ω) - 0 .
jR—>oo lϊ—>oo

But by inspection the left-hand side is non-zero. This contradiction shows
that the energy spectrum of states in 3FX goes to zero, which is the state-
ment of Goldstone's theorem.
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5. On Certain Representations of 01

It is clear that the representation π0 of 21 corresponds to the zero
temperature states, Ω being at absolute zero, and the other vectors in M*
being microscopic deviations from it. The inequivalent representations
πh, hζ SU2, correspond to similar situations, but where there is a
macroscopic difference in the lattice, namely all spins are pointing in a
specific direction in the ground state, obtained from the third direction
by rotating with h. Of the other inequivalent representations obtained
from weak equivalence classes in the tensor product, most are too com-
plicated to correspond to experimentally realizable situations. But those
obtained from τr0 by inserting a finite amount of energy and "performing
a large translation" [4] correspond to the various superselection sectors.
Thus, for example, if ψi ξ J^i} and ψi =-- | + )^ in one half of the space,
ψi^ \'~}ί i n ^ n e other, then the magnet is divided into two magnetic
domains by a Bloch wall. Let us denote the corresponding representation
by πλ. The scattering of spin-waves from the domain boundaries, and
the movement of the boundaries themselves, is then predicted by the
vacuum sector dynamics, just as in [4] the behaviour of particles carrying
superselection quantum numbers is derived from the dynamics of the
observables alone, which are the primary objects of the theory. This
idea, due to HAAG, is in contradistinction to the popular belief that a
fundamental field theory of matter must involve the introduction of
non-observable fields at a basic level.

One can easily see that the vacuum representation π0 is recovered
from πx by taking large translations [4].

Since in this model the spin-wave number N is conserved in time, the
thermodynamic states of the system should be given by

f Λχ v tτ(e-β(Hv-μX)A) , . _ .

eβ*W=r^-^=mτ=τw . ( 2 6 )

where II v is some cut-off Hamiltonian such that the traces exist. The

existence of this limit has been studied by D. W. ROBINSON, who has

obtained results for a wide class of lattice systems, including those con-

sidered in this paper2. For β = 0 I T = -^-is the temperature) , ρ{A) is
given by the unique central state on 21, producing a type 1^ factor
representation. The type III states discussed by H. T. POWERS [23],
defined by

< J ? > = λ , <«/}>=.-<J?> = 0 (27)
with no correlations between different spins, can be obtained by letting
β -> 0, μ ~> oo such that μ β —> 2 tanh" 1 (2λ) but these states are more
naturally obtained as the equilibrium states of a free spin system in an
external magnetic field μ. That is, we write a formal total Hamiltonian

2 D. W. ROBINSON (private communication).



Heisenberg Ferromagnet 247

HF — μ Σi Jf, andrenormalize it by using (14). We obtain Ή = μN, and
obtain (27) for the state at temperature 1/β, with μβ = tanh~1(2λ).
This is in agreement with the ideas of HUGENHOLTZ [24] who shows from
general axioms (not all easy to check for the spin system) that the
thermodynamic states give factors of type III except possibly for type Π^

If the limit (27) could be defined, giving rise to a translation invariant
state, then we would say that the magnet is ferromagnetic at a tempera-
ture--if lim ρ(β, μ, Jf) Φ 0, and 'paramagnetic if lim ρ(β, μ, J3) -~= 0.

As β -> oo in (27) the factor e~βH is very small for all states with any
energy, so that in the trace only the vacuum survives, giving

This heuristically justifies the name "zero temperature state" for Ω.
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