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Abstract. We prove a conjecture of R. STREATER [1] on the finite covariance of
functions holomorphic in the extended tube which are Laplace transforms of two
tempered distributions with supports in the future and past cones. A new, slightly
more general proof is given for a theorem of analytic completion of [1],

A. Notations

1. Scalar product:

(z, z') = zκz'μ = z°zf° - z V 1 - z2z'* - zzz'z = zfgμvz'v

for z and z' real or complex four vectors.

2. Future cone:

V+ = {x : x ζ 1R4, (x, x) > 0, x° > 0} = - F~

^-point future cone:

3. π-point forward tube:

4. Lζ. = connected real Lorentz group. L+(C) = connected complex

Lorentz group.

5. w-point extended tube:

^ ; = U

for z = zlί . . ., zn ζ (C4)», Λz = Λzv . . .,Azn.

6. For z = z°, z1, 22, z3 = z°} z, we denote

7. ^ n = the set of Jost points.

6 Commun. math. Phys., Vol. 6



78 J. BROS, H. EPSTEIN and V. GLASER:

B. Introduction

We recall the following theorem of STREATER [1].
S Theorem. Let f (z) be a holomorphic function of z in 3~^ \j £Γ~ \j Jf,

where Jί is an open (complex) neighbourhood of the set of Jost points [2].
Then there exists a function, holomorphic in ?F'n, ivhich coincides with f in

!Tn w 3~n and °ά the J°st points.
The second part of this paper is devoted to some comments on the

proof of this theorem, particularly on the question of single valuedness.
In the first part of this paper, we shall prove the following theorem,

which supplements the preceding one:
Theorem 1. Let f(z) be a holomorphic function in &~'ni ivhose restrictions

to ^Γ^ and ZΓ^ are the Laplace transforms of hvo temperate distributions on
R 4 n , /+ and J~, respectively, the supports of f+ and J~ being contained in
V^ and V~, respectively. Then the following formulae hold for all z ζ 3Γ'n
and all A ζ L+(C):

r,8 = 0
L

/(*)= Σ trF(r>s)(z)
r,s = 0

Here, D(r>s) (Λ) is the finite dimensional irreducible representation of
LΛ (C) with indices r and s; F(r>s)(z) is a matrix operating in the same
space as 2)(r»s) (i.e., an (r + 1) (s + 1) X (r + 1) (s + 1) complex matrix),
whose matrix elements are holomorphic in z in ^'n and have the properties
postulated for f(z).

This theorem has been conjectured by STREATER [1]. A special case
(n = 1) has been proved by BOGOLΠJBOV and VLADTMIROV [3]. In this
case it also follows easily from the Jost-Lehmann-Dyson representation.
Another special case has been proved by BORCHERS [4].

Par t i

1. Preliminary Remarks

1. We denote G the covering group SL(2, C) X SL(2, €). For
g — {A, B) in 0, A(g) denotes the corresponding Lorentz transformation,
as described in Ref. [2], p. 14. We also denote

Go= SU{2, C ) χ 8U(2, C)

These are two subgroups of G. Every point of Go (resp. Gr) has a complex
neighborhood F in G, where local analytic co-ordinates ζk— ξk + ίηk

can be chosen so that

The image of Gr in L+{<C) is
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2. The irreducible finite dimensional representations ZXr>s) are defined
as follows: r and s are two integers ^ 0; for g — (A, B), ZMr>s)(g) is the
restriction of (A <g> ® A) <£> (B ® ® J5) to the space of all com-
plex valued tensors I v . . ^ . . . ^ separately symmetric in ^, . . ., ir and
in?\, . . ., /β. Note that: D^*s) (g) is holomorphic on G. For u = (£7, F) ζ # 0 ,
/)(r>s) (w) is unitary:

The restrictions of D(r> s> to (τ0 and Gr give all irreducible finite dimensional
representations of GQ and Gr.

3. Let 99 (g) be a holomorphic function in an open connected set Ω of
G of the form Ω =~ ΩG0. I t can be shown [5] that φ(g) has a unicμic
expansion

00

r,s — 0

converging uniformly on any compact of Ω. This expansion is the
analogue of the Laurent series in C — {0} (the complex Lorentz group for
two dimensional spacetime). φ(r»s) is a (r + 1) (s -f 1) x (r + 1) («s + 1)
matrix given by

Φ α / = (̂  + 1) (« + 1) / # ( ί 7 ? V - V 1 ) ψ{gu)du\ gζΩ

where cίtί, is the (left and right invariant) Haar measure on Go normalized
by / du = 1. The above expression is, in effect, independent of g\ to

see this, we replace g hy gh and find a holomorphic function of h in a
neighborhood V of the unit. This function is constant on V r\ Go because
du is invariant. Using local co-ordinates mentioned in remark 2., we
conclude that the function is independent of h in a neighborhood of the
unit. Since Ω is connected, our assertion follows. We can write

φ(r,s) == ( r _|_ 1) (s _|_

4. In the case when the φ(r>s) defined by the above formula happen
to be all 0 when r, s > L, the identity

_ v

is an immediate consequence of the Peter-Weyl theorem applied to
φ{gu) as a function on Go. Then φ(g) is evidently holomorphic on G.

5. If φ(g) is a function of Λ{g), i.e., if φ(g) = φ(~g), only the φ(r»s)
with (— l)r + s = 1 appear in the expansion, since
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6. We shall denote [λ] the following element of L+((D)

2" + τj ° °
0 1 0

0 0 1

0 0

If we use the variables: uό = zf + zf, v$ = zf — zf, [A] is simply the trans-

formation: Uj-+λuό, Vj-^-yVj, all the other components remaining

unchanged. It is easy to check that [A2] = A (g) for

2. Some Properties of Tempered Distributions with Support in V^
The theory of Laplace transforms of tempered distributions with

support in a convex cone (such as F+) has been extensively treated in
Kefs. [2, 6, 7, 8, 9, 10, 11]. We shall give an elementary derivation of
the results of the theory needed for our purposes.

We consider the functions of one four vector p defined by

SπF0(p) = θ(p, p) 0{ρ°) = characteristic function of F + .
Fjcip) is continuous and has continuous derivatives of the 2k — 2

first orders for & ̂  1. For k Ξ> 1:

in the sense of distributions.
Moreover:

• FQ(p) — ΔR{p\ 0) (retarded function for the wave equation)

), Ίc ^ 0 ,

the limits being taken in the sense of distributions.
Let /+ be a tempered distribution on R 4 n = (R 4 ) w with support in

Vn* There exists an integer N' and a constant C > 0 such that, for all

Their Fourier transforms are

Fk(x) = lim (x + iy, x + i
2 / 0

\φ, Ψ)\ < G sup ' \D*φ{p)\ =
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It follows that /+ can be extended to a continuous linear functional on the
space of all functions ψ having continuous derivatives of the N' first
orders, such that \φ\jχ> < oo, with the topology defined by the norm
\Ψ\N>. The inequality |(/+, φ}\ g C\cp\N, continues to hold for such
functions [12].

We notice that

I V (p ~ V') - $N>+1 (Pi ~ P'l) • $N>+1 (Pn ~ Pn)

considered as a function of p', has its support in p — V^. The inter-
section of this support with V^ (the support of /+) is a compact set if
P ζ Vn> a n d is empty otherwise. We can therefore [12] define the con-
volution /+ * Fjy' and obtain a continuous function (for N' ^ 1, it will
even be differ en tiable, but this is not relevant to our purpose). To see
this we can define /+ * ΈN, as (f+, 0^) where Gp(p') = ΈN>(p — pf) %v{p')
and %p{pf) is a ^ ^ function of p' with compact support, equal to 1 in a
neighborhood of {pf : p' ζ V^ Γ\ (p — F^)}. The result is evidently in-
dependent of the choice of χv. In particular χv may be chosen independent
of p when p stays in a fixed compact. The function of p', FN> (p — ρ')χv{p')
then depends continuously on p in the topology of the norm || .\$>. This
proves the continuity of /+ * ¥N>. To obtain some estimate on the growth
of this function, we first choose a ^°° function cc(t) of a real variable with
the following properties:

0 S α(ί) < 1

-oc(t) = 1 for t ^ 2

α(ί) = 0 for ί ^ 3 .

We note that, for p' ζ F+ n (?) - F+),

o^^^f lp ; IP I ^ P ; 0 ; M ^ 1/2IN
We can therefore define:

for

For a given multi-index β, \Dβχv(p')\ is bounded by a constant
independent of p and p'.

It follows that (using Leibnitz's formula), for \p\ ^ 1,

\G,\LV < K sup (1 + Up'!)*' \D^ Έy,(p - p')\ .
l b ' l l b i ι

Since FΛ/ behaves like a polynomial of degree 2n(N' + 1), there exists a
constant i£'γ' such that
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This gives the estimate:

|/+ * Vχ.(p)\ < GK'^{\ + IplDίίn + D-V' + ί" .

On the other hand:

D£' + 2 . . . D & ' + a (7 + *F Λ -.) = / + .
We have proved:

Lemma 1. Any tempered distribution f+ with support in V^ can be
written in the form:

I L J P l LJp n ^

where G has its support in V^ and is a continuous function of at most poly-
nomial increase. If /+ is Lorentz-invariant, G can be chosen Lorentz in-
variant.

[The method we have used can be easily generalized to deal with
tempered distributions with support in an arbitrary convex cone Γ with
non-empty interior. One would then choose a basis with elements
ev . . ., er in the interior of Γ, and use the functions

α f a f . . . Λ f θ ( x 1 ) d ( x 2 ) . . . θ ( x r )

in the same way as we have used Fy.]
We can now study the Laplace transform of a tempered distribution

/' with support in V^ This is a function f(z) holomorphic in ^"^, defined,
for z — x -f- iy ξ ^"7|"> ^y ^ n e heuristic formula:

/(«) = / eι & & . ' » a ? ... π ξ G(pv ...,Pn

Λvhich has the precise meaning:

j(z) = (- l)»-v'(Zl> gjr . . . (zn, z^' f ei&to'Vβip) dp

where G (p) is the continuous function, the existence of which is asserted
by lemma 1 and which satisfies an inequality:

\ \ \

Therefore

*)F / (1 + H ) M exp[~ 2' (pj9 Vj)] dp .
j

Π\
k = l

We note, that, for any fixed A ξ Lζ., fΛ(z) = f(Λ~1z) satisfies a similar
inequality, with the same M and N' but a different Co. Because, in the
integrand, y3 ζ F f and p3- ζ V+, we have:

Denote



Analvtioity and Lorentz Covarianco 83

We find: 2J (Pj, Vj) ^ -nm\p\, s o that:
2

n

&> *s)\NΊ
o

we finally get

where M' = ilf + 4?ι; B is a numerical constant depending only on n and
ilf'. Therefore, for any fixed A ζ Lζ., JA{Z) =if{A~1z) satisfies a similar
inequality with the same N'9 Mf, B, but a different CQ. We can write:

\(Λz)\<CΛΠ . ,
7

where Mf and N' are independent of A.

3. Proof of Theorem 1

We shall use two lemmas.

Lemma 2. Let f satisfy the hypotheses of theorem 1. Then:

1. /(Jf[λ]z) is holomorphic in M, λ, z in L+{C) x {C - {0}} X ^ .

2. / (if [λJ z) = 27 αα (ilf z) /α

5 where N is an integer > 0, and aQ (if z)

is holomorphic in L+((D) x 3Γ'n.

Proof. 1. The first statement is evident.

2. For fixed ilf and z, /(ilf [A]z) has a Laurent expansion

/( l f [λ]z)= 2 1 α f f(^;z)λ«
g = —oo

where:
2π

is holomorphic in L+(€) x 3Γ\V

We now use the inequality (1) and the symmetric inequality which
can be obtained in ZΓ~. Replacing CΛ, M' and N' by the maximum of
their values in &~% and ^ ~ , we find:



84 J. BROS, H. EPSTEESΓ and V. GLASER:

Let Σ be a closed ball in (ΪR4)n such that , for x ζ Σ,

I xf>\xf\ for μ = 0, 1,2; j= 1, . . . , % .

0 < u < % = xf + ̂  ,
0 < v < {Vjl = - Vj = xf — xf j = 1, . . ., n .

Let 2' = #' + iy' = [λ]x; λ = ξ + ί77. We have, for all j = 1, . . ., ft,

Hence 2/ ζ ^"+ for η > 0, 2' ζ ^~~ for ̂  < 0. Moreover

\y'A - I%BI = - 2 - |

= \η\ min ^ , , jψ vή > \η\ min [u, jψ vj

Therefore

\fΛ((W*)\ < CAΠHX,, XiT' [1 + -jij. ( 1 + ^j

Since 27is compact, there exists a constant Q > 0 such that \JJ(Xj, x$) \ < Q
ί

in Σ. We get: for all x ξ 27, \Ύ\\ 4= 0, A = ξ + ^ ,

[ 1 /I U1 + -wfe +

Since every point x ζ Σ is a Jost point, /^([λ]^) is holomorphic in
for l φ θ . Denote h(λ) this function for fixed x ξ 27 and /I ξ Z^_.

The function Λ (A) satisfies

in C — 1R. This is a well-known [9, 10] sufficient condition for h(λ) to
have tempered distribution boundary values on the real axis:

/ φ(ξ)h(ξ±iη)dξ-+(h±, φ) when η->0, η > 0, φ ζ & ,
— 00

where Λ+ and Λ~ are derivatives of order Mf + 1 of continuous functions.
But h+ - h~ has its support at the origin. Therefore | ( ^ ' + 2) (h+ - h~) = 0.
The function λM' + 2ιh(λ) is holomorphic in the whole complex plane and
satisfies, for η φ 0,

\λM' + 2Jι(λ)\ < H(l + μ | ) 2 ^ ' \λ\M' + *\η\-M' . (2)

We can now use an argument due to VLADIMIROV [13]. The above
inequality implies that ξM' + 2h+ (resp. ξM' + 2h~) has a Fourier transform
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with support on the positive (resp. on the negative) real axis. Since they
are equal, their Fourier transform has support at 0. Therefore λM' + 2h(λ)
is a polynomial [12], the degree of which cannot exceed 3Mr + 2 because
of the inequality (2). This means that:

2M'

for all Λ ζ Lζ., x ζ Σ. In other words, aq(M; z) vanishes, for \q\ > N
= max (2 M', M' + 2), for all If ζ £-£ and 2 ζ Γ. This is sufficient to
prove that aQ(M; z) vanishes in L+(C) x 3Γ'n, for \q\ > N. Lemma 2 is
thus established.

Lemma 3. Let φ(g) be a holomorphic function on the complex Lie group
G = 8L(2, C) x SL(2, C). Denote g(λ) the element of G given by

»<«-([! ί-Mί
Assume that there is a positive integer N and, for any pair of compacts

K and Kf in G, a positive constant A(K, Kf) such that

\φ{kg{λ)k')\ <A(K, K')

holds for all λ φ 0, kζ K, ¥ ζ K'. Then

Go

vanishes for r + s > 2N.

Proof. We already know t h a t Φ<r>s) is independent of h ζ G. Every

vector of the space, in which ZKr>s) and φ( r> s) operate, can be written as a

finite sum of vectors of the form (ξ <g> <g) ξ) <g> (η <g> <g> η)

= I ® r <S> rj®s, ζ and ^ in (Π2. I t is therefore sufficient to prove that , for

r + s > 2N, φ( r» s) annihilates every vector ψ = ξ®r 0 η®s with

IIill = IkII = L Choose h = g(λ)v,v=(U,V) and ϋ and V, two unitary

unimodular matrices such t h a t Uξ = Vη = L . We have

φ(r,s) = (r + i) (5 + 1) \ f D^iu-1) φih-^du) D(r>s){h) ,

U J

Using the hypotheses of the lemma, we have

\\Φ<',°)ψ\\ < (r + 1) (s + 1) A (Go, <?0) (l + ~ y + \λ\ήN |λ | '+

for all A. Let λ tend to zero: we find φ(r>s)ψ = 0 if r + s > 2iV, and
lemma 3 is proved.
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Application to the Proof of Theorem 1

We apply lemma 3 to the case when φ(h) = fiΛiJi^z), for some
fixed z ζ 3"n. Let h = lcg(λ)hf. We have Λ{h)~ι = / i ^ ' ) - 1 ^ - 2 ] A{k)~1z.
When k and kf stay in fixed compacts K and Kf, Λ(k)~ιz stays in a
fixed compact of SΓ\V By virtue of lemma 2 we have:

Define
F(r>°)(z) = (r + 1) (s + 1) / £>(',*) (u-ih) f(A{u~1h)z) du . (3)

Go

This matrix is independent of h, and holomorphic in z in «^, since the
integration is over a compact set. Lemma 3 shows that F(r>s) (z) Ξ= 0 for
r + 5 > 2 2V. From remarks 3 and 4 of Section 1 we conclude:

From remark 5, we see that only terms with even r + s appear in the
expansion and we write, with a slight abuse of notation:

(4)
r + s ^ 2 N
r + s even

for*ζ.r ; ι ,Λe£ + (C).
From equation (3), it is easy to derive:

F^')(Λ-1z) = F^8){z)D^8)(Λ) . (5)

Let Mμv = — Jfv// be an element of the usual basis of the Lie algebra of
Lζ. and Δ(r>s)(Mμv) the corresponding matrix in the representation
D('r>s). Wτe have

F(r*s) (e-tM^z) = i^(r.s) (z) D(r,s) (eziV^^) .

Taking derivatives at ί = 0 on both sides, we find:

J1 \z — - — z — -
. ^ \ d μ dz] 3V dzμj
. \ dz] dzjj 1μv) -

We denote Δ (Mμv) the differential operator

a a
f V'o'dzϊ

The above equation reads:

Δ (Mμv) F^>s) (z) - FC» {z) Zl^s> (Mμv) .

Clearly we can re-apply the differential operator Δ (Mρσ) on both sides.

We find:

) (z) Δ ir.s) (Mρύ) Δ e>s) (Mμv) .
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This process can be continued. It can be shown [14] that the mappings
Mμv-±Δ(Mμv) and Mμv -> Δ(r>*)(Mμv) can be extended to homo-
morphisms of the enveloping algebra of Lζ.. This means that to every
element P of this algebra we can associate a differential operator Δ (P)
and a matrix zF r ' s ) (P) such that:

βQ) = <*Δ{P) + βΔ(Q)

and similar conditions for zl<r>s>; for P = Mμvi Δ{P) and zJ<r's)(P) are
those already defined. Δ(P) is a differential operator whose coefficients
are polynomials in z. The computations we have performed above show
that:

Δ{P)Fl' ')(z) = Flr'')(z)Δl
We denote [15]

\ μ Q

where the summations are over all cyclic permutations μ, v, ρ of 1, 2, 3.
F 2 and G2 are in the centre of the enveloping algebra, and

Denote, for r, s two integers ^ 0:

:
Let f(z) be a function satisfying the hypotheses of theorem 1. I t has a
finite expansion of the form (4). Let R and S be two integers such that
P<r's> (z) ΞΞ 0 for r>Boτs> S. Then

(
and

Δ {A {R, 8)) fiΛ-H) - tτFW>s) D&>s) {Λ) .

[Note that Zl(F2), A (G2), zJ(^ί(r, 5)) are Lorentz invariant differential
operators.] We may calculate in the same way

trFW-hS){Z) = Δ(A{R-1, 8)) [1 - Δ{A(R, 8))] f(z) .

By induction, we can thus construct, for each r S. R, s ^ 8, a Lorentz

invariant differential operator Δfys)

sy such that, for every f(z) verifying:

ίf(z)=
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the following identity holds:

By Burnside's theorem [16], for fixed r and s, oc and β, one can find a
finite sequence Λ1} . . .,ΛV in Lζ., and numbers ct(l = 1, . . ., p) such
that, for every (r + 1) (s + 1) X (r + 1) (s + 1) matrix j?, the matrix
element ΞΛβ can be computed from the formula:

Ξ^^ΣcttrΞDl'-')^).
1 = 1

In particular

* V (2) = Σ c, 4?;l' /(Λf13). (6)
Z = l

Since 4#;$ is an operator with polynomial coefficients, and since Λι ζ Z ^ ,
the restriction of F(r>sϊ (z) to ^"^ is the Laplace transform of a tempered
distribution Fir,8)^ with support in V~. Let i ^ ^ ^ be the Fourier trans-
form of F(r^s)±. For φ ξ ̂ 4 w , we have:

lim /nVH^ + iy) ψ{x) dx = < ^ β ) ± , φ> ,

lim ff(x+iy)ψ {x) dx - </±, φ) , (7)

If we define, for any distribution T and Λ ζ L^_,

we also

This completes the proof of theorem 1.
We note that, by a theorem of H E P P [17], F(r>sϊ(z) can always be

written in the form

where the Q^}(z) are covariant polynomials of type (r,s), chosen in
advance, and the f**** are holomorphic in 3~'n and Lorentz invariant.
Hence:

Theorem 2. Every f(z) satisfying the hypotheses of theorem 1 can be
written as a finite sum

where the Q3 are polynomials and the fj are Lorentz invariant holomorphic
functions in ZΓ'n.
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4. Some Remarks on Finitely Covariant Distributions

We call finitely covariant a tempered distribution T on lR4n having

a finite expansion

T =

where the T(r*s> are matrix valued tempered distributions with the
property

T(r,s) = T(r>s)D(r>s){Λ), A ζ lζ . (9)

The finitely covariant distributions form a linear subspace of £?'. By the
same arguments as in the preceding Section, we have:

) = Δfy$T (10)
and

Ί*£j> = Σ ΉtelW (11)
I

where the Λτ and cx depend only on (r, s, oc, β). We conclude that if T
has Wo expansions of the form (8), they must coincide, since we may
always consider them to have the same R and 8. In particular suppose
that Tl9 . . ., Tv are finitely covariant and satisfy a system of linear
equations

k

where the G3 are Lorentz invariant (the ocjk are complex numbers). Then:

= 0 for (r,s)Φ(0,0)

As an application, consider the problem of defining generalized
retarded functions (Steinmann functions) [18—21] from Lorentz in-
variant Wightman functions. The problem is to find a set of tempered
distributions Rk satisfying the following conditions:

k

b) (support of Rk) cSk (a -space support conditions),
c) Rk = Sι in Ωkι (^-space coincidence conditions).
d) Lorentz in variance.

Here the Lorentz-invariant tempered distributions C$ are given linear
combinations of Wightman functions [''multiple commutators" — a)
also contains the Steinmann identities]. The sets 8k are given closed
cones in R 4 w . The Ωkl are given open sets in R 4 w . The α i7c are given
numbers. Rk is the Fourier transform of Rk. I t is not very difficult to
solve a) and b) simultaneously. STEINMANN [22] has even succeeded in
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solving a), b) and d) in two-dimensional space time. STORA has given a
complete solution for n = 2. If a given set of Rk satisfies a), b), c), the
Rk are boundary values of a unique function, holomorphic in a domain
containing several pairs of opposite tubes of the type &~-fc, and the cor-
responding Jost points. Streater's theorem and theorem 1 prove that the
distributions Rk (and Rk) are finitely covariant. Therefore the cor-
responding i4 0 ) 0 ) are a solution of a), b), c), d).

We shall now find some precisions on the maximum number of non-
zero terms in the expansion (8) of a finitely covariant distribution T.
Suppose that there is an integer p such that, for every φ ξ ̂ 4 n ,

\{TΛ,ψ)\<Cφ{\+\Λ\γ for all ΛζLζ

where Cφ is a constant which may depend on φ. If A = A (g), g — (A, A),
we define \A\ = ||^4||2 Because T(r>s) can be computed from formulae (10)
and (11), where Λ[r

RfS) is Lorentz invariant, there exists a constant
Cf

φ (depending on φ, r, s, E, S), such that

Let ψ be a vector in <Πr + ̂  (s + 1 ) . Since D(r> s> is an irreducible representa-
tion of JL̂ _ , we can find a finite sequence Av . . ., AQ in L^, and numbers

av . . ., aq such that

j = 1

We have:

, Ψ)Ψi = aj

ϊ, 9)>Z)C.»)(/I)

Take:

It follows that:

||(ΓC.*), φ)ψj\\ < constant X (|λ|a + lA)"2)^ \λ\r+s .

Letting λ tend to zero, we conclude that (Tίr> s\ φ)/ψj = 0 for r -\- s > 2p.
It follows that: ^Z7^) = 0 for (r + s) > 2p.

In particular, if p = 0, JΓ has to be Lorentz invariant. This coincides
with the result of BOUCHERS [4].

We also note that a finitely covariant distribution T has a support
which is invariant under Lζ.. For, if a point x is not in the support of T}
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there is an open real ball B centered at x such that (T, φ) = 0 whenever
the support of φ is a compact K contained in B. If such is the case, there
is a neighbourhood W oί the unit in Lζ. such that the support of φΛi is
still in B for all A £ W, so that (2^, φ) = 0 for all /I in ΪF. But

is a holomorphic function of A in i>+(C) and since it vanishes in the
"real environment" W, it vanishes everywhere. It follows that (TΛ> ψ) = 0
for all ΛζLζ. so that every point of the form A y, A ζ Lζ_, y ζ B is outside
the support of T.

Part II

In the second part of this paper we shall review the proof of Streamer's
theorem. A proof of this theorem can be found in [1]. Different proofs are
due to JOST [23] and to RUELLE [24]. See also [25]). We shall follow a
slightly different approach with the purpose of stressing the question
of single valuedness and of showing that this method applies to more
general situations.

In the following, a function will always be associated with the set in
which it is defined: we shall not identify a function with its restriction to
a smaller subset or with an extension to a larger subset. We shall say
that a function defined and holomorphic in an open set U has a single
valued analytic continuation in an open set F if V r\ ί / φ O and if there
exists a function g, holomorphic in V, such that / and g coincide in V r\ U.

We consider, as in the first part, C 4 w as the topological product of n

four dimensional Minkowski spaces, where L+(C) acts as follows:

if z = (z1? . . ., zn) ζ C*" and AζL+(<D), Az = (Λzv . . ., Azn). We

denote L+(C) andLζ. the covering groups of L+ (C) andLζ., respectively

and A->A(A) the canonical homomorphisms of L+((D) onto L+(C).

Note that Lζ. is a subgroup of L+((£) (see Part I).

Let e0 and eλ be two real four vectors with (β0, e0) = — (ev eλ) — 1
(e0, e-j) = 0. Let T = e0 Λ ex be the linear operator given by Tμ

v = ^elv —
— eOve

μ. For every complex ζ, exiρ[ζT] defines a complex Lorentz
transformation χ(ζ) = χ(eζ). If we take a Lorentz frame in which
β0 - (1, 0, 0, 0) and eλ - (0, 1, 0, 0), we find:

(12)

0 0 1 0
0 0 0 l /
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Such a complex one-parameter subgroup of L+(<L) will be called a time-
like subgroup.

We shall prove:
Theorem 3. I. Let Dbea domain in C 4 w having the following properties:
1. For each time-like subgroup χ of L+((D), there exists an open non-

empty sub-set Eχ of D invariant under χ, i.e., for every λ φ 0, χ (λ) Eχ C Eχ.
2. D is invariant under Lζ., the real connected Lorentz group.
Then, for any function f(z) holomorphic in D, there exists a function

F(Λ,z) holomorphic in L+((£>) X D which, for ΛζL^, coincides with
f(Λz).

II. Let Do be a non-empty sub-domain of D having the following
property: for every z ξ Do, the set of all Λ ζ L+(<L) such that Λ~λz ζ Do is
connected. Then there exists a function g(z) holomorphic in

which coincides ivith f in Do.
The proof of this theorem necessitates several steps. The class of all

functions holomorphic in Ώ will be denoted =#'.
(i) Continuation Using One Timelike Subgroup
In this section χ is a timelike subgroup chosen once and for all. Let

Ωχ be the following domain in C x C 4 n

where A (z) is the connected component of 0 in the open set of C:

Δ'(z) = {ζ:χ(ζ)zζD}

Δ' (z) is invariant under real translations for, if t is real and χ(ζ) z ζ D,
χ (ζ +1) z — χ (t) χ (ζ) z ζ D due to the invariance of D under Lζ.. When
z ξ D, A'(z) contains 0 and A (z) is a non-empty open strip parallel to the
real axis. I t is easy to verify that Ωχ is open and connected; it is a semi-
tube. When z ζ Eχ, A (z) = C. Using Bremermann's semitube theorem
[26, 27], it is then clear that every function φ holomorphic in Ωχ has a
single valued holomorphic continuation in C x ΰ . In order to exhibit
the single valuedness of this continuation we go through an elementary
proof of this fact.

Let S be the set of all points z ζ D with the following prop-
erty: there exists a polycylinder P(z; ρ(z)) contained in D, of the
form {zf: \zjμ — z^\ < ρ (z)} such that for every function φ holomorphic in
Ωv there exists a function φz holomorphic in C x P(z;ρ(z)) which
coincides with φ in the domain Ωχ Γ\ {C x P(z\ ρ{z))}.

The set 8 is obviously open and non-empty since it contains Eχ. Let
z and z' ζ S. If € x P(z; ρ(z)) and C x P(z'\ ρ{z')) intersect, their inter-
section is connected and has a non-empty intersection with Ωχ where
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ψz and φz' coincide with φ. Hence φz and φz> coincide wherever they are
both defined. It follows that there is a function φ holomorphic in
(C x S) \j Ωχ which coincides with ψ in Ωχ.

Let zζ 8 ΓΛ D. There is a polycylinder P(z; 2ρ) centered at z, with
radius 2ρ and a number ε > 0 such that

{ζ,z:\Imζ\<ε,zίP(z;2ρ)}cΩχ.

8r\P(z; ρ) contains a polycylinder P(z; σ) (0 < a < ρ) so that φ is holo-
morphic in {C x P(z; σ)} VJ {ζ, z' : |Im£| < ε,zf ζP(z; ρ)}. Standard
methods of analytic completion show that there exists a function φlf

holomorphic in C X P(z; ρ), which coincides with φ (hence with 99) in
{£, 2': |lmf | < ε, z' ζ P(2; ρ)}. It therefore coincides with φ in
C x P(z;σ) ΓΛ Ωχ so that z £ #. [To perform the analytic continuation
we may introduce the variables wμ = ilog(z^μ — zμ). The function
φ(ζ>(e~iwj' + zff) is holomorphic in the tube

{ζ, iv : I m ^ < logσ} \J {ζ, w : |Imf | < ε, ϊπιwμ < logρ}

and is invariant under the change: wμ -> w^ + 2rήπ {nμj integer).

This function has a single valued holomorphic continuation ψ in

{ζ, w : I m ^ < logρ} obviously also periodic. Thus,

ψ(ζ,w) = φSΛz-^^ + ty),
where φ1(ζ, z') is holomorphic in C x {zr : 0 < \z\μ — zμ\ < ρ} and co-
incides with φ wherever they are both defined. Using the continuity
theorem one obtains the announced result.]

Since D is connected we have proved: 8 = D. Thus:
Every function holomorphic in Ωχ has a single valued continuation in

(CxD.
Remark. If a function ψ holomorphic in Ωχ is such that, for z ζ Eχ and

for any integer m, φ{ζ, z) = φ(ζ + 2imπ, z), then its continuation
φ(ζ9 z) in C x D is also periodic and can be cast in the form ψι(et, z),
ψτ(λ, z) being holomorphic in (C — {0}) x D.

(ϋ) Products of Several Timelike Subgroups
Let Φ = (χv . . ., ^xY) be a finite sequence of timelike subgroups. Let /

be a function holomorphic in D. ζl9 z -> f(χι(ζι)z) defines a function
holomorphic in ΩXi. Hence there exists a function F1(ζlf z) holomorphic
in {£l3 z : z ζ D} which coincides with /(%i(ti)z) in Ωχi, in particular in a
neighborhood of {ζv z : z ζ D, ζτζ 1R}. F1 (ζv z) can be considered as a
holomorphic function of z ξ D with values in the Frechet space of func-
tions holomorphic in C. By the same argument as above, there exists a
function with values in the same Frechet, holomorphic in C x D which
coincides with F^ζ^ χ2(ζ2) z) near real values of ζ2, i.e., a func-
tion F2(ζτ, ζ2, z) holomorphic in C x C x D and coinciding with
/Gfa(ίi) Z2 (£2)2) i*1 a neighborhood of R 2 x D. By induction we can
prove:

7 Commun. math. Phys., Vol. 6
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For every finite sequence Φ — {χl9 . . ., χN} of timelike subgroups and

for every f ζ Jff, there exists a function Fφ(ζv . . ., ζN, z) holomorphic in

{ζ, z : z ζ D} == CΛ" x D which coincides toith f(χ1{ζ1) . . -XN{£N)Z) i'n a

neighborhood of 1R-Y X D.

(iii) Existence of F(Λ, z)

Denote Gφ(ζ, z) the function denned by

θΦ(ζ, z) = Fφ(ζ, χN(~ζx) . . . Xl{-ti)z) ,
or

OΦ{ζ, χ^ζ,) . . . χN(ζκ)z) = Fφ{ζ,z) .

Gφ(ζ, z) is holomorphic in: {£, z : χ^{-~ ζ$) . . . Xι(~ Ci) z ί ^} a n ( i co-
incides with f(z) for real ζ. Therefore it is locally a function of z only,

i.e., its derivatives -^— (rφ(C, z) vanish everywhere. Define:

This is a function of £, 2, and /I ξ X+(C) holomorphic in:

Δ = {£, /I, z : χ l V ( - CΛ.) . . . & ( - Cx) /la ζ D}

and its derivatives (djdζj)Glφ vanish there. Hence, in any open subset
of A of the form {ζ,Λ,z:ζζ Vv Λζ V2,z£ F3} where F l 5 F 2, F 3 are
open, and V1 is connected, the function Gφ(ζ, Λ, z) coincides with a
function of Λ and z holomorphic in F 2 X F 3 .

For a fixed z ζ D, the set ^ 2 of all germs of analytic functions of Λ
obtained in this fashion (starting from a given /ξJf 7 ), by using all
possible finite sequences Φ of timelike subgroups, defines a ''Riemann
domain" [28] on which / (Λz) (considered as a function of Λ in a neighbor-
hood of Λ = 1) can be continued. Technically, this Riemann domain is an
open connected subset of the sheaf of germs of analytic functions over
the complex Lorentz group L+((D). We shall now see that any continuous
path γ in L+((L) connecting the identity 1 to some element of the group
can be ζ 'lifted" into the Riemann domain @z. This means that we can
patch together germs of analytic functions taken from @z all along γ
and thus obtain an analytic continuation of f(Λz) along γ. This will be
done in two steps. (In the following, z is held fixed in D.)

First step. Suppose that γ is defined by a continuous mapping
t->Λ(t) of [0, 1] into £ + (C) of the form Λ(f) - ^(CiW) Zjy(£y(O)\
where Φ = {χv . . ., χN] is a finite sequence of timelike subgroups and
t -> ζj(t) are continuous complex functions of t ζ [0, 1], with ζj(O) = 0,
(j = 1, . . ., JV). The path defined in C^ x L+{€) by ί -> (£(ί), Λ(0) lies
in the domain of definition of (?φ(£, Λ9z), as a function of ζ and A This
is an open set, so that, for each t, (ζ(t),Λ(t)) has a neighborhood
V1 (t) X F 2 (t) contained in this domain: F 2 (t) is an open neighborhood of
Λ (t) and V1(t) is an open ball centered at ζ(t). Because t -> (£(£)> Λ (O) ^s
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continuous, for each t ξ [0, 1], a number r(t) > 0 can be found such that
\s - t\ < r(t) and 0 ^ s ^ 1 imply ζ(s) £ F^ί) and /I (s) ζ F2(ί). We can
find a finite sequence 0 = tQ < t± < < tv _ λ < tv = 1 having the follow-
ing properties: the sets J/c = {5 : \tk — s| < r(tk), 0 ^ s ^ 1} form a
covering of [0, 1] and J/c_ x n Jk φ 0 for & ̂  1. For £> :> & ̂  1 let θk be
a number such that ίfc_ 1 < 0k< tk, θk ζ Jk-X r\ Jk\ θ0 = 0; θp + i = 1.
Because F1(ίfc) is connected, 6rφ(ί, /t, 2) coincides in V1(tk) x F2(£fc) with
a function of Λ, denoted gk(Λ, z), holomorphic for Λ ζ V2{tk). For any
Λζ F a ^ - i ) / ^ F2(ίfc), we have ^ - ^ / l , 2) = <5φ(C(0fc),Λ, 2) = gfc(/l^)
We now associate with every t ζ [0, 1] a germ $(£) of analytic function of
/t as follows: for θk ^ t ^ θk+1, 0 < k ^ p, g(t) is the germ of gk{Λ, z)
at ^l(ί). This defines a continuous mapping of [0, 1] into @z (the con-
tinuity of the mapping is an immediate consequence of the definition of
the topology of the sheaf of germs of analytic functions). We have thus
achieved the "lifting" of the path γ into @z. Note that g(0) is the germ
of / (Λ z) Sit A — 1. Intuitively what has been done is to define an
analytic continuation of f(Λz) by taking gk(Λ, z) along the subset
0k ^ t ^ θk+ί of the path γ.

Second Step. We first prove the following property: there exists a
neighborhood W of 1 in L+(C) and six timelike subgroups χ^, . . ., χ%
such that the mapping ζ -> χ\ (ζτ) . . . χ% (C6) is a biholomorphic map of an
open ball (centered at 0) of C 6 onto W.

Indeed, let ;#(£,) = e x p ^ C , ] . Then, at ζ - 0,

In view of the implicit function theorem, the mapping ζ -> A (ζ)
== Zi(^i) yrfKfβ) i s biholomorphic in a sufficiently small neighborhood
of ζ = 0 if ikΓ1? . . ., ilf6 are linearly independent. Our statement will be
proved if we can find Mv . . ., M6 linearly independent and having the
required form, i.e., M3 = eQW A e^j\ where eQW and e±W are real and
eo<

3') is timelike. To do this, let e0, e1? e2, e3, be real four vectors with
(eμ, ev) = 9μv define:

if,- = β0 Λ e, for U ^ 3 ;

7¥4 = βx Λ e2 + γ~2 e0 Λ e2; M5 = βx Λ β3 + j/2 e0 Λ e3

ilf 6 = e2 Λ e3 -f j/2 e0 Λ e3 .

This defines a basis of the (complex) Lie algebra of L+(<L) and our state-
ment is proved. [In the case of g-dimensional space time we define a
basis of the Lie algebra having the required properties, as follows:
M'μv is given, for 0 g μ < v < q, by:

M'Ov = eoNev\

for μ ^ 1, i ¥ ; } , = eμ Λ βv + |/2"e0

 Λ ev ]
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We now show that every continuous path γ in L+((L), originating at
1, can be cast into the special form used in the first step. Let γ be given
by a continuous mapping t-> Λ{t) of [0, 1] into L+(C), with Λ(0) = 1.
We shall prove the existence of a finite sequence χv . . ., χN of timelike
subgroups and of N continuous complex functions ζ1{t), . . ., Cγ(O such
thaltΛ(t) = χ1(ζ1(t)) χN(ζN(t)).

Let F be a neighborhood of 1 in L+(C) such that VVcW and
F " 1 = F. By the same technique as in the first step, we define two finite
sequences 0 = t0 = θ0 < Qx < tλ < θ2 < t2 < < θp < tp = d^+1 = 1,
such t h a t Λ ( s ) ζA(tk) F for θk^s< θk+1, k = 0, . . ., p. For s ζ [θkί θk+1],
0 ^ k g p, we have Λ(tk)-1Λ{s) ζ V, hence:

Λ (θfc)-i ^t(*) = ̂ t (θfc)-i /I ( y A (h)~i A (s)

= [A{tk)^A(θk)]-1A(tk)^Λ(s)ζV-1V= VVcW.

Therefore we can define six continuous complex functions:

fβfc+lM* ;C6/c + 6(5) Of 5 ζ [θfc, θ f c + 1 ]
satisfying:

We extend these functions to the whole of [0, 1 ] by setting:

C β * + r ( « ) = C β * + r ( β * ) = O f o r s < θ k , ( k > l ) ,

CβJc + ri^) = Cβlc + riθlc+l) fθΓ 5 ^ β f c + 1 ? (A; ̂  p - 1) .

Defining χQ k + r = χ® for k = 0, . . ., p we have:

The second step is now completed. Every germ in @z can be obtained by
analytic continuation along a certain path, starting from the germ of
f(Az) at A = 1. It therefore follows from the result obtained above that:

If t^A(t) is any continuous mapping of [0, 1] into L+(C) and if
gQ ζ @z is a germ projecting onto A (0), there exists a continuous mapping
t->g(t) of [0, 1] into %?z such that g(t) projects onto A(t) and g(0) = gQ.

[In other words, given any path γ in L^ (C) originating at /l(0) and
any germ of analytic function at /t(0), belonging to ̂ 2 , it is possible to
continue analytically this function along the path γ.]

This is what is needed to apply the monodromy theorem [29]. We con-
clude that the continuations of f(Az) (as an analytic function of A near
A = 1) along two homotopic paths in L+(C) lead to the same germ.This
means that @z is the set of germs of a holomorphic function F(Λ, z) on
the covering group 2/+(C) of L+((D) [in the case of four-dimensional
space-time, this is 8L(2, C) x SL(2, C)]. I t is also holomorphic in z,
since it always locally coincides with a function holomorphic in A and z.
When A is in a sufficiently small neighborhood of 1, we have: F(A, z)
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= f(A(A)z). By analytic continuation along any path lying inl/^, we
find: ί1(A,z) = f(A(A)z) for all AζLζ. The kernel N of the canonical
mapping A-+Λ(A) of L+(<L) onto L+(<E) is contained in Lζ.. Hence, if
AoζN, we have F(AA0,z)=fi(A,z) for all AζLζ. It follows that
F(AA0,z)^F(A,z) for all i (L + (C), so that F(A, z) = F(Λ(A),z),
where F(Λ,z) is a holomorphic function in L+((L) x Zλ This proves the
first part of the theorem.

The function F(A,z) is locally a function of Λz. Define G(Λ,z)
= F (Λ, Λ~xz). Then G (Λ, z) is defined and holomorphic in [A, z : Λ^zζ D},
and is locally independent of Λ. Let D o be a subdomain of D such that,
for every z ζ Do, {Λ : Λ~λz ζ Z>0} is connected. Let DQ = U /1DO. Then

{/t: Λ"1z ζ Do} is connected for any z ζ DQ. The restriction of 6r(/l, 2) to
{/I, 2 : Λ~τz £ DQ} is therefore independent of /I. It defines a function
g(z) holomorphic in DQ, which coincides with f(z) in Do [since G(l,z)
= f(z)]. The theorem is thus proved.

Application to the Proof of Streater's Theorem

Let / satisfy the hypotheses of the $-theorem. For each Jost point
iv ζ cfn, there exists, by the edge-of-the-wedge theorem, an open set
B(w) = {z : \\x — w\\ < ρ(w), \\y\\ < ρ(w)} independent of /, and a function
holomorphic in B (ID) which coincides with finB (w) r\ {β^t, w ^ 7 ^ Λ }
Since this is also true for fΛ, defined by fΛ(z) ^/(/ l " 1 ^), ΛζLζ., there
exists, for every w ζ β'n and every A ζ Lζ. a function holomorphic in
ΛB(w) Λvhich coincides with / in ΛB(w) r\ {T+ w 3~~ \j ^fn}. Let

D = ΌΛB{W) \J

Λzζ

The intersection of ΛB(w) and Λ' B(w') (where Λ and Λf^L^, w and
w' ζ. βn) when non-empty, is convex, hence connected, and intersects
•T^ and £Γ~ because it contains real points. I t follows that there exists a
function holomorphic in D which coincides with /in Dr\ {^~n w ̂ ^ \J β^.
The theorem will be proved by applying theorem 3 to D. This domain is
clearly invariant under Lζ_. Let χ be a timelike subgroup of L+(C). By a
real Lorentz transformation, we choose co-ordinates in which χ (λ) has the
form (1.2). For any z = (z1? . . ., zn), z§ = {z«}, (μ = 0, 1, 2, 3), we set
uj = zfJ

rzf, Vj = zf — z}. Then zr = χ(λ)Zj is given by: Uj = λuj}

v'j — λ~1Vj\ the other co-ordinates are unchanged. Let Aγ be the set of
all points z such that:

v. = i\Vj\ i 0

and having all other co-ordinates real. For zζ Aχ and z' = $(λ)z, we
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have:
Re A

For R e Λ > 0 , z' ζ JΓ+; for ReΛ<0, z'ζ J~~ for λ=--ι'ρ, ρ real 4-0,
z' ζ ^ Therefore: D contains all points χ(λ)z, where z ζ Aχ and λ 4= 0.
In particular, for any 2 ξ ^4χ, D contains the compact set {zf: 2;' = χ{λ)z,
\λ\ = 1}. I t therefore contains an open set of the form {z' : 2' = χ{λ)z",
\z" - z\ < ε(z), \λ\ = 1} where ε(z) > 0. I t follows that D contains an
open set of the form Eχ— U χ(λ) V where V is an open neighbourhood

oiAχ.
Now we take Do = ^ + . A theorem of BARGMANN, HALL and WIGHT-

MAN [30] shows that for any z ζ <T+, {Λ:Λζ £+(€), Λz ζ <T+} is con-
nected. Therefore, for any function / holomorphic in D, there exists a
function g, holomorphic in ^'ni which coincides with / in ̂ ~?t Because
D is connected and &~'n contains ZF' fc and βn, g also coincides with / in
<T~ and in βn. This is the 8-theorem. We now make some remarks on the
validity of these theorems for g-dimensional space-time.

The first part of theorem 3 has been proved for q = 2 in the remark
at the end of the first step of the proof. For q ^ 3 it rests essentially on
the following property: if we denote ψ the canonical homomorphism of
L+(€) onto L+(€), andN the kernel of ψ, thenNCψ* 1 (Lζ-) a n d ψ'1 (Lί)
is connected. This fact is easily checked for q = 3 and 4. For q > 4 it is
possible to prove it by induction [one proves that every closed path
originating at 1, lying inZ/^ and homotopic to 0 inZ/+(C) is homotopic to
0 in Lζ_. Thus for q > 4, ψ'1^^) = Lζ_, the covering group of Lζ., and
NCψ"1 (Lζ.)•] The second part of theorem 3 does not depend on q. The
application to the ^-theorem rests essentially on the theorem of BARG-
MANN, HALL and WIGHTMAN Λvhich has been extended by R. JOST

[23, 31] to g-dimensional space-time.
Finally we note that the proof of theorem 3 can be adapted by

trivial modifications to the following case:
Let G be a connected complex Lie group, G its covering group, ψ the

canonical map: & -> G. Let Gr be a closed subgroup of G, G being a
complexification of Gr; Gr is a real Lie group with Lie algebra Jίfr, a real
vector space with dimension p\ the complex Lie algebra of G is the
complexified of ££r. Let Gr be the connected component of the unit in
y)~1{Gr). Suppose G acts as a group of holomorphic automorphisms of
some domain Θ of C n ; more precisely we assume that there is a holo-
morphic mapping (g, z) ~ —> gz of (G X Θ) into Θ such that g1(g2z)
= (g1g2)^ for any two gv g2ζ G and ez = z if e is the identity in G. Let
^ be a total family of elements of JδPr. One can then prove:
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Theorem 4. Let D be a domain contained in Θ, invariant under Gr and

such that, for every X ζ J5", there is a non-empty open set Ex Q D such that

(exj)ζX)EγCΉχ for all ζ ζ &• Then, for every function f holomorphic in

D there exists a function F holomorphic inG X D such that F (g, z) coincides

ivith f(ψ(g)z) in some neighborhood of Gr X D.
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