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Abstract. We prove a conjecture of R. STREATER [1] on the finite covariance of
functions holomorphic in the extended tube which are Laplace transforms of two
tempered distributions with supports in the future and past cones. A new, slightly
more general proof is given for a theorem of analytic completion of [1].

A. Notations
1. Scalar product:

(2,2)) = 2z, = 202/0 — 212/ — 2222 — 232/3 = 2#g, 2"
for z and 2’ real or complex four vectors.
2. Future cone:
Vt={ov:2c¢ RY (z,2) > 0,2°> 0} = — V-
n-point future cone:
Vi={ec R :x=uw,... .0, 2,€ Vi (G=1,...,0)}=-V,.
3. n-point forward tube:
Thr=EcCz=a+iyycVit=-9,.
4. Li = connected real Lorentz group. L, (C) = connected complex

Lorentz group.
5. n-point extended tube:

g! U g+
T A€L+(¢)A,/n

forz=12,...,2, € (CY, Az = Az, ..., Az,
6. For z = 20, 21, 22, 28 = 20, z, we denote

3
l2[* = X [ = [2°]% + [z?
n=0
n
forz =12, ...,2, € (CY", “2”2 ZZ; ”za'H2~
j=
7. ¥, = the set of Jost points.
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B. Introduction

We recall the following theorem of STREATER [1].
S Theorem. Let f(z) be a holomorphic function of z in T ;5 v T, U N,
where N is an open (complex) neighbourhood of the set of Jost points [2].

’

Then there exists a function, holomorphic in 7, which coincides with f in
TP T and at the Jost points.

The second part of this paper is devoted to some comments on the
proof of this theorem, particularly on the question of single valuedness.

In the first part of this paper, we shall prove the following theorem,
which supplements the preceding one:

Theorem 1. Let f(2) be a holomorphic function in T ,,, whose restrictions
to ¥ and T are the Laplace transforms of two temperate distributions on
Rin, [+ and -, respectively, the supports of f+ and [~ being contained in
Vik and V;, respectively. Then the following formulae hold for all z ¢ T,
and all A€ L (C):

fd-1z) =

S|

e P9 (2) DA () .
0

I~

7,8

fe)= 2 P9 ()

\Jb

@
il
o

Here, D@9 (A) is the finite dimensional irreducible representation of
Ly (C) with indices r and s; F9(2) is a matriz operating in the same
space as D9 (i.e., an (r + 1) (s + 1) X (r + 1) (s + 1) complex matriz),
whose matrixz elements are holomorphic in z in I, and have the properties
postulated for f(z).

This theorem has been conjectured by STREATER [1]. A special case
(n = 1) has been proved by BocorivBov and Vrapimirov [3]. In this
case it also follows easily from the Jost-Lehmann-Dysonrepresentation.
Another special case has been proved by BorcHERS [4].

Part I
1. Preliminary Remarks
1. We denote G the covering group SL(2, C) x SL(2, €). For
g = (4, B)in G, /A (g) denotes the corresponding Lorentz transformation,
as described in Ref. [2], p. 14. We also denote
G,=8U(2,C)x SU2, CT)
G,={(4,B):B=A4¢SLE2,C)}.
These are two subgroups of G. Every point of G, (resp. ¢,) has a complex
neighborhood V in G, where local analytic co-ordinates ), = &, + in;
can be chosen so that
VnGy={:n,=0,Yk}
(resp. VNG, ={{:n,=0,Yk}).
The image of G, in L, (C) is L.
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2. The irreducible finite dimensional representations D) are defined
as follows: » and s are two integers = 0; for g = (4, B), D":9) (g) is the
restriction of (A ® - ® 4)® (B® -+ ® B) to the space of all com-
plex valued tensors &; . ;.. ; separately symmetric in 4;,...,%, and
ingy, ..., 7, Note that: D9 (g) is holomorphic on G. For u = (U, V) ¢ G,
D9 (u) is unitary:

DL (u) = Do (u) .

The restrictions of D@9 to Gy and @, give all irreducible finite dimensional
representations of ¢ and G,.

3. Let ¢(g) be a holomorphic function in an open connected set £2 of
@ of the form 0 = 20, It can be shown [5] that ¢(g) has a unique
expansion

plo) = X trdno D (g)
7,8=0
converging uniformly on any compact of . This expansion is the
analogue of the Laurent series in € — {0} (the complex Lorentz group for
two dimensional spacetime). @9 is a (r -+ 1) (s + 1) X (r + 1) (s - 1)
matrix given by

DU = (r+ 1) (s + 1) [ DR (utg™") glgu)du; g€ 2
Go

where du is the (left and right invariant) Haar measure on G, normalized
by [du=1. The above expression is, in effect, independent of g¢; to
G,

see this, we replace ¢ by g/ and find a holomorphic function of % in a
neighborhood V of the unit. This function is constant on V N G, because
dw is invariant. Using local co-ordinates mentioned in remark 2., we
conclude that the function is independent of % in a neighborhood of the
unit. Since Q2 is connected, our assertion follows. We can write

D = (r+ 1) (s + 1) [fDm 9 (u-1) (p(gu)du] D9 (g1 .
U,

4. In the case when the @9 defined by the above formula happen
to be all 0 when r, s > L, the identity

plg)= X tr@"ID(g), (g€9Q),

8= L
is an immediate consequence of the Peter-Weyl theorem applied to
@(gu) as a function on G,. Then ¢(g) is evidently holomorphic on G.
5. If @(g) is a function of A (g), i.e., if p(g9) = p(—g), only the .9
with (—1)7+s =1 appear in the expansion, since
D) (g) = (~ 1) +5 D) (—g)
6'
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6. We shall denote [4] the following element of L, (C)

1 1 1 1

T(+7) 00 p(i-7)
3 1 0 0
(1= 0 01 0

1 1 1 1

p(a=g) 00 g (43

If we use the variables: u; = 2{ + 2}, v; = 20 — 2}, [A] is simply the trans-
formation: w; - du;, v; — % v;, all the other components remaining
unchanged. It is easy to check that [42] = A (g) for

o= (s 3] 5 3)-

2. Some Properties of Tempered Distributions with Support in V5

The theory of Laplace transforms of tempored distributions with
support in a convex cone (such as V,;5) has been extensively treated in
Refs. [2, 6, 7, 8,9, 10, 11]. We shall give an elementary derivation of
the results of the theory needed for our purposes.

We consider the functions of one four vector p defined by

1 ~ .
Fr(p) = TG r D @ PP (k= 1, an integer)

87 Fy(p) = 0(p, p) 0(p°) = characteristic function of V+.
F,(p) is continuous and has continuous derivatives of the 2k — 2
first orders for k = 1. For k = 1:

O Fy(p) = Fr_y(p)
in the sense of distributions.
Moreover:
00 Fy(p) = Ax(p; 0) (retarded function for the wave equation)
O 4g(p; 0) = 6(p) .

Their Fourier transforms are

F(x) = yh_r)r%) (@+ 1y, z+ty)~CD, £=0,
yevs
the limits being taken in the sense of distributions.

Let f+ be a tempered distribution on R%” = (IR¥)* with support in
V. There exists an integer N’ and a constant C > 0 such that, for all
(p e y:ln’

<P o)l < ¢ sup (L )Y [D* @ @) = Clgly -
pERSn
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It follows that f+ can be extended to a continuous linear functional on the
space of all functions ¢ having continuous derivatives of the N’ first
orders, such that [g|y- << oo, with the topology defined by the norm
l@ly- The inequality |(f*, )| = C|q|y continues to hold for such
functions [12].

We notice that

Fy(p—-p)= F'N’+1(p1 —p1) - -FN'+1 (Pn — Pn)

considered as a function of p’, has its support in p — V;. The inter-
section of this support with VI (the support of f*) is a compact set if
p €V}, and is empty otherwise. We can therefore [12] define the con-
volution f+ * Fy. and obtain a continuous function (for N’ = 1, it will
even be differentiable, but this is not relevant to our purpose). To see
this we can define J+ * Fy, as {f*, G,) where G, (p') = Fy. (p — 9') 4, (®")
and y,(p') is a ¥* function of p’ with compact support, equal to 1 in a
neighborhood of {p': p' € V;F n (p — V;h)}. The result is evidently in-
dependent of the choice of y,. In particular 5, may be chosen independent
of p when p stays in a fixed compact. The function of p', F . (p — p") %, (p)
then depends continuously on p in the topology of the norm ||.|| y». This
proves the continuity of f* % Fy.. To obtain some estimate on the growth
of this function, we first choose a #* function «(t) of a real variable with
the following properties:

0=a@t)=1

x(t)=1 for t<2

o«(t)=0 for t=3.

We note that, for p’ € V;F n (p — V1),
0= = [l = 5% Il =2l
We can therefore define:
2@ =a(p]) for [p]=1
1®) = o ({2 for p)= 1.

TFor a given multi-index g, |DPy,(p’)] is bounded by a constant Kj
independent of p and p’.
It follows that (using Leibnitz’s formula), for |p| = 1,

[Gyly = K sup (14 [p')Y |DFFy (p - p)|.

'] <slizl
Bl =N

—

Since Fy behaves like a polynomial of degree 2n (N’ + 1), there exists a
constant K. such that

[Golly = K5 (1 [pyeenysan,
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This gives the estimate:
[f* * ¥y (p)] < CEy (L + [p])ennyan,
On the other hand:
O F2 R (FraFy) = fr
We have proved:

Lemwa 1. Any tempered distribution [+ with support in V, can be

written in the form:

fr=08...00a
where G has its support in V; and is a continuous function of at most poly-
nomial increase. If [t is Lorentz-invariant, G can be chosen Lorentz in-
variant.

[The method we have used can be easily generalized to deal with
tempered distributions with support in an arbitrary convex cone I” with
non-empty interior. One would then choose a basis with elements
e, . . ., €, in the interior of /", and use the functions

a¥al ool 0(wy) O(xy) ... O(x,)

in the same way as we have used Fy.]

We can now study the Laplace transform of a tempered distribution
' with support in V;. This is a function f (z) holomorphic in 77, defined,
for z == ++ iy € 77, by the heuristic formula:

2y = [ 2@ oY Gpy, ., py) dipy .. di,

which has the precise meaning:

fE) = (- 1Y (e 2)Y (2 [ €500 @ (p) dp

where G (p) is the continuous function, the existence of which is asserted
by lemma 1 and which satisfies an inequality:

|G (p)] < Co(1 + |pl)™ .
Therefore

N = Co I [l 201 (L + 2D exp[= X (0, 9)] 4 -
;= j

We note, that, for any fixed A€ L7, f4(z) = f(A~1z) satisfies a similar
inequality, with the same M and N’ but a different (. Because, in the
integrand, y; € V+ and p, ¢ V+, we have:

(P35> ¥5) 2 ol % = 1y.l) -
Denote
== 1 0. — i .
" lfgnjl_lg_ln(y, ly;l)
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We find: ) (p;, 4)) = mnp[l so that:
j

1
—Zmt
2

()] < CoSyn ]n]I(Zy" 2 ;0(1 +og)Mtin-le dr
j=1 0

we finally get
A
[f(z[\O B]Yl ]"’J| (1+ m)

where M’ = M 4 4n; Bis a numerical constant depending only on n and
M'. Therefore, for any fixed A € L7, f,(2) = f(A-12) satisfies a similar
inequality with the same N’', M’, B, but a different ¢;. We can write:

n M
4@ = Ca T 2 14 s = 0

where " and N’ are independent of /.

3. Proof of Theorem 1

We shall use two lemmas.
Lemma 2. Let f satisfy the hypotheses of theorem 1. Then:
L. f(M[A]z) is holomorphic in M, A,z in L, (C) X {C — {0}} x 7,
N
2. f(M[A]2) = 3 a,(M;z)27, where N is an integer = 0, and a, (M ; 2)
g=—N
ts holomorphic in L (C) X T,

Proof. 1. The first statement is evident.
2. For fixed M and 2, f(M [A]z) has a Laurent expansion

F(M[A)z) = 3 a,(M;2)An
q = —00
where:

S z) = 2L [ e e)2) b
0
is holomorphic in L, (C) x 7.
We now use the inequality (1) and the symmetric inequality which

can be obtained in .7 ;. Replacing C'y, M’ and N’ by the maximum of
their values in 7,7 and .7, we find:

1 M
fa@)] < C4 ]7] |55 2) 1Y []' + mjin(!?/";‘l - lyj‘)]

forzC T uTy, ACLL.



84 J. Bros, H. EpsTEIN and V. GLASER:

Let X be a closed ball in (R4 such that, for z ¢ X,

ap> |yl for u=0,1,2;j=1,...,n
0<u<u=a}+af,
O<v<l|y=-v=0a}—af;j=1,.

Let 2" =o' + ¢y' = [A]a; A = & + ¢n. We have, for a117 =1,...,n,
Byt =
Y-yt = *M%va
yt=y2=0.
Hence 2’ € 7;F for n > 0,2 € 7, for n < 0. Moreover
1791 = lgj?] =5 Il {Jus = g 0l = b+ 0
= || min <uj’l_l_|§vj) > |n| min (u, T%Fv)
1% = Iy > lm[ + ]
Therefore

fall)2)] < Ca IT (s 2] [+ G+ N

v

Since X'is compact, there exists a constant @ >0 such that | [](z;, z;) | < @

i
in 2. Weget: forallz¢ X, 5| =0, 1=¢&+ iy,
w1y L (L ey
ati21) < Ca@ 1+ o (5 +50) ]

Since every point x ¢ X' is a Jost point, f,([4]x) is holomorphic in 4
for A % 0. Denote & (A) this function for fixed x ¢ X' and A € Li.
The function & (1) satisfies
(P ()] < H (L + |A])22 |2

in € — R. This is a well-known [9, 10] sufficient condition for % (1) to
have tempered distribution boundary values on the real axis:

+ co
[ @) h(ELin)dE— (hE, @) when 70, 7>0, €&,

where 4t and A~ are derivatives of order M’ + 1 of continuous functions.
But A+ — %~ has its support at the origin. Therefore £’ +2) (h+ — h~) = 0.
The function A¥ +24 (1) is holomorphic in the whole complex plane and
satisfies, for # == 0,

ARG < H (L A3 (2202 | @

We can now use an argument due to Viapimrrov [13]. The above
inequality implies that &M +2h+ (resp. £¥'+2}~) has a Fourier transform
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with support on the positive (resp. on the negative) real axis. Since they
are equal, their Fourier transform has support at 0. Therefore AM +25(4)
is a polynomial [12], the degree of which cannot exceed 3 M' + 2 because
of the inequality (2). This means that:

2M
fallAle) = 2 ap(A71; ) A
q=—M—-2

for all A¢ Lf_, xz € 2. In other words, a,(M;z) vanishes, for |g| > N
= max(2M', M' + 2), for all M € L/, and z¢ X. This is sufficient to
prove that a, (M ; z) vanishes in L _(C) X 7, for |¢g| > N. Lemma 2 is
thus established.

Lemma 3. Let @(g) be a holomorphic function on the complex Lie group
G = SL(2,C)x SL(2, C). Denote g(2) the element of G given by

s =([s 3] [0 %))

Assume that there is a positive integer N and, for any pair of compacts
K and K' in G, a positive constant A (K, K') such that

’ ! ]' ;\v
g (kg (W] < A (K, K) (14 775+ 121
holds for all 2 0, k€ K, k' ¢ K'. Then
Q) = (r+1)(s+ 1) [ D) (wth) (b~ u) du
Go
vanishes for r + s > 2N.

Proof. We already know that @9 is independent of % € G. Every
vector of the space, in which D% and @9 operate, can be written as a
finite sum of vectors of the form (£® - ® &) -7
= £97 @ 95, & and 7 in C2. It is therefore sufficient to prove that, for

r+4+s8>2N, @) annihilates every vector y = @7 @ n®¢  with
€] = |l = 1. Choose A = g(A)v, v = (U, V) and U and V, two unitary

unimodular matrices such that U§ = Vg = [(1]] . We have
B9 = (r+ 1) (s + 1) [ [ Do (u) <p(k—1u)du] D9 (k)
Gy

Oy =(r+ 1) (s+ 1) [Gf D9) (u=1) (p(v—lg(,‘{—l)u)] Jr+s [(1)]®<f+s> _

Using the hypotheses of the lemma, we have
1 N
D9p] < (4 1) (s + 1) 4 (o, G) (17 + 1212 217+

for all 4. Let A tend to zero: we find @9y =0 if r +s > 2N, and
lemma 3 is proved.
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Application to the Proof of Theorem 1

We apply lemma 3 to the case when ¢(h) = f(A(h)1z), for some
fixed z€ .7,. Let b = kg(A)%'. We have A(h)~t = A(E')-1[A-2] A(k)~1z
When k£ and %’ stay in fixed compacts K and K’, A(k)~1z stays in a
fixed compact of 7. By virtue of lemma 2 we have:

fAER) A2 A(k)12)| < A (K, K, )(1 + # + WZ)N
Define
F(?’,S)( ) (7'+ ) f_DT 8) —lk f(A 6_1}& Z) du . (3)

This matrix is independent of 7, and holomorphic in z in 7, since the
integration is over a compact set. Lemma 3 shows that F(* 9 (z) = 0 for
r -+ s> 2N. From remarks 3 and 4 of Section 1 we conclude:
f(dlgyz) = 2 twF®9(z) Do (g).
r+s=2N
From remark 5, we see that only terms with even r + s appear in the
expansion and we write, with a slight abuse of notation:

f(A712) = X P09 (z) DU (A) @)
r+8s<2N
r + s even

forze¢ .7, A¢c L (C).
From equation (3), it is easy to derive:
Fo9)(A-1z) = Fr.9) () D9 (A) . (8)
Let M,, = —M,, be an element of the usual basis of the Lie algebra of

Lf and A" 9(M,,) the corresponding matrix in the representation
D@9 We have

F:9) (et Muvz) = Fr, ) (z) D, ) (et M) |

Taking derivatives at ¢t = 0 on both sides, we find:

n
241 (zju aiv 2y azu) F9) (z) = I (2) A0 (M) -
=

We denote A4 (M,,) the differential operator

y(z. . i)

< \Fin gz T Fiv g
The above equation reads:
4 (]l—{yv) F9) (Z) = Fr9) (z) 49 (Muv) .

Clearly we can re-apply the differential operator 4 (M,,) on both sides.
We find:

A (Algc) A (ﬂll”) ) (z) — [A (ﬂfg,,) Fr,9) (z)] A, 9 (Zl/[”v)
= F®9) (2) A9 (M) AT (M) .



Analyticity and Lorentz Covariance 87

This process can be continued. It can be shown [14] that the mappings
M, ~AM,) and M,,—> A" (M,,) can be extended to homo-
morphlsms of the envelopmg algebra of Lf This means that to every
element P of this algebra we can assoelate a differential operator /4 (P)
and a matrix 49 (P) such that:

A(P) 4(Q) = A(PQ)
A(@P + Q)= ad(P)+ f4(Q)
and similar conditions for A" 9; for P = M,,, A(P) and A9 (P) are
those already defined. 4 (P) is a differential operator whose coefficients
are polynomials in z. The computations we have performed above show
that:
A(P)F:9 (2) = F: 9 (2) A9 (P) .

We denote [15]

2 3 (Mo, + i)

i-lyp,,_..

G2 =3 (M
where the summations are over all eyclic permutations u, », 0 of 1, 2, 3.
F? and G2 are in the centre of the enveloping algebra, and

A9 (12) = - (—;l + 1) I
Aeo @) =5 (5 + 1) 1.

Denote, for r, s two integers = 0:
1./ 7‘/ \ S, 8,
PosGol)  fe-s()
A(r,s) :T,g r(r o v 1 \] s (s 1 s (s 1 |
) -r )] [ -2 (3 +)]
Let f(z) be a function satisfying the hypotheses of theorem 1. It has a

finite expansion of the form (4). Let R and S be two integers such that
9 (z) = 0 for » > R or s > S. Then

A(A(R, 9)) [ (z) = trF &5 (z)

— M, ,)?

(72

and
A(A(R, 8)) {(A-12) = tr FE.S) DULS) (A) .
[Note that A(F2), A(G?), A4(A4(r,s)) are Loreniz invariant differential
operators.] We may calculate in the same way
trFE-1L9(z) = A(A@R - 1,8)) [1 — A(A(R, )] [ (2)
By induction, we can thus construct, for each » = R, s < S, a Lorentz
invariant differential operator A{%:*),, such that, for every f(z) verifying:

(R, 8)
2)= Y trF"9(z)
rs R
s=S

F09 (A-1z) = F0:9 (2) D09 (A)
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the following identity holds:
AL f(2) = trF®o) (z) .
By Burnside’s theorem [16], for fixed r and s, o and S, one can find a
finite sequence A;,...,4, in L/:_, and numbers ¢;(I=1,..., p) such
that, for every (r+ 1) (s+ 1) X (r + 1) (s + 1) matrix 5, the matrix
element Z, ; can be computed from the formula:
E,.p= Y’ ¢ trEDC-9(A) .

«f b—/

l=
In particular

F(’ s) Z CZA(r s) f(/lz—lz) . (6)

Since A% ¥ is an operator with pol Jnomzal coefficients, and since A, ¢ Lf_ ,
the restriction of F 9 (z) to 7 F is the Laplace transform of a tempered
distribution F(.9% with support in V;*. Let F .+ be the Fourier trans-
form of F(r.9=. For ¢ ¢ %", we have:

lim [ PGP @+ iy) p) de = (FOP*, 4y

yevy

Im [ f@+iy) g@)de = (5 9), (7)

yEv,y

£ = X trFeo s

r<R
s< S

If we define, for any distribution 7’ and A € L7,

Ty, 9) = (T, ga1); ga(2) = @A)
we also have:
2,
Fops = o A .
=1
This completes the proof of theorem 1.
We note that, by a theorem of Hrpp [17], F(% (z) can always be
written in the form
K
Fop = 121 Q=) fr® ()
where the Q(")( ) are covariant polynomials of type (r,s), chosen in
advance, and the f&% are holomorphic in 7, and Lorentz invariant.
Hence:
Theorem 2. Bvery f(z) satisfying the hypotheses of theorem 1 can be
written as o fintte sum

2 Qi) 1;()

j=1
where the Q; are polynomials and the f; are Lorentz invariant holomorphic
functions in T,
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4. Some Remarks on Finitely Covariant Distributions

We call finitely covariant a tempered distribution 7' on R*" having

a finite expansion
T= 3 teT" (8)

r<IR
8§ S

where the 7'¢»%) are matrix valued tempered distributions with the
property

T4 = 79 Do (A), A€ L. (9)
The finitely covariant distributions form a linear subspace of &’. By the
same arguments as in the preceding Section, we have:

tr 79 = ALY T (10)
and
TP = ; ¢ tr TG (11)

where the A; and ¢; depend only on (r, s, «, f). We conclude that if 7'
has two expansions of the form (8), they must coincide, since we may
always consider them to have the same £ and S. In particular suppose
that 7', ..., 7, are finitely covariant and satisfy a system of linear
equations

%‘ Ty = Gy

where the (; are Lorentz invariant (the o;; are complex numbers). Then:
w5, T =0 for (r,s) = (0,0)
X o TR0 =6,
%

As an application, consider the problem of defining generalized
retarded functions (Steinmann functions) [18—21] from Lorentz in-
variant Wightman functions. The problem is to find a set of tempered
distributions R, satisfying the following conditions:

W) X opB= 0,

b) (support of R;) C S}, (z-space support conditions),
¢) R, = R, in Q,, (p-space coincidence conditions).
) Lorentz invariance.
Here the Lorentz-invariant tempered distributions C; are given linear
combinations of Wightman functions [“multiple commutators” — a)
also contains the Steinmann identities]. The sets S; are given closed
cones in IR, The 2, are given open sets in R*”. The o;; are given
numbers. B, is the Fourier transform of R;. It is not very difficult to
solve a) and b) simultaneously. STEINMANN [22] has even succeeded in
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solving a), b) and d) in two-dimensional space time. STorA has given a
complete solution for n = 2. If a given set of R, satisfies a), b), ¢), the
R, are boundary values of a unique function, holomorphic in a domain
containing several pairs of opposite tubes of the type 7%, and the cor-
responding Jost points. Streater’s theorem and theorem 1 prove that the
distributions R, (and R,) are finitely covariant. Therefore the cor-
responding R{%? are a solution of a), b), ¢), d).

We shall now find some precisions on the maximum number of non-
zero terms in the expansion (8) of a finitely covariant distribution 7.
Suppose that there is an integer p such that, for every ¢ ¢ &4,

KTy, @Y < Op(1 4 |A|)? forall A¢ L/

where (', is a constant which may depend on ¢.If A = A(g), g = (4, 4),
we define |A] = | 4]% Because 7'¢"»#) can be computed from formulae (10)
and (11), where A%, is Lorentz invariant, there exists a constant
O, (depending on ¢, r, s, R, ), such that

IKTG2, @)l < Co(1 + 14

KT, gy DS (A)] < Cq(1+ [A])»

Let o be a vector in C+1) (+1), Since D+ 9 is an irreducible representa-
tion of L/, we can find a finite sequence A, . . ., A, in L., and numbers
ai, ..., a, such that

11®7r+s
Y= 4 1/)]» y; = a; D9 (A)) [0] :

j=1

or

We have:
" ) 11O+
(109, Sy = a, (T, ¢ D () {O]

= 4, (70, gy Do () Do (A ) [1]77
Take:
A Ay = 8], A= 4,072 1AL = (2 + ) 14
®r+s 11®7r+s
ool
It follows that:

KT 9, @y )P |Afre.
Letting A tend to zero, we conclude that <T(T) 9, gyyw; = 0forr+ s> 2p.
It follows that: 7709 = 0 for (r + &) > 2p.
In particular, if p = 0, 7" has to be Lorentz invariant. This coincides
with the result of BorcHERS [4].
We also note that a finitely covariant distribution 7' has a support
which is invariant under L/ . For, if a point « is not in the support of 7',
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there is an open real ball B centered at  such that {7, ¢) = 0 whenever
the support of ¢ is a compact K contained in B. If such is the case, there
is a neighbourhood W of the unit in L/ such that the support of ¢ . is
still in B for all A € W, so that (T, ¢) = 0 for all A4 in W. But

Ty @)= te{T@9), ¢y DA
¢ ¢
r<R

s< S

is a holomorphic function of A in L, (C) and since it vanishes in the
“real environment” W, it vanishes everywhere. It follows that (7', p) =0
forall A¢ Lfr so that every point of the form Ay, A € L/: , ¥ € Bis outside
the support of 7.

Part 11

In the second part of this paper we shall review the proof of Streater’s
theorem. A proof of this theorem can be found in [1]. Different proofs are
due to Jost [23] and to RurLLE [24]. See also [25]). We shall follow a
slightly different approach with the purpose of stressing the question
of single valuedness and of showing that this method applies to more
general situations.

In the following, a function will always be associated with the set in
which it is defined : we shall not identify a function with its restriction to
a smaller subset or with an extension to a larger subset. We shall say
that a function defined and holomorphic in an open set U has a single
valued analytic continuation in an open set V if V' n U == 0 and if there
exists a function g, holomorphic in ¥, such that f and ¢ coincidein V n U.

We consider, as in the first part, C4# as the topological product of n
four dimensional Minkowski spaces, where L, (C) acts as follows:

i oz=0(2...,2)€C» and A€ L (C), Az= (Az,...,42,). We
denote L, (C) and L/ the covering groups of L, (C) and L7 , respectively

and A4 /A(4) the canonical homomorphisms of L, (C) onto L (C).
Note that L/ is a subgroup of L. (C) (see Part I).

Let ey and e; be two real four vectors with (e, e;) = — (eg, ;) = 1;
(eg,€1)=0. Let T'=¢e, A ¢, be the linear operator given by 7%, =efe;, —

—eg,¢f. For every complex (, exp[{7] defines a complex Lorentz
transformation y({) = 7(¢?). If we take a Lorentz frame in which
eg=(1,0,0,0) and ¢, = (0, 1, 0, 0), we find:

() F(z=5) 0o
0= 1 1-3) $e+3)
T

(12)

S = O
_o O
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Such a complex one-parameter subgroup of L, (C) will be called a time-
like subgroup.

We shall prove:

Theorem 3. I. Let D be a domain tn C1* having the following properties:

1. For each time-like subgroup y of L, (C), there exists an open non-
empty sub-set B, of D invariant under y, i.e., for every A + 0, (1) B, CE,.

2. D is invariant under Li, the real connected Lorentz group.

Then, for any function f(z) holomorphic in D, there exists a function
F(A,z) holomorphic in L. (C)x D which, for ACL/, coincides with
f(A2).

IL. Let D, be a non-empty sub-domain of D having the following
property: for every z ¢ Dy, the set of all A€ L, (C) such that A=z € Dy is
connected. Then there exists a function g(z) holomorphic in

Dy = AEE(G)ADO
which coincides with f in D,,.

The proof of this theorem necessitates several steps. The class of all
functions holomorphic in D will be denoted 7.

(i) Continuation Using One Timelike Subgroup

In this section y is a timelike subgroup chosen once and for all. Let
£, be the following domain in C x C4»

-QyZ{C,ZZED,CEA(z)}
where / (z) is the connected component of 0 in the open set of C:
A'(z)={C: z(0)z€ D}

A’ () is invariant under real translations for, if ¢ is real and y(£)2€ D,
2(C+t)z= x(t) x() 2z €D due to the invariance of D under Li. When
z¢ D, A’ (z) contains 0 and / (2) is a non-empty open strip parallel to the
real axis. It is easy to verify that £, is open and connected ; it is a semi-
tube. When z ¢ E,, A(z) = C. Using Bremermann’s semitube theorem
[26, 277, it is then clear that every function ¢ holomorphic in £, has a
single valued holomorphic continuation in € X D. In order to exhibit
the single valuedness of this continuation we go through an elementary
proot of this fact.

Let S be the set of all points z € D with the following prop-
erty: there exists a polycylinder P(z;p(2)) contained in D, of the
form {z": |zj# — 2| < o (2)} such that for every function ¢ holomorphic in
Q,, there exists a function ¢, holomorphic in C X P(z; ¢(2)) which
coincides with ¢ in the domain 2, N {C x P(z; 0 (2))}.

The set S is obviously open and non-empty since it contains #,. Let
zandz € 8. If CX P(z; 0(2)) and C X P(z'; p(2')) intersect, their inter-
section is connected and has a non-empty intersection with £, where
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@, and ¢, coincide with ¢. Hence ¢, and ¢, coincide wherever they are
both defined. It follows that there is a function ¢ holomorphic in
(Cx 8) v 2, which coincides with ¢ in Q,.

Let 2 € 5~ D. There is a polycylinder P(z; 29) centered at z, with
radius 29 and a number ¢ > 0 such that

{C,z:|Iml] < e,2€ P(z;20)}C2,.
SN P (z; o) contains a polycylinder P (2; ¢) (0 < o < p) so that ¢ is holo-
morphic in {Cx PE;0)} u{l 2 :|Im| <e 2 € P(Z;0)}. Standard
methods of analytic completion show that there exists a function ¢,
holomorphic in € x P(2; p), which coincides with ¢ (hence with ¢) in
{€,2": Im{| < ¢,z € P(Z;p0)}. It therefore coincides with ¢ in
Cx P(z;0)n £, so that z€ S. [To perform the analytic continuation
we may introduce the variables w% = ilog(zj# — £4). The function
@& J(e=ivf 24)) is holomorphic in the tube
{€, w: Imw# <logo} v {{, w: [Im{| < &, Imuw# < logo}

and is invariant under the change: w#— wh + 2n4n (n4 integer).
This function has a single valued holomorphic continuation w in
{C, w: Imu¥ < logp} obviously also periodic. Thus,

p(Cw) = @i, (i + ),
where ¢, (C,2') is holomorphic in € X {#': 0 < |2j# — 24| < o} and co-
incides with ¢ wherever they are both defined. Using the continuity
theorem one obtains the announced result. ]

Since D is connected we have proved: S = D. Thus:

Every function holomorphic in 2, has a single valued continuation in
Cx D.

Remark. If a function @ holomorphic in £2, is such that, for z € £, and
for any integer m, ¢({,z)= @({ -+ 2imm,z), then its continuation
@(¢,2) in € x D is also periodic and can be cast in the form ¢, (¢, 2),
@1 (4, ) being holomorphic in (C — {0}) x D.

(ii) Products of Several Timelike Subgroups

Let @ = (yy, . . ., xx) be a finite sequence of timelike subgroups. Let f
be a function holomorphic in D. §;, 2 — f(y;(5;)z) defines a function
holomorphic in £, . Hence there exists a function F ({;, z) holomorphic
in {{;,z: 2 € D} which coincides with f(y;(;)z) in 2, , in particular in a
neighborhood of {{;,2:2¢ D, {; € R}. Fy(;, 2) can be considered as a
holomorphic function of z € D with values in the Fréchet space of func-
tions holomorphic in C. By the same argument as above, there exists a
function with values in the same Fréchet, holomorphic in € X D which
coincides with F,({, x,(l,) z) near real values of [, ie., a func-
tion F,(f, {y 2) holomorphic in € x €Cx D and coinciding with
f(x:1 (&) x%2(Cs)2) in a neighborhood of R?x D. By induction we can
prove:

7 Commun. math. Phys., Vol. 6
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For every finite sequence @ = {1, . . ., yn} of timelike subgroups and
for every f € S, there exists a function Fe(ly, . . ., Ly, 2) holomorphic in
{{,z:2€ D} = CY X D which coincides with f(y, (&) .. .xx(Cx)2) in a
neighborhood of RY x D.

(iii) Eaistence of F (A, z)

Denote G4 (L, z) the function defined by

Go(,2) = F@(C> Ax(=Cx) - 751(‘51)5) ,
or

G@(C, 21(51) cee XN(CN)Z) =Fy(,2).

Gy (L, 2) is holomorphic in: {£,z: yy(=Cy) ... x1(—= &) 2€ D} and co-
incides with f(z) for real {. Therefore it is locally a function of z only,

. . o e 4 .
ie., its derivatives —=— (4 ({, #) vanish everywhere. Define:

a¢;
(:!45((:’ /11 2) = Gq)(c: /12) .
This is a function of £, z, and A € L_(C) holomorphic in:
A= {C» A,z v (=Cx) - - Z1("C1)AZ € D}

and its derivatives (3/0;)G, vanish there. Hence, in any open subset
of A of the form {{, A,z: L€V, A¢ Vy, 2€ Vi) where V,, V,, Vg are
open, and V, is connected, the function G4 (, 4, 2) coincides with a
function of / and z holomorphic in ¥V, X V,.

For a fixed z € D, the set &, of all germs of analytic functions of A
obtained in this fashion (starting from a given f¢€ ), by using all
possible finite sequences @ of timelike subgroups, defines a “Riemann
domain” [28] on which f(Az) (considered as a function of /1 in a neighbor-
hood of A = 1) can be continued. Technically, this Riemann domain is an
open connected subset of the sheaf of germs of analytic functions over
the complex Lorentz group L, (C). We shall now see that any continuous
path y in L, (C) connecting the identity 1 to some element of the group
can be “lifted” into the Riemann domain ¢,. This means that we can
patch together germs of analytic functions taken from &%, all along y
and thus obtain an analytic continuation of f(/Az) along y. This will be
done in two steps. (In the following, z is held fixed in D.)

First step. Suppose that o is defined by a continuous mapping
t—>A(t) of [0,1] into L (C) of the form A(t) = 5 (5 () ... zxCx (),
where @ = {y, ..., yy} is a finite sequence of timelike subgroups and
t — {;(t) are continuous complex functions of ¢ € [0, 1], with {;(0) = 0,
(j=1,..., N). The path defined in C¥ x L _(C) by ¢ ({(t), A(#)) lies
in the domain of definition of Gy (£, 4, 2), as a function of £ and A. This
is an open set, so that, for each ¢, ({(t), A(t)) has a neighborhood
V,(8) X V4(¢) contained in this domain: V,(¢) is an open neighborhood of
A(t) and V,(t) is an open ball centered at  (t). Because ¢ — ({ (t), A(t)) is
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continuous, for each ¢ ¢ [0, 1], a number r(¢) > 0 can be found such that
s —t]<r()and 0 < s < 1 imply {(s) € V;(t) and A (s) € V,(¢). We can
find a finite sequence 0 =ty <t < -+ <t,_; <t, = 1having the follow-
ing properties: the sets J, = {s:|f; — s/ <7r(f),0 =< s =1} form a
covering of [0, 1]and J,_; N J+=0fork = 1. For p = k = 1 let 0, be
a number such that ¢, <0, <t 0, €T N Jy; 0=0; 0,,,=1.
Because V,(t;) is connected, G4 (£, /1, 2) coincides in ¥, (t,) X V,(t;) with
a function of A, denoted ¢,(, 2), holomorphic for A € V,(t,). For any
A€ Vylty-1) N Vylty), we have gy (A, 2) = Go(C(0,), 4, 2) = gi(4, 2).
We now associate with every ¢ € [0, 1] a germ § (¢) of analytic function of
A as follows: for 0, < ¢ < 0,,,, 0 < k < p, §(¢) is the germ of ¢,,(4, z)
at /(t). This defines a continuous mapping of [0, 1] into ¥, (the con-
tinuity of the mapping is an immediate consequence of the definition of
the topology of the sheaf of germs of analytic functions). We have thus
achieved the “lifting” of the path y into ¥,. Note that §(0) is the germ
of f(Az) at A= 1. Intuitively what has been done is to define an
analytic continuation of f(Az) by taking g,(,z) along the subset
0, <t = 0., of the path y.

Second Step. We first prove the following property: there exists a
neighborhood W of 1 in L, (C) and six timelike subgroups #9, ..., %0
such that the mapping ¢ — 42(&,) . . . x2(&g) is a biholomorphic map of an
open ball (centered at 0) of C® onto W.

Indeed, let y?(Z;) = exp [M;{;]. Then, at { = 0,

6
AdlxG) . )] = X M;di;.

j=1

In view of the implicit function theorem, the mapping ¢ — A({)
= 43(Z,) - . . x2(Cs) is biholomorphic in a sufficiently small neighborhood
of { =0if M, ..., Mg are linearly independent. Our statement will be
proved if we can find M, ..., M4 linearly independent and having the
required form, ie., M; = e,¥) A ¢, where ey) and ¢,\) are real and
e,@ is timelike. To do this, let eg, e, €5, €,, be real four vectors with
(e ) = gy, Define:

M;=e,Ne; for 1=7=3;
My=e Ney+ 1/27e0 Neyy Mg=-e Nes+ ]/2'30 Aey;
Mg=ey, Neg+ ]/Qreo Aey.
This defines a basis of the (complex) Lie algebra of L. (C) and our state-
ment is proved. [In the case of g-dimensional space time we define a
basis of the Lie algebra having the required properties, as follows:
M, is given, for 0 < u < v < g, by:
My, =ey ey

foru=1,M,,=e, Ne,+ Vieo Ae,.]

T*
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We now show that every continuous path y in L, (C), originating at
1, can be cast into the special form used in the first step. Let o be given
by a continuous mapping ¢ — A (¢) of [0, 1] into L, (C), with A(0) = 1.
We shall prove the existence of a finite sequence y,, . . ., yy of timelike
subgroups and of N continuous complex functions ; (¢), . . ., Ly (f) such
that A(0) = 51 (5(#) - - - xxCy ().

Let V be a neighborhood of 1 in L, (C) such that VV W and
V-1 = V. By the same technique as in the first step, we define two finite
sequences 0=ty =0, <0, <t; <0y <t,<---<0,<t,=0,,,=1,
such that A(s) € A () Vior 6, < s < 0,1, k=0,...,p.Fors¢ [0, 0517,

0=k < p, we have A(t;)"1 A(s) € V, hence:
A(0,)7 1 A(s) = A(0,)" A(ty) At)~ Als)
= [A(t) "t AT Al) T A € VIV = VIV CW.
Therefore we can define six continuous complex functions:

Coner(8)s - s Corre(s) of s€ [0k Oriql

110 Cor1(9) - - 26" Consa(s) = A(0)1 Als) -

We extend these functions to the whole of [0, 1] by setting:
Cﬁk+r(8):56k+r(ek):0 for s = le (kz 1),
Conar(s) =Conir(Opgr) for s=0p, (k=p-—1).

Defining ygppr = 30 for k=0, ..., p we have:

216 (9) - Kepi6(Cona(s)) = Als) .

The second step is now completed. Every germ in &, can be obtained by
analytic continuation along a certain path, starting from the germ of
f(Az) at A = 1. It therefore follows from the result obtained above that:

If ¢+ - A(t) is any continuous mapping of [0, 1] into L, (C) and if
do € ¥, is a germ projecting onto /1 (0), there exists a continuous mapping
t—§(¢) of [0,1] into ¥, such that ¢ () projects onto A (¢) and §(0) = §,.

[In other words, given any path y in L _(C) originating at /A (0) and
any germ of analytic function at /1 (0), belonging to %,, it is possible to
continue analytically this function along the path v.]

This is what is needed to apply the monodromy theorem [29]. We con-
clude that the continuations of f(2) (as an analytic function of /A near
A = 1) along two homotopic paths in L, (C) lead to the same germ. This
means that %, is the set of germs of a holomorphic function F (4, z) on

satisfying:

the covering group L, (C) of L, (C) [in the case of four-dimensional
space-time, this is SL(2, C) x SL(2, C)]. It is also holomorphic in z,
since it always locally coincides with a function holomorphic in 4 and z.
When 4 is in a sufficiently small neighborhood of 1, we have: F (4, z)
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=f(A4 z) By analytic continuation along any path lying in Ei, we
find: F(4, z) = f(A(A)2) for all A¢L/. The kernel N of the canonical
mapping A»>/1(A) of L, (C) onto L, (C) is contained in L/ . Hence, if
A € N, we have F‘(AAO, 2)=F(4,2) for all ACLl. 1t follows that
F(AA442)=F(A,2) for all 4¢ L, (C), so that F(4,2) = F(A(4),2),
where F (A, 2) is a holomorphic function in L, (C) x D. This proves the
first part of the theorem.
The function F(4,2) is locally a function of Az. Define G(A,z)
= F (A, A-12). Then G (4, z) is defined and holomorphicin {A,z : A~z € D},
and is locally independent of A. Let Dy be a subdomain of D such that,

for every z¢ Dy, {/ : A=12€ Dy} is connected. Let Dy = » 1|:J © AD,. Then

{A: A2 € Dy} is connected for any z € Dg. The restriction of G/ (1, z) to
{A,2: 4712 € Dy} is therefore independent of A. It defines a function

g (z) holomorphic in Dj, which coincides with f(z) in D, [since G (1, z)
= {(z)]. The theorem is thus proved.

Application to the Proof of Streater’s Theorem

Let f satisfy the hypotheses of the S-theorem. For each Jost point
w € fn, there exists, by the edge- of—the-wedge theorem, an open set
Bw) = {z: |z — w| < g(w), |y| < o(w)} independent of f, and a function
holomorphic in B (w) which co1n01des with fin Bw)n{T;F VT U I}
Since this is also true for f,, defined by f,(2) = f(A~1z), A€ Lfr, there
exists, for every w¢ #, and every AE Lfr a functlon holomorphic in
A B(w) which coincides with fin ABw) " {77 VI, U F,}. Let

D= U ABwyvu T}t uT, .
AeLf
we f n
The intersection of A B(w) and A’ B(w') (where A and A’EL{;, w and
w' € #,) when non-empty, is convex, hence connected, and intersects
77 and .7, because it contains real points. It follows that there exists a
function holomorphic in D which coincides with fin DN {Z ;7 U7 ;7 U _£,}.
The theorem will be proved by applying theorem 3 to D. This domain is
clearly invariant under Li‘ Let y be a timelike subgroup of L. (C). By a
real Lorentz transformation, we choose co-ordinates in which 4 (4) has the
form (12). For any z = (2,...,2,), 2z, = {24}, (u=0,1,2,3), we set
;=20 + 2z, v;=20 —z}. Then 2’ = {(A)z; is given by: uj= Au,,
v’; = A71w;; the other co-ordinates are unchanged. Let 4, be the set of
all points z such that:
u;=tluy| =0
v;=1ly] +0

and having all other co-ordinates real. For z¢€ 4, and 2’ = §(1)z, we
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have:
Imu} = |u;| Rel

Imuj = }UJI“MIP Rel.

Yor ReA >0, 2’ ¢ 7,7 ; for Red<0, 2/ € .7, ; for A=1ig, o real =0,
2 € #,. Therefore: D contains all points 7 (4)z, where z ¢ 4, and 2 + 0.
In particular, for any z € 4,, D contains the compact set {z": 2’ = 7(1)z,
|A] = 1}. Tt therefore contains an open set of the form {z’: 2 = %(2)2",
2" —z] < e(z), |A| = 1} where &(z) > 0. It follows that D contains an
open set of the form B, = Ago #(2)V where V is an open neighbourhood
of 4,.

Now we take D, = .7 ;. A theorem of BaArgmMaNN, HALL and WicHT-
MAN [30] shows that for any 2 ¢ 7.7, {A: A¢ L (C), Az ¢ 7,7} is con-
nected. Therefore, for any function f holomorphic in D, there exists a
function g, holomorphic in 77, which coincides with f in .7;". Because
D is connected and .77, contains .7 F and £, g also coincides with f in
J 7 andin . Thisis the S-theorem. We now make some remarks on the
validity of these theorems for ¢g-dimensional space-time.

The first part of theorem 3 has been proved for ¢ = 2 in the remark
at the end of the first step of the proof. For ¢ = 3 it rests essentially on
the following property: if we denote p the canonical homomorphism of
L. (C) onto L, (C),and N the kernel of v, then N C 9~1(L/ ) and Y 1(L)
is connected. This fact is easily checked for ¢ = 3 and 4. For ¢ > 4 it is
possible to prove it by induction [one proves that every closed path
originating at 1, lying in Z/. and homotopic to 0 in L, (C) is homotopic to
0 in Li. Thus for ¢ = 4, w‘l(Li) = I:é: , the covering group of Li, and
Nc w—l(Li).] The second part of theorem 3 does not depend on ¢. The
application to the S-theorem rests essentially on the theorem of Bara-
MaNN, Hatr and WieETMAN which has been extended by R.Jost
[23, 31] to ¢g-dimensional space-time.

Finally we note that the proof of theorem 3 can be adapted by
trivial modifications to the following case:

Let G be a connected complex Lie group, @ its covering group, u the
canonical map: G - G. Let &, be a closed subgroup of G, G being a
complexification of @,; G, is a real Lie group with Lie algebra Z,, a real
vector space with dimension p; the complex Lie algebra of ¢ is the
complexified of #,. Let G, be the connected component of the unit in
p~1(G,). Suppose ¢ acts as a group of holomorphic automorphisms of
some domain @ of C7; more precisely we assume that there is a holo-
morphic mapping (g,z) ~—gz of (G X O) into ¢ such that g,(g,2)
= (g,4,)z for any two ¢, ¢, € G and ez = z if e is the identity in (/. Let
F be a total family of elements of Z,. One can then prove:
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Theorem 4. Let D be a domain contained in O, invariant under G, and
such that, for every X € &, there is a non-empty open set Ey C D such that
(expl X)Ey CEyx for all { € C. Then, for every function | holomorphic in
D there exists a function F holomorphic in G X D such that F (g, z) coincides
with f(y(g)z) tn some neighborhood of G, x D.
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