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Abstract. An inequality relating binary correlation functions for an Ising model
with purely ferromagnetic interactions is derived by elementary arguments and
used to show that such a ferromagnet cannot exhibit a spontaneous magnetization
at temperatures above the mean-field approximation to the Curie or "critical"
point. (As a consequence, the corresponding "lattice gas" cannot undergo a first
order phase transition in density (condensation) above this temperature.) The
mean-field susceptibility in zero magnetic field at high temperatures is shown to
be an upper bound for the exact result.

I. Introduction

Many years ago PEIERLS [1] gave a simple argument for the existence
of spontaneous magnetization in an Ising ferromagnet at sufficiently low
temperatures. More recently this argument has been turned into a
rigorous proof [2, 3], and generalized to include interactions other than
the nearest-neighbor ferromagnetic coupling originally considered [4].

The existence of a spontaneous magnetization in the "thermo-
dynamic" sense [5] for an Ising ferromagnet implies a horizontal portion
of the pressure-density isotherm in the corresponding "lattice gas" [6].
Thus for this somewhat artificial model, the Peierls argument provides an
elementary proof that a first order phase transition, or "condensation",
takes place at sufficiently low temperatures.

We shall discuss a complementary problem: a proof of the absence
of spontaneous magnetization (or first-order phase transition for the
analogous lattice gas) at a sufficiently high temperature. So far as we
know, such a proof has not been given previously for any Ising model
with interactions of finite range, apart from linear chains [7]. (It is of
interest to note that a proof of the absence of spontaneous magnetization
for certain systems with a Heisenberg exchange interaction has recently
appeared [8J.) It is true that for the Ising ferromagnet on a square lattice,
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YANG [9] has calculated a spontaneous magnetization which vanishes at
the temperature where the zero-field free energy has a singularity [10].
However, there is as yet no proof that Yang's value is identical with the
thermodynamic result [11], though we may be sure that the former is a
lower bound for the latter [5].

By an elementary argument we shall derive an inequality for binary
correlation functions in an Ising ferromagnet, and from this deduce an
upper bound on the Curie or "critical" temperature, defined as the
temperature at which the spontaneous magnetization vanishes. Our
bound is essentially the mean-field estimate for the Curie temperature.
We also obtain an upper bound for the magnetization μ as a function of
magnetic field H, for H ^ 0, above this temperature.

The procedures we employ are analogous to those used in two
previous papers on inequalities in Ising ferromagnets [12, 13; hereafter
referred to as CIFI and CIFII, respectively]. S. SHERMAN and D. G.
KELLY [17] have generalized the arguments in CIFI and CIFII SHERMAN
has also generalized our basic inequality (5) below. M. E. FISHER [16]
has independently obtained upper bounds on the Curie temperature by a
different technique. He obtains not only mean-field bounds, but also
additional upper bounds which lie at even lower temperatures, and are
thus more useful in estimating the actual Curie point.

An interesting question as yet unanswered is the following: LEE and
YANG [6, 14] have shown that for an Ising ferromagnet and at any
temperature, μ(H) in the thermodynamic limit of an infinite system is
analytic for H > 0 and H < 0 [actually, in the two half-planes Real
(H) > 0 or <0]. It is tempting to suppose that μ is also analytic at
H — 0 when the temperature is sufficiently high. Our argument demon-
strates continuity at H = 0 for real H at sufficiently high temperatures,
but a proof of analyticity (or a counter example) will require more
sophisticated techniques.

II. Inequality for Binary Correlation Functions

Let 3tf be the Hamiltonian for a system of N Ising spins, or4- = ± 1

where the interaction is assumed to be ferromagnetic:

Jtj = JH^Q\ Ja = 0. (2)

Angular brackets denote a thermal average at a temperature T = (k β)~λ:

<(P> = Z- 1 Tr[^e-^ ? r ] , (3)

where Z is the partition function:

^ (4)
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Here Tr denotes a trace or a sum over all 2N configurations [a con-
figuration is an assignment of specific values to each of the σ{] of the
system.

Theorem 61. If σp and σQ are two distinct spins (i.e., p ={= q) in the
system described by (1) and (2), the following inequality holds:

or
^ tanh β Jp {σm σQ) (6)

One obtains (6) from (5) by removing the term m = q from the summation
and noting that (σβ

2) = σQ

2 = 1.
Proof of Theorem 6. Our diagrammatic and notational conventions

coincide with CIFI and CIFII. A diagram representing the Hamiltonian
(1) or associated partition function consists of small circles, representing
spins, and lines or bonds connecting pairs of spins k and I if Jkl in (1) is
not zero. A factor

Z w = βxp(-2/SJ w ) (7)

associated with this bond always lies between 0 and 1, by condition (2).
Setting Xkl equal to zero (equivalent to Jkl -> oo) serves to "combine"

spins k and I. That is, if a single spin k' replaces k and I in a new diagram,
the "reduced diagram", and one lets

for all m, the new partition function (a polynomial in the Xiό) and
correlation functions (Z~1 times a polynomial in the Xiό) are precisely
those obtained by setting Xkι = 0 in their respective predecessors.
Further, if all bonds in the original diagram are ferromagnetic [(2) is
satisfied], the same is true for the reduced diagram.

a b)

Fig. 1. a The solid lines denote primary bonds and the dotted lines some of
the possible secondary bonds, b The reduced diagram obtained from (a) by setting

XM = 0.
1 The numbering is consecutive with that in CIFI, CIFII.
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In connection with (5) it is useful to distinguish the bonds which
connect p to some other spin, which we term "primary bonds", from all
the remaining ''secondary bonds" (Fig. 1). Consider the special case
where there are no secondary bonds (i.e., the corresponding Jkι are zero).
An elementary computation yields:

<σ1,σβ> = tanhj8Ja,<I (9)

and, since the remaining terms on the right side of (6) are non-negative
[every (p^a^) is non-negative in an Ising ferromagnet by theorem 1 of
CIFI], the inequality (6) is clearly satisfied.

The proof of (5) is equivalent to showing that

σQ}] (10)

is non-negative. Now Z(σmσqy is a polynomial in the Xiό and a linear
function of any particular Xkp Hence IF is a linear function of the factor
associated with any secondary bond [due to the appearance of
tanh β Jym it is not a linear function of a primary-bond factor].

Suppose the factor Xkι for a particular secondary bond is set equal
to zero. Let Wo represent the value of W in (10) when Xkι is everywhere
replaced by zero, and let Wλ represent (10) for the corresponding reduced
diagram in which the spins k and I are combined to form a single spin k!
(Fig. 1), with Xk,m defined by (8).

When Xkl is zero, the correlations (σkσqy and{σz > eσα) are equal to
(σvcrβ); however, Wo differs from Wτ in that the sum over m for the
former includes one more term than the latter. The difference is

Wo- W1 = Z(σrσg)[t8inhβJpk + tanhβJpl-t3inhβ(J3)lΰi-J2)l)]. (11)

For J 's satisfying (2), the quantity in square brackets is never negative.
Also, by CIFI, <σrσα> > 0. Thus W will be non-negative in the limit
Xk j = 0 provided W for the corresponding reduced diagram (which
contains one less spin) is non-negative.

We shall now prove theorem 6 by induction. Suppose it is true for
any system of N — 1 spins and for any system having N spins and at
most n secondary bonds. We shall show that it holds for N spins and
n + 1 secondary bonds. Assume the n + 1st bond joins spins k and I. As
W is linear in Xkl, we can prove it is non-negative by showing this is the
case for Xkι = 0 and Xkι = 1. In the latter instance, the bond kl is
erased and we have n secondary bonds for which W is non-negative by
hypothesis. In the former instance W is non-negative because (see
preceding paragraph) this is true by our hypothesis for the corresponding
reduced diagram containing N — 1 spins. As we have previously estab-
lished (5) for n = 0 and N arbitrary (note that for N = 2, the only
possibility is n = 0), the proof of theorem 6 is complete.
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III. Upper bound for the Curie Temperature

The Hamiltonian

* = - ΣΣ. JuOiβi -HΣσi (12)
1 ̂  i < j i

for an Ising system of N spins in a magnetic field H ^ 0 may be written
in the form2

provided one defines
Jo} = Jjo = H^O (14)

for all j Ξ> 3, and requires in addition that σ0, the "ghost spin", always
have the value -f 1. Let { ) 0 denote an average with the restriction
σ0 = -f 1 [only configurations satisfying these restrictions are used in
(3) and (4)], whereas { ) denotes the unrestricted average in which σ0

may be + 1 or — 1.
The equality

(σk)o =

is easily verified by writing out the right hand side in terms of sums over
configurations for which σ0 = + 1 and σ0 = —I, and noting that (13) is
unchanged if every at is replaced by —a^

The average magnetization per spin, μN, is equal to

μN(H, T) = N-iΣ' <<yk)0 = N-iΣ' < < W (16)
k k

where a prime on the summation indicates the omission of k = 0. The
bulk magnetization μ(H, T) is the limit of μN(H, T) in the "thermo-
dynamic" or N -> oo limit; one must, of course, place some restrictions
on the sequence of systems by which the limit is achieved (for example,
a series of cubes) and on the form of the exchange interaction Jii [15].
When speaking of "N -> oo" we shall assume these restrictions are
satisfied. A theorem of LEE and YANG [6] states that if (2) is satisfied
(all interactions ferromagnetic), μ is an analytic function of H at fixed
T for H > 0. At H — 0 μ (which is an odd function of H) may be con-
tinuous, or it may possess a jump discontinuity or "spontaneous magneti-
zation" which we define [5] as

μo(T)= lim μ(H,T). (17)

The "Curie temperature" Tc is the temperature where μo(T) goes to
zero [μ0 is monotone non-increasing in T if (2) is satisfied — see CIFII]
more precisely, the least upper bound of all the temperatures for which
μ0 is greater than zero.
9 Commun. math. Phys., Vol. 6
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Setting q — 0 in (6) and using the definitions (14) and (16), one
obtains

^v g tanh βH + iV-1 Σ Σ <^o>

+ 0{β)μN

where

) . (19)

Consider the particular case where Jiό is equal to J if spins i and j
are nearest neighbors on a regular lattice, and 0 otherwise. If each spin
has z nearest neighbors, G is equal to

G(/3)=--ztanh/?J. (20)

Provided the temperature T exceeds Tm defined by

ztanh(JlkTm) = 1 , (21)
G is less than 1, and (18) may be rewritten as

with, of course, H ^ 0. The right side of (22), since it is independent
of N, is also an upper bound for the bulk magnetization. Thus for
T > Tm, μQ(T) vanishes3 and we conclude that

T < T (23)

The usual "mean-field" Curie temperature TM defined by

zJlkTM=l (24)

is slightly larger than Tm, though the difference is only 2% for z — 4 and
decreases as z increases.

Note that (22) also provides a bound on the zero field susceptibility

Xo = (dμNldH)TtHs.o^ [kT(l - tanhJ/iT)]-* (25)

provided T is greater than Tm. This bound also holds in the N —> oo
limit provided the limiting function μ actually possesses a derivative at
# = 0.
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