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Abstract. A general method for constructing fields in spaces with transitive
group of transformations is presented. Quantum-theory of free fields with spin 0,1/2,
and the connection of spin and statistics in de-Sitter space of constant positive
curvature are discussed.

1. Introduction

Usually Quantum-field-theory is formulated in Minkowski-space. To
the group of motions, the Poincare-group, correspond the fundamental
conservation laws of energy-momentum and angular momentum. We
study quantum-theory in de-Sitter space of positive curvature (4 -f- 1),
whose group of motions has 10 parameters as the Poincare-group.
Classical fields with spin =j= 0, especially spin 1/2 have been discussed by
DIRAC [1] and later for inst. by LEE and GURSEY [2]. For their approach
it is essential to embed de-Sitter space in a flat 5-dim. space, moreover
for spin 1/2 the accidental existence of a 4-dim. representation of the
de-Sitter group is used. The method of covariant derivatives gives
equations for arbitrary spin, but as pointed out in [2], it remains unclear
under what representation of the de-Sitter group these equations shall be
invariant.

We propose a general method for constructing fields in spaces with
transitive transformation group, using a field theoretic version of the
so called "induced representations". We apply this formalism to quan-
tum theory of free fields with spin 0, 1/2, restmass m > 0, in de-Sitter
space. The connection of spin and statistics in de-Sitter space is discussed
following W. PATTLI [3] for the flat space.

We have proved the cited theorems rigorously. For brevity the proofs
are only sketched in an appendix.

Notation * conj. complex.
+ hermitian conj.
T transposed.

* This work has been supported in part by the Oesterreichischer Forsehungsrat.
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2 O.

Indices: μ, v take on values 0, . . ., 4, i, j : 0, . . . 3, α, β: 1, 2, 3.
Units: S = c = 1, 12: Radius of de-Sitter space.

2. Field Theory in Spaces with Transitive Group of Transformations

Let ill" be a topological space, G a Liegroup acting as continuous
group of transformations on M:

G x M-+M
(2.1)

{9> x) -* 9 ix) continuous, g £ G, x £ i f .

Choose #0 £ if, denote by K the stable subgroup of x0, K is closed.

K = {gζO, g(χ0) = χ0}. (2.2)

M can be identified with the space of left cosets GjK:

{g K,gζG}. (2.3)

Suppose that parameters, continuous together with their partial
derivatives up to the third order, are introduced in a neighbourhood
U of β 6 0.

Theorem 1. Under the cited assumptions G and M can be made to
differentiable manifolds so that the mappings a), b), c) are differentiate:

a) G->G g->g-gx,

b) G-+G g->gi g,

c) GxM-+M (g,x)-*g(x).

We can find a covering Δ = {H} of M with open coordinate neighbour-
hoods H and differentiable maps:

H->G x->gx xίHζA, gxίG (2.4)
H H

so that x — gx K for all x £ H.
H

The proof of this theorem is based on theorem 62 § 44 of [4].
Def. Let k-> T(k) be a differentiable representation of the group K

in the linear space V. A field ψ to the representation T oί K is defined by
a family of differentiable maps:

x-+ψΞ{x) x ζ H, ψH (x) 6 V

so that for any H', H1 £ Δ, x ί H r\ Hl9 the condition is satisfied:

x). (2.5)

By F(T, M) we denote the linear space of these fields.
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Theorem 2. ForgζG we define a map Tg:F(T) ~*F{T)

ψ -> ψ' = Tg ψ

g-gχ.)Ww{x') ( 2 . 6 )

U/ — y yjjj) vθ v J-j.) Λ ζ JLJL J L± 5 JIJ. ζ z_ι

We have: g^xg - gx> ζ K
H H'

Tg is a representation of G.

Tg. Tg^Tg.-g,. (2.7)

Let (x, y) = (x1, . . ., xn, y1, . . . ys) be differentiable parameters in a
neighbourhood U of e £ G, so that

Z n ?7 = {(0,2/)} . (2.8)

Take g-^> (x, y) 6 U, gλ arbitrary in G, then g' = g1 gg{~λ -> (x\ y') will
be in U for g sufficiently near to e. g -> g' is differentiable (theorem 1).
We expand in a Taylor-series

x'i = Z*'f (ύTi) x* + piβ(g1) yβ + 2 n d order
(2.9)

2//α = tfMft) ^ + fis(^i) / 4- 2 n d order

7l\ ^ (2.10)

is the adjoint representation of G.

0 } ]c-> f(k): adjoint representation of K . (2.11)

Assumption. The adjoint representation of G, restricted to K splits
up into the parts f(k), l{k).

Then by a linear transformation of variables we can achieve:

I (It)
(2.12)

Coυariant Differential Forms

Denote by Lx the space of differential forms at the point x £ M. Take
g ζ G, g(x) = x'. g induces a map g* : Lx> -> Lx

Lx, 3 α = % rfa;^ -> ̂ * α - % - ^ j ^ - rfa* (E ^ . (2.13)

We have:

(flΊ 02)* = 92* • 9i* (see f. inst. [5]) . (2.14)
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From (2.8) we see that we can regard (x1, . . ., xn) as parameters on
M in a neighbourhood U* = {u K, u ζ U} of x0.

ω\ = ωi(xQ) = efo*

ω<

j f f(a?)=(flrj1)*ω*o a: € H (2.15)

The following relations can be verified:

If x 6 # x n # , t

l(k) as in (2.12),

If x 6 # x n # , then % ( ή = ϊ ^ 1 ^ ) ωH(a;) (2.16)
H1 H

gζG, xίH, x' = g~1{x) tHf

(2.17)
9*o)H(χ) ^l{gx

λ -g - gX') ωH'{χ').
II W

We call ωH(x) a covariant basis of differential forms. An analogous
basis for higher forms is constructed by taking products of the elements
of ω.

Covariant Derivative
We define:

(Q«Ψ)H(X) = J ^ Tΰxo*1 <r? ΨH (

(7 = 1 , . . . U)

(2.18)

9̂- are differential operators of first order.

Theorem 3. d: ψH(x)->uH(x) = \\djψH(x)\\ defines a map F(T)-+

->F(l~x <g> T). That is: {uH(x)} defines a field, transforming with the

representation l~x ® T of K. l(k) as in (2.12). d satisfies:

d Tg=Tg d (2.19)

where Tg denotes the representations of 0 inF(T) and F{l~λ ® T) respec-
tively. Analogously:

ΨU->VH(X) = \\Q*WH(X)\\

F(T)~>F(f~1T ® T) .

Let us introduce:

hn = EKW---KW ( 2 2°)
Σ: complete symmetrization of il9 . . ., in. For a matrix aί

j (i,j = 1, . . ., ri),
aJj denote the corresponding matrix elements in the completely sym-
metric part of the Kronecker-product [a]n.
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We are interested in differential operators D: F(T) -> F(T), de-
fined by:

{Dψ)a{x)= = Σ (2.21)

x: parameters on H, CH (x): operators over V, differentiable in x.

Theorem 4. Any differential operator (2.21) can be uniquely repre-
sented as

m = 0
(2.22)

If D is an invariant differential operator

Tg Ό = D-Tg for all g ίG (2.23)

then the CJ are constant operators, independent of H, satisfying the condi-
tions:

T(k) - CJ = Vj.(k) CJf T{k) for all kζK. (2.24)

Conclusion. The structure of invariant equations for arbitrary T(k)
(T corresponds to the spin) is completely determined by the stable
subgroup K, and depends only on K. Analogous assertions are true for
local Lagrange-densities etc.

3. de-Sitter Space, de-Sitter Group

A model for de-Sitter space is the 4-dimensional hyperboloid (3.1) in
the 5-dimensional flat space with the induced metric:

M: xμxvημv = (x0)2 - (x1)2 - - - - (xψ = - i ? 2

(3.1)

(3.2)

1
— 1

-1
— 1

—

1

1

X =

X°u
X1

X2

Xs

X*

group of motions: $0O(4, 1) = {g, gτηg = η} = G

g £ component of the unity: g°0 > 0
(see f. inst. [6])

g:

Λ Λ
> 0

(3.3)

Theorem 5. To every point x ζ M and to every normed tetrade ωί in
x (ds2 = ωίωiηίύ) there exists one and only one basis of the Lίealgebra
ofG:

M i j ( x ) , P j ( x ) * , / = 0 , . . . , 3 . (3 .4)
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so that Mjj generate the stability group L(x) of x (homogenous Lorentz-
group) and Pj the infinitesimal translations in the directions ωi

(I + ia? Pj): ωj -> ωj + aβ

+ ~ a** MόΛ : ωj -> ωj

Mij} Pj satisfy the commutation relations:

[Mi3; Mhl] = -i{ηuMjk + ηj1cMit - ηileMH - ηnMiJ:)

(3.5)

(3.6)

Under a homogeneous Lorentztransformation A ζ L(x) P$ transforms like
a 4:-vector:

Λ~iPjΛ = (Λ~ψjP!c. (3.7)

The Casimir operator of 2nd order is given by:

T _ p pj _ * 7lf. . Άfij (3.8)

Parameters on M

We choose x0 = and introduce the following parameters

x = J = (3.9)

y«<oo α = l , 2 , 3

Fig. 1
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Metric tensor:

'Hi-

IF
1

(3.10)

λ, y are regular parameters in the open set H: λ > 0. A covering of M by
open coordinate neighbourhoods is given by:

A = {g(H)gίG}. (3.11)

As parameters of x 6 g{H) we take x' = g~1{x) -> (λ, y) £ H.
To apply our general theory we need elements gx satisfying (2.4)

ioτH: λ>0 x-+(λ,y) (3.12)

i y2 ?/τ y2

9x —
H

ϊ J
B 2R2

R U

Ύ 2

JL
B

1 ψ

+
2

—
2

λ

λ
h

2

2

λ

λ

' Xn - > X .

The elements gx form a subgroup of G.
H

For £P = g(H), x' ξ H, we set
(3.13)

W H

Infinitesimal parameters on G in which the adjoint representation of
G, restricted to K — L (x0) is completely reduced are:

a}

a**, of g =
δ>r

R
1

(3.14)

This is the decomposition of the Liealgebra of G from theorem 5,
corresponding to the point x0 and the tetrade dxj (j = 0, . . ., 3).

The covariant basis of 1-forms on M (2.15) is given by

for # : λ>0

(3.16)
yx α = 1,2, 3 .
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Let Λ-> T(Λ) be a repr. of the homogenous Lorentzgroup with the

aerators

given by:

generators: ~ i} — Liό. The covariant derivative (2.18) in F(T) is

for H: λ > 0 ^ 17)
λ d ? i d 4- * T

4. Scalar Particles in de-Sitter Space

α) Classical Solution

Representation: φ(x) real functions on M (4.1)

Lagrange-density ££ = γ (d̂  φ dι φ — m2 99s) (4.2)

Action-function ^ = / ££ [ω° ω1 ω2 ω3 ]

field equations: δ Sf = 0 (4.3)

m2^9 = 0

Solution for

ρ = + | / f i^^9/4Γ ω2 = k2 ρ

forH:Λ>0 (4.4)

+ ( ^ ; k) = e ί k^ P/2 ( | k | Veβ-^fl eiπ/4 χ

K_ = K+*\ H1'2: Hankelfunctions .
Every solution of (4.3) which is sufficiently regular can be represented

for x ζ H by (4.4). Namely, let φ(x) be such a solution, then

will satisfy an ordinary differential equation of second order in λ, for
which (4.4) gives a fundamental system.

Lemma 1. If g ζ G, x, g(x) ζ H, then

-y=K.(g(x)-!k)Tga(k) (4.5)

where Tg on the right side denotes a unitary representation of G in the space
of square integrable functions a(Jc). The infinitesimal operators of this
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representation are given below, (4.13). Analogous assertions hold for
φ+, φ.

For E' = g~x{B) we set:

K- (g (x) k) 2 > (k) - ^ ^ - ^ (4.6)

analogously for φ+, φ.
Using lemma 1 and the invariance of the field equations it can be

verified that φ satisfies the field equations everywhere and that condi-
tion (2.5) is fulfilled.

Asymptotically for R -> oo, x -> x0, we have:

K±^e±^ωχ0 + ^τ) . (4.7)

From (4.6) it follows that φ± are prop, to e±ίωt for arbitrary x
(t: local proper time). Therefore φ± must be regarded as analogues of
the pos. and neg. frequency part. (We follow [7] in denoting pos. and
neg. frequency part.)

Theorem 6. 99± respectively a*, a transform with equivalent repr. of the
de-Sitter group. This is in contrast to the Poincare group, where φ^ trans-
form with repr. distinguished by sgnP 0.

Normalization.
N (φ, ψ) = if (φ d3ψ — d5 φ ψ) ύj

= ί f (φd0ψ-d°φ'ψ)[ω1ω2ω*] (4.8)
λ — const

σ0 = [ω 1ω 2ω 3] etc.

N(φ+, φ-)^fdzka*{k)a{k) . (4.9)
Noether-theorems.

Ivφ{x) =--f^Tgφ{x)\g:==e infin. operators (4.10)

gv: inf. parameters on 0 (gv) = (aίj, aj)

ωi(g{x))\g = Θ = ξ*{z) dgv Killing vectors . (4.11)
Sf \ 1

analogously for Miό.
In momentum space: (assuming commutativity of α*, a)

Po = f ePka*(k){ω -^ (j+ k-^))a(k) (4.13)

2R*

= f d*ka*(k) \ [K-^β - kβ^r) α(k)

a

K a2

Ίϊ dkβdk« ΎR
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b) Quantization

Assumption. Let the space of physical states be a Hilbert-space
3tf* with unitary representation of the de-Sitter group: Tg} φ(x) operator
distributions over Jf7 so that:

< I φ (x) I > £ F(T) for a dense set of states | > (4.14)

The existence of such a space is assured by the Fock-space in momentum
repr.

Assumption. [a(k),a(k')]± = [a+(k),a+(k')]± = 0 that is: either
commutativity or anticommutativity is assumed. [a(k), a+(k')]±

= c(k, k') scalar distribution.
We require invariance under the transformations (of the component

of the unity) of the de-Sitter group. Then, in view of the irreducibility
of the representation of the de-Sitter group in the 1-particle subspace
c(k, k') must be a multiple of the unit operator.

[α(k),α(k')]± = ό 3 (k-k ' ) . (4.15)

In coordinate space:
For —, equal λ

[φ(λ,y),φ(λ,y')]- = 0 (4.16)

[φ(λ,y),doΨ(λ,y')]- = iλ* d*(y - y').

The δ function is normalized correctly, since:

/ λ3δ*{y-y')σ,= l.
λ = const

For + , e q u a l λ : f. i n s t . λ — l,y,y' ->0

lφ{λ, y)> φ(λ, y')l+ = iDΛy - yf, 0) = ie-™\y-*'\.

Conclusion. For a scalar field locality is sufficient to derive the correct
quantization prescription. This is in complete analogy to the flat space
(see [3]). Let us define the dynamical variables Pj} Mi3< in the usual
way as normal products, then the transition to Quantum-theory is
made by simply replacing a*(h) by a+(k) in (4.12).

It would be tentative to interpret Po, Pα J Mij as operators of energy,
momentum and angular momentum of an observer at the point xQ.
However, this leads to difficulties, at least for P o.

Take
1

— 1
9 = -1

- 1
- 1

(4.17)
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g -> Tg is a unitary transformation in ̂ f7. The following relations can be
verified:

rp —l p rp p rp —1 IUΓ rp __ ΊUΓ

Tg-iPΛTg = PΛ Tg-iMΛβTg = Maβ.

P o cannot have a positive spectrum. I t is easily seen that P o has a
purely continuous spectrum (— oo, oo) in the 1-particle subspace. If we
make the transition to flat space by letting R tend to oo in the expressions
for the infinitesimal operators of the de-Sitter group, we get the infini-
tesimal operator of the representation of Poincare-group with P o > 0,
starting from (4.13), applying first Tg (4.18) and letting then tend
R -> oo we get the representation with P o < 0.

Conclusion. The same unitary representation of de-Sitter group can
be contracted in the limit R -> oo to inequivalent representations of
Poincare-group.

The behaviour of P o can be explained by observing that the cor-
responding Killing vector ξQ points in positive time direction for a;4 < 0,
in negative time direction for x* > 0.

5. Dirac Particles in de-Sitter space

a) Classical Solution

In this section G denotes the covering group of $0O(4.1).
Representation of the stability group of x0 (horn. Lorentz-group)

Dirac-representation 2) (1/2, 0) + Ό(0, 1/2); A -> T(Λ)

(5.1)

Covariant derivatives:

d» = ΊΐTλ; d^^λ"jy^
JrΎRy^y^ (λ>°) (5 2)

Lagrange-density: ££ = -~- (ψ γi djψ — djψ y^ψ) — mψψ (5.3)

Action function: 9> = f & [ω°ω1 ω 2ω 3] (5.4)

Field equations: δ^^O (5.5)

i γ> djψ — mψ = 0 .

Solution for H: λ > 0; ρ = R m; ω2 = k2 + m2; m > 0

W W, y) - / -££« K (x, k) (α

6

(*71J
)) (5.6)

«=(::)
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ι*ι
- m)B)-tβe-'ωΛH}β+lβ(hλB)

/2 e~Qπl2 -+—- {{ω — m)R)~iQ e-iωB

]/2ω(ω — m) 2ω

The assertion corresponding to lemma 1 is:
Lemma 2. For g ζG,x,x' =- g{x) ζ H

]/2ω(ω—m)

f T(g^g-igx,) Z(*'; k) f ί (2π) 3 / 2

Again Tga, Tgb* denote (eq.) unitary representations of G.
Using this lemma we can verify that (5.8) satisfies (2.5)

Γ ι gx) K (*; k)

(5.7)

(5.8)

^ J {2πf^ e% aV K \ £*(k)

N{ψ, φ)=-i J

(5.9)

λ=const

dse dse \
^~— φ — ψ ~?f?r^~ I (

= f d3k(Σ < (k) «v(k) + 2; ^(k) δ? (k))

Conservation laws.
J? = 0 because the field equations are satisfied.

( 5 1 0 )

analogously for ilf^j .
Charge Q = JVjy, φ).
The operator P o is given by:



Quantum Theory in de-Sitter Space 13

The negative sign in front of the second term is not invariant under
unitary transformations:

δ(k) = ((ω - m)R)~2ίe (Rkf^ e-2iωRbf{\) (5.12)

(5.13)

b) Quantum-Theory

Assumption.

[aμ(k),ar(k')]± = [a+μ(k),a+v(k')]±

= [bμ(k), K(k')]± = [b+μ(k), b+,(k')]± = 0

[aμ{k),a+,(k')]±=cμ,(k,k') (5.14)

\bμ{k),b+,(V)]±=c'μ,(k,V)
[aμ(k),b+v(k')]±=c"μv(1c,k').

Requiring invariance of the commutation relations under the trans-
formations of the de-Sitter group and the gauge transformation:

ψ(x) -> eiεψ(x) (5.15)

leads to the following commutation relations:

[aμ(k),a+y(k')]±=ClδμvδHk-k')

[bμ(k), δ+,(fc')J± = c2δμvδ
s(k - k') (5.16)

K(ft),δ+,(ft')]± = 0.
In coordinate space:

bpμ{λ, y), wΛλ, y')]± = ίψ+

μ(λ, y), ψ+Λλ, y')] = o

[ψμβ> y)>Ψ+Aλ,y')]± = J'-~~ e^va-v'a-> x (5.17)

x ( Σ κμvκ*,vCl± Σ κμvκ*,pc2).
v = l , 2 v = = 3 , 4

Locality leads to c2 = ± cv For then we have (K+K == A3/)

[^W, 2/), vV( λ- 2/')]± = c , V ί J ( ! / - y') • (5.18)
For +

For -
[αί,(A;))α+v(ί;')] = c l (3

3(λ-A ; ') _

Now we cannot demand P o ^ 0, for there are no unitary representa-
tions of the de-Sitter group fulfilling this. As substitute we require that
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for states | ) concentrated in the neighbourhood of x0 the expectation
value {P o ) shall be positive.
For +

Assumption. There exists a vacuum state |0>, aμ\0} = bμ\0) = 0

it follows c± > 0 if the classical case [b, b+] = 0 is excluded.

<1|PO|1>= fcPk Σ fi(k)(co + ~(~+k~))fμ(k) + E0 (5.22)

Eo=- [d*k'f*(kf)fv{k')' [d*k(θ bμ{k)(ω + -^-(~ + k4r))bi(Jc) ®)

Eo is no well defined quantity. We set as usual:

As typical wave packet we choose:

f(k) = JSf e~^~ka)2h2 N: normalization factor (5.23)

<0| ψ+ (λ, y)\l) ^'N' eili°v e ~ ^ 4 Λ a (fur λ = 1, y-> 0)

<1| : P 0 : |1> ^ OJ0 = +γko*~+ ~m? (5.24)

the second term prop. i/R gives no contribution.
For -

Requiring aμ |0) = bμ |0) = 0 leads to c± = 0, classical case.

|l'> = //,,(fc)α+,(fc)|0> (5.25)
/Ί ' I 1 f \ n Γ / * ^ ^ / flΛ / 7 3 ^ >• 0 —^ P > 0

| l"> = /Mfc)δ+

μ(fc)|0> (5.26)

<l' r 11"> == ~cxf f*μ{k)fμ{k)d*k ^ 0 -> q ^ 0 .

Therefore we should require αμ |0) = b+ |0> = 0. But then the wave
packet (5.23) leads to <1| P 0 | l > ^ ±ωQ for

+ (k) |0) resp.

Conclusion. Locality and the requirement ( | :P0(x): | ) ^ 0 for
states I ) localized in the neighbourhood of x, lead to the correct quanti-
zation prescription for spin 1/2. (P0(x): the basis element of the Lie-
algebra of G, of Theorem 5, corresponding to the point x). The final
expression for P o is:

:P 0 : =
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6. Summary

Let i f be a space with transitive transformation group G, stable
subgroup K of x0 ζ M.

Fields on M are classified by representations of K. (6.1)

Invariant local quantities as differential operators, local
Lagrange-densities etc. are only dependent on K. The structure of (6.2)
invariant equations of two spaces is the same, if the stability
groups are the same.

Quantum theory of free fields can be readily formulated in de-
Sitter space. It is dubious if a physical interpretation of the in-
finitesimal operators is possible. Especially no analogue of energy
has been found. This seems plausible physically, since integral
dynamical quantities would correspond to motions of the whole (6.3)
universe which cannot again take place in the universe. Only if a
part of the system can be regarded as isolated, we can expect
physically relevant integral dynamical quantities.

The correct quantization prescription and thus the connection
of spin and statistics can be derived for scalar particles from
locality alone, for Dirac particles we add the further requirement (6.4)
( I :P0(x): | ) ^ 0 for states | ) localized in the neighbourhood
of x.

The analogues of positive and negative frequency part in de-
Sitter space transform with the same unitary irreducible repre-
sentation of the de-Sitter group. In the limit R -> oo the same
irreducible representation of the de-Sitter group, written in (6.5)
different basises, contracts to inequivalent representations of
Poincare group with P o > 0 or P o < 0.

Acknowledgements. The author is grateful to Prof. W. THIRRING, DOZ. J. WESS
and Dr. R. SEXL for valuable comments and discussions. Special thanks go to
Dr. H. URBANTKE who has worked on a similar problem: particle creation in de-
Sitter space ([8]).

7. Appendix

In this appendix we sketch the proofs of the cited theorems.

Theorem 1. Theorem 62 § 44 of [4] asserts, that in a neighbourhood
V of e £ G there exists a canonical coordinate system of the second kind
(a?1, . . ., xn

} y1, . . ., ys) so that K r\ V = {(0, y)}. Now we take a neigh-
bourhood ϋ of e, ϋ=U-\ U2cV.U* = {wK,uίU}. x can be
regarded as parameters on £7*. The homeomorphisms g: U -> g - U and
U*->g(U*) make G resp. M to differentiable manifolds satisfying
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a), b), c). A = {g(U*), g £ G}. The fundamental map (2.4) is given by:
H = U* -> (T : x -> (#, 0) = gx and analogously for g(U*).

H

Theorems 2, 3. are a matter of straightforward calculations.
Theorem 4 is proved by induction, using the fact that the coefficients

of the terms in dj containing first derivatives are c-numbers and not
operators in V.

Theorem 5. It is sufficient to show the decomposition for the point
xQ = (0, . . . 0, —E) and the tetrade dxj (j = 0, . . . 3). One decomposi-
tion is given in (3.15). Let Mφ P] be another basis satisfying:

i \ 1
/ + iajP] + Y afiMlή (x) = xi + a1 + y aίjVs + 2 n d o r d e r

by differentiating with respect to xj it follows:

Miό = M[>, Pj = P .

Lemma 1. By a direct calculation we verify (Iv inf. op.)

Iv<P~{%) = J {2π)3i2 ~γf^κ-(χ> k) J ^ W

Take a one parameter subgroup g(^),

dt

Then lemma 1 follows by observing that

φ~ (t, x) = 9? (g-1 (t) (x)) and

satisfy the same differential equation with the same initial value for
ί = 0.

Theorem 6. The unitary transformation establishing the equivalence
is (5.12).
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