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Abstract. A renormalization procedure is proposed. It gives rigorous mathe-
matical meaning to the infinite cancellations in this model. A space cutoff is intro-
duced in the interaction term ¥ and so V has the form f V (x) dx, but there are

2| < K
no momentum cutoffs in V. There is an infinite constanlt |and an infinite boson mass
renormalization in this model. The main result is that the renormalized Hamil-
tonian is rigorously defined as a bilinear form in the Fock Hilbert space.
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0. Introduction

We consider Quantum Fields interacting with Yukawa coupling
in two dimensional space time. The interaction potential V is restricted
so that particles interact only when they lie in some bounded interval
of space. But in all other respects the interaction is relativistic and does
not contain momentum cutoffs. A renormalization procedure is proposed
which gives rigorous mathematical meaning to the standard infinite

* This work was supported in part by the National Science Foundation,
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cancellations involved in defining the renormalized Hamiltonian. The
renormalized Hamiltonian,

H,opn = Hioo + V + (infinite terms) ,

is realized as a symmetric bilinear form densely defined in Fock space.
We split the interaction term ¥V into two parts,

V=V,+7,.

V, contains terms corresponding to fermion pair creation and fermion
pair annihilation, while ¥, contains the remaining terms which correspond
to the emission or absorption of a meson by a nucleon or antinucleon.
We set

H, = Hi, + V, -+ (infinite terms)

Hren= H1+ V2'

This definition is reasonable because in this model the only infinite
renormalizations are the vacuum energy and the boson mass renormaliza-
tions, and both of these are due to terms from V, alone. We realize H,
as a symmetric operator defined on a dense domain Zg contained in
Fock space. V, and thus H, are defined as symmetric bilinear forms
on Yy X Dy,

We show that H; and H,, are limits of operators H,, and Hyy,,,

H, — limH,, 0.1)
Hren = liereua: (02)

in a sense which will be made precise later on. The cutoff operators, when
expressed in momentum space, have all variables cut off at some o,
o — oo. The renormalization terms in the cutoff operators are finite,depend
on ¢ and tend to infinity as ¢ tends to infinity.

The interaction term is given formally by the singular expression

V=/[:P)¥@): D@ h@d.

Here ¥ is the fermion field and @ is the boson field, while & is a cutoff
function which limits the spatial extent of the interaction. Thus we assume
h is a smooth function which is identically one for = in some bounded
interval and which is identically zero for « in the exterior of some larger
bounded interval. The presence of this factor 2 == 1 means that the
Schrodinger picture (in which we work) is not relativistic. We offer
three reasons for including the space cutoff. First, all evidence indicates
that a relativistic Schrodinger picture does not exist if one remains
in the Fock Hilbert space. (As A — 1, § factors appear in our formulas
or in perturbation theory. In the axiomatic approach, Haag’s theorem
is applicableif & = 1, see [8, p. 1617, [9, § 6]). Secondly, our nonrelativistic
Schrodinger picture can be used to construct (formally, at least) a
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relativistic Heisenberg picture. To show this, we write
Hren (h) = Hren

to show the dependence of H,., on k. Let A be an observable associated
with a bounded region of space time. Assume that the Schrédinger
picture dynamics exist. That is, assume H ., (k) is a self adjoint operator.
Take % to be one on a large interval. Then

A — exp(—ittHyy (b)) 4 exp (it Hy (h)) = A(t) (0.3)

defines an automorphism of the observables which is formally the correct
relativistic dynamics in the Heisenberg picture, for ¢ suitably bounded.

In a subsequent paper we will show that the Schrodinger picture
dynamics exist. However this result will require a finite and A-dependent
mass renormalization in addition to the infinite renormalizations and
thus we must be more careful in defining the automorphism (0.3).
We work with an A which is identically one on some interval [—¢, 1 + ¢],
where ¢ is the speed of light. This fixes the mass renormalization parameter
om?. If A is an observable associated with the interval (0.1) then (0.3)
defines dynamics 4 (f) which formally is relativisticly correct for [¢| < 1.
If 4 is an observable associated with an interval (a,a + 1) then A4 (f)
can be defined for |{| < 1 by translations in space. An arbitrary observable
B is a limit of sums of products of observables 4; associated with inter-
vals (a;, @; + 1), and so it might be possible to define B(t) for |t] < 1
also, and this might yield the correct relativistic dynamics. If so, the
process could be repeated and B(¢) could be defined for |i| < 2, < 3, .. ..
As a third reason, if one were willing to work in a framework larger than
the Fock Hilbert space (cf. [1] and [5]), it is possible that some meaning
could be given to the limit of our formulas as A — 1.

The fact that we work in two dimensions instead of the physically
correct four dimensions is more serious. This eliminates a second infinite
mass renormalization (the fermion mass) and it eliminates an infinite
charge renormalization.

We exhibit the domain &y, explicitly. We will construct an operator

T= :exp—1'Q: (0.4)

with a domain &y containing all Fock space vectors which
a) have at most a finite number of particles,
b) have compact support in momentum space.

In essence, we define
Dy, =range I'=TZy . (0.5)

There is a perturbation expansion for the correct choice of @ [2]. We
do not use the full expansion, which in any case probably does not con-
verge. Instead we use certain terms from the first and second order con-
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tributions to this perturbation expansion. This is a sufficient number of
terms so that the infinities present in the theory cancel exactly, but a
small enough number of terms so that the infinite series defining 7'
converges. Thus we follow standard perturbation theory (in constructing
Zy,) only far enough to obtain an exact cancellation of the infinities;
once this is done we must obtain estimates to bound the remaining
finite part (of H, @, ¢ € Dy, , for example).

The mass renormalization parameter dm? appears to agree with per-
turbation theory to all arders in the coupling constant (modulo a finite
renormalization) and the constant renormalization counter term
we use appears to agree with perturbation theory at least up to second
order.

We now try to motivate the formula (0.5). In the formal theory one
finds a unitary equivalence between H ., and H,

H.,U=UH,. (0.6)
In attempting a rigorous solution one should look for less. Our 7' gives
an approximate solution to (0.6). In fact we show that

H,T = TH, + finite terms .

The finite terms in this formula are rigorously defined unbounded ope-
rators. This formula, of course, leads to (0.5).

One thinks of states in the range of 7' as representing physical par-
ticles. If Q2 is the (free) vacuum state, then 7'(2 is an approximation to
the physical vacuum. Now V; has the effect of creating and annihilating
nucleon and antinucleon pairs, and this is responsible for the infinities
of the theory. If 72 is to approximate a physical vacuum, then 7%
is approximately an equilibrium state with respect to the creation and
annihilation of pairs. This can happen only if 7' contains a large number
of nucleon antinucleon pairs. This phenomena is known as polarization
of the vacuum. Since £ is a state with no particles at all, 7 must be an
operator which creates a large number of nucleon antinucleon pairs.
This will be the case provided the ¢ in the definition of 7' also creates
pairs. We choose for @ just the terms up to second order from perturba-
tion theory which create pairs. We could have included more terms in @,
for example the terms up to second order which annihilate pairs. However
it seems to cause essential difficulties if one attempts to put into@
terms coming from both V; and V,. In Sec. 3.1 and Sec. 3.3 we give
simple formal arguments to show how our choice of 7' permits us to
identify and cancel the infinities in the theory.

We now discuss the convergence of T'. The I"in (0.4) is not an operator
but an operation performed on the operator @. I' is approximately an
inverse to ad H, so

[Hy, I'Q]~ Q.
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(We could work with an exact inverse to ad H,, and did this in a pre-
liminary version of this paper. However the exact inverse to ad H,
presents technical difficulties which seem larger than its advantages.)
Because H, is unbounded for momenta of large magnitude, I'Q is
small relative to @ as far as large values of momenta are concerned. This
difference between I'Q and @ is very important. /'@ is an unbounded
operator with a dense domain. ¢, however, is not an operator in the strict
Hilbert space sense. It maps nonzero vectors into a function space larger
than Hilbert space. @ is essentially the operation of taking tensor pro-
ducts with some given function ¢, and § is not in L,. If ¢ € L,, ¢ = 0,
then § ® ¢ ¢ L,. I'Q is essentially a tensor product operator also, but
the associated function y§ is in L,.
In Sec. 2 we show that

1:1Q": ¢ ~n! K g .

This depends upon the fact that the interaction term ¥ is at most cubic
and contains at least one fermion. The n! comes from the symmetriza-
tion laws. If we considered a general V of order j, in the fermion fields and
of order j, in the boson fields then the n! would appearently be replaced
by
(n!)A—1+7)2
if ; < 0 and by
(n1yl2
otherwise. Thus in some sense the first fermion does not count. We give
in Sec. 2.4 some general estimates of this flavor. These estimates would
probably be useful in studying other problems.
For

T=2XnH)1: (—1Q)m:

we thus have the estimate
17 ~ (Z K)o -

Here K is large, in fact K — oo as b — 1. To deal with this, we remove
from @ and I'@ a part which contains only momenta of bounded magni-
tude. Call the remainders @, and I'Q,. It is sufficient to work with I'Q),
because the infinities are associated with the unbounded regions of
momenta. Let 7, = :exp(—1'Q,):. Our estimates give us
1: Q" ¢l ~n! K| o
1T ~ (2K ol

and K, — 0 as g — co. We choose a fixed g large enough so that K, < 1,
and we replace 7' in (0.5) by T,.

The author’s understanding of this subject has been aided by conversations
with a number of people, including K. Symanzix, P. KrisTeENsEN, D. KasTLER and
D. RueLLe. We thank W. Faris for finding a number of minor errors and misprints.
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1. The Unrenormalized Hamiltonian and the Definition of @

The Lorentz group in two dimensions is much more elementary than
the Lorentz group in four or three dimensions. The homogeneous Lorentz
is one dimensional and its identity component consists of the trans-
formations

cosha sinha
Ale) = (smha coshoc) '
This leads to notable simplifications in notation. (It may also lead to
simplifications of the mathematical difficulties, cf. [9, p. 34], but we
have not made use of this.) In particular the Dirac equation in two di-
mensions can be replaced by a scalar valued Klein Gordon equation.
Thus we construct three Hilbert spaces

D, DY, and KT

consisting of scalar valued functions of a single real variable k£ or p,
with the inner products

. 9p =" 9p =/T®) g(p) w(p)dp
(F, Ng = [Tk) g(k) u(k) dk,

where

w(p) = (wo? + PV

k) = (po? + K22
and w,, py > 0. The spaces D* and D*' are respectively the spaces of
single particle nucleons and antinucleons, while K* consists of the single

particle meson wave functions. The Fock space for our problem is the
tensor product

F=GD DY) e SK.

Here G(D* @ D"’) is the Grassmann algebra over D* @ D™, that is the
direct sum of alternating tensors of all orders from D* @ D*’. Similarly S
denotes a symmetric algebra, or the direct sum of symmetric tensors
of all orders. We introduce the annihilation operators

b(p), ¥'(p), a(k)

and their adjoints, the creation operators

b*(p), b™*(p), a*(k)

which annihilate and create nucleons, antinucleons and mesons respec-
tively. These are normalized so that

{b(p), b* (@)} = {6 (0), ' * (@)} = 6(p — @)

la(k), a* ()] = 6(k —1).

and
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Let ¢, be a state in F with exactly m mesons. If we write
Qm = Qm(kly, ..., ky) as a function of its meson variables (and we sup-
press the fermion variables) then a and a* are defined formally by the
formulas

(@) @u) By, oo k) = (k)2 m)Y2 @by, o ooy by, )
(a* (k) @r) (ks - s bpyq)
= () (m+ 1)) 5 S0k — k) @l - s By By - i)
i

To obtain a similar expression for the b’s, it is convenient to distinguish
between the nucleon and antinucleon variables. To do this we introduce
a variable £ which takes on the value -+ 1 only. We associate +1 with
nucleons and — 1 with antinucleons (so that ¢ represents nucleon,,charge’).
We denote by

g1(p, &) € (DT @ D™) ® S(K)
a single fermion state, where
(p, +1) €DT © S(KY)
@ (p, —1) €D™ ® S(K")

are the projections of ¢, onto D™ @ S(K*) and D*' ® S(K*) respectively.
Let ¢ be a state in F with exactly n fermions. We can write

@ =@(P1;8, -5 Pns &n)
if (as above) we suppress the meson variables. Then b and b* are defined
formally by

() @) (Pys &15 -« s Pais Eni)

= (w(p)—l n)l/z ‘P(I’l: &1y v s Pno1sn—1s P +1)
O* (D) @) (Prs&1s -+ Pry1s Ensg)
= (o(p) (n + D)2 (=1 =" 6(p — p;) 6(1 — ;) X

i

X ()D(pl»slr cesPio1, 815 Pyt €41y - - ) .
The expressions for &' and b'* are similar and are given by replacing
+1 by — 1. The meson field is given by (cf. [4, p. 102])

D (2) = [ &S —1®) g (k) (k)12 dk +

+ [ e 1k —u®F) gk (k) p (k)12 dk .
According to well known ideas, this expression is a distribution in the
variable x and [ @(z) f(x) d= has meaning as an unbounded operator
in Fock space F. If one admits a wider framework than Fock space, then

@ (x) is meaningful for each x. The fermion (nucleon-antinucleon) field
Y (x) is slightly more complicated. It has two components,

Y (a) = P(z), ¥2(2),

24 Commun. math, Phys., Vol. 5
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and in contrast to @, does not transform as a scalar under Lorentz trans-
formations. In the single particle spaces we introduce the representation

A(a): f(p) = f(» cosha — w (p) sinhe)
()« f(k) — f(k cosho — p (k) sinho) .

There is a unitary representation U(A) of the connected homogeneous
Lorentz group in F. It is simply the direct sum of tensor products of the
above single particle representations. The field ¥ (x) must satisfy the
transformation law ([4, p. 163, p. 305])

(6— w2 0) YA (x) %)
0 e/ P2/ (a) )
We have the formulas
Pl (z) = f et(pat—aw(p)a’) (w(p) + p>1/2 o (p) 2 b(p)dp +
[ TR (0 (p) + PP 0 (p) b5 (p) dp
P2(z) = [ @70 (0 (p) — P2 o (p) 2 b(p) dp —
— [ eTI@E=e® (0 (p) — ) o (p) 2 b ¥ (p) dp -
For the relation between this expression for ¥ and the conventional ¥

as an operator on spinor valued functions, see the appendix. We define
the adjoint fermion field by the formula

Pi(z) = P2(z)*, PL(x)*.
The inner product over the indices ¢ = 1, 2 of P! and ¥ is
YIY () = P2(z)* Pi(z) + Pl(z)* P2() .
Finally V is given by the Wick ordered integral
V= [ PV @):D()h(x)dar.

2=10

= U(A()) ¥(2) UL (A(a)) -

On Fock space this is a formal expression but not an operator. The free
Hamiltonian is

Hy = [ [b*(p) o (p) b(p) + b™*(p) w(p) V' (P)] dp +
+ [ a* (k) (k) a (k) dk
= Hof + Hob P

and the unrenormalized Hamiltonian is H = H, + V. For simplicity
we have set the coupling constant g = 1. Our results are valid for any
value of g.

Each of the fields ¥ and @ entering into the definition of ¥ can be
expressed as a sum of its positive and negative frequency components,
and this gives rise to a decomposition of ¥ into a sum of eight terms.
Two of these terms, those corresponding to fermion pair creation, are
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present in Q. In particular we let
G (D1, Do, ) = B (py + py + k) a* () b* (py) 0% (py) 12 S (py, po)
Q2 (P1s Pas k) = h(py + pp — &) a (k) b* () b'* (pg) w2 S (py, )
where % is the Fourier transform of %, w; = w(p;) and

S(py, Po) = (wy09) 2 [(w01 — P1)'/? (g + Po)'/? — (L.1)
— (g + p)V? (wg — py)*/?]
= — (0, 0q) ™2 22 (w; g — Py Py — W2 SE0(Py — Py) (1.2)
Then the (formal) operators
Q=/[qdpdp,dk (1.3)
and
Qo= [qdp dpy dk (1.4)

are these two terms from V. Whenever we have an expression such as
(1.3) or (1.4), we will call the integrand q; the operator kernel of Q,.
It will also be convenient to introduce the numerical kernel

G = h(py + py + &) 2 S (py, o) -
Thus the operator kernel ¢, is just the numerical kernel §; times theap-
propriate annihilation and creation operators.
Following FriepricHS [2] we define

Io,=[(o,+ w,+ p)qudp dpy dke.
Because of the decrease at infinity, I'Q, is better behaved than @,

and we will see without difficulty that I'Q, is an unbounded densely
defined operator. Let

I'Qy= [ (o + wy — p— i)t gy dp dp, dke
Q= — Qo l'Qy +: @ I'Qy: (1.5)
=—Qy—0-1'Q; .

The expression ), —o— I'Q, is called the attached product and is de-
fined by the equation above, see [2].

We now define the Wick product indicated by the double colon in
(1.5). A Wick product

Ry...R,:

is multilinear in the factor R,, ..., B,. Thus it is sufficient to define
the Wick product

a(ky) .. 0% (D)
This Wick product is just plus or minus the ordinary product of the same
operators, but arranged in such an order that all the creators are at the
left and all the annihilators are located to the right. The minus is chosen
if there is an odd number of interchanges of adjacent fermion operators

required to achieve this new order. Otherwise the plus is chosen.
24*
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The formal operator @, contains four fermion creators, and so it
can be expressed by an integral similar to (1.3) and (1.4). That is, there
is an operator kernel ¢,

93 = G3(Py; Pa> P3s Pa) U (Py) ™ (pg) b* (p3) b'* (py) (1.6)
and
Qy=[q3dp, dpy dpsdp, .
Let
I'Qy= [ (w0 + w4 wg+ w)) gy dp; dpy dpy dpy -

Finally we define
Q=0+ @+ Qs

rQ=r¢,+IeQ,+ Io;.
I’ is an approximate inverse to ad H,. In other words formally we have
[(Ho, I'Q1] = @, t=1or3
(Ho, I'Qy] = Qo + [ (0 + wp — pp — 1) gy dpydpy dk .
We have the following explicit formula for the numerical kernel g,
in (L.5)
@ = [ Ga(p1, P2, k) G1(Ps, Pas b) (w5 + w4 + )~ dk. (L.6)

Observe that §; is not antisymmetrical in its four variables and that
there is a decrease at infinity in the last two variables which does not
occur in the first two variables.

We now show that I'Q) is an operator. The next lemma is known and
is not hard to prove, starting from the definition of the annihilation and
creaton operators.

Lemma 1.1. Let 7 (p, k) be an L, function of j variables and let

R = [7b*(p,) ... 0 (p;,) a*(ky) ...a(ky)dpdk (L.7)
be an operator with a numerical kernel 7. Then
|B] = const. |7 [ (¥ + 1) ¢

for any state @ in the domain of (N + I)7, and the constant depends only
on j.
In this lemma, N is the number of particles operator and we assume
that the operators in the integrand of (1.7) are Wick ordered.
Lemma 1.2. Suppose 0 < 7 < 271 The following functions are in L.

(0f + ©f + p) (0 + 0 + p)1 G (1.8)
(& 0f) (X w)™ G, (1.9)
(X ofwf — wjwd) (Xw)™ s . (1.10)

1]
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Also the function
(0f + F) (0 + 0y — p —9)71 Gy (1.11)
s @n Ly on any set in which the k variable of §, is bounded.
From this lemma we see that I'Q is an operator and furthermore that

R(1,7) = [ (0] + 0f + ) (0 + 0 + p) qr dp dk
E(2,7) = [ (0] + 0f) (0, + 0y — pp — 1) 1 gy dp dk
B3, 7)= [ (2 af) (Zw) gsdp

are operators for 0 < 7 < 2-L

Proof of Lemma 1.2. The function £ is rapidly decreasing at infinity
because & is smooth. We set

N=p+ Py, E=P— Py
Then (1.8) is bounded by
(01 + wy + w)~4=2 |§,| < const. (|&] + 1)~ WA =v =2 =7 (| + k| + 1)1

for some positive y depending on 7. The constant depends only on 4,
and we see that (1.8) is in L,. The same reasoning implies

(0F + ©3) (0 + ©)7 [Go] = (@1 + wy)" =7 |Gy| =
= comst.(|§] + 1)=/A =Y u=Y2 (9] + 1)77 (| + k[ + 1)1,

so (1.12)isin L,. For k restricted to a bounded set, this shows that (1.11)
isin L,.
To show that (1.10) is in L, we have to bound

of, of, (X @) Gy
2

(1.12)

where j, = 3 or j, = 4. This function is bounded by
[ oy + @)= =D |G| (1 + wq + p)= =7 |G| dk

which is in L, by our estimates above. Since w} is bounded away from
zero, we also conclude that (1.9) is in L,.

In order to deal rigorously with the (formal) operators @ and Q;
we introduce cutoff versions of these operators. The cutoff operators will
have dense domains.

Let o = (05, 04) be a pair of positive numbers. If 5% is a fermion
annihilation or creation operator we define the cutoff operator ¥ by
the formula

b (p) {b# (®) i ol =0
0 otherwise .
We define the cutoff meson operators a, (k) and a¥ (k) similarly. Given an
operator @), , ete. depending on b* (p), ete., we define @, , to be the operator
obtained by substituting b¥ (p) for b* (p), ete. In order to obtain conver-
gence of our series for 7' (even for large values of the coupling constant)
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we also introduce the lower cutoff

Q1 = f ¢, dp, dp, dk

Inil<e

Q2o = [ qdp, dp,dk
Imil<e

Q3Q = f Q3 dp 3
Inil=e

and we consider operators @,,, etc. with a double cutoff. In the course
of our proofs we choose a large fixed value of g and we let ¢ — occ.

2. The Dressing Transformation T, and the Domain of the Renormalized
Hamiltonian

2.1. Introduction and Notation

In Sec. 2 we construct explicitly the domain P, . In Sec. 3 and Sec. 4
the renormalized Hamiltonian will be realized as a bilinear form on
Du, X Dy, We prove in Sec. 2 that D is a dense subset of Fock space
(Theorem 2.3.3). Of course the most significant part of this is that 2y,
is contained in Fock space (consists of normalized vectors) or in other
words that the power series defining the dressing transformation 7,
converges (Theorem 2.2.1 and 2.3.1).

Let D(n, K) be the set of all Fock space vectors which

a) have at most n; fermions and at most n, bosons, n; + 37, < 7,

b) are equal to zero whenever at least one of the bosons has a mo-
mentum k; with magnitude larger than K.

Let
T,=:exp(—1'Q,): (2.1.1)
@T = nLJ_K D(n, K) .

We prove that for sufficiently large p, the series for
TQ ¥, @ 6 2 T

necessarily converges to an element of F. We will pick a suitable such p
and then we define
Dy, = To(Pr N Dr2) (2.1.2)
={Typ: €Dy and |Hig| <oco}.
The Wick exponential 7' factors into a product of two ordinary

exponentials,
T=TT1T,

T, = exp(—1'Q; — I'Qy)
Ty = exp(—1'Qy)



Yukawa Coupling 355

and T, and 7,4 factor similarly. Only the first factor presents difficul-
ties and we treat it separately. The infinite series defining 7', breaks off
after a finite number of terms, and thus is trivial.

For 0 <7 <1, let

F,=F ()= [a*k) p*ak)dk +
+ [ [b*(p) b( ) + 0¥ (p) b’ (p)] w* dp .
Thus ¥, = N is the number of particles operator and as 7 - 1, F, ~ H,,.

If ¢ € F let ¢, be the n particle component of ¢. It will be convenient to
introduce the following subspaces of F, depending on 4 >0 (cf. [6]):

5(},) = exp(AN) {‘P 2 ”eM Pn “2 < OO}

9‘(2, T) = @F(r)exp(}.N) = {‘P . 2 HelnF'r(PnHz < oo} :

(2.1.3)

2.2. Properties of T,,

Theorem 2.2.1. The operators Ty, T,, and T, are invertible maps of
Dy onto Dy. They leave each subspace D (n, K) invariant and map

D(n, K)N Dg3
onto a subspace of D(n, K) which is dense in D (n, K) in the F norm. Also

im Tyo0p=Ty 0, @€Dyp.

O —> 00

im Ty, 9p=Typ, @€EDyp.

o —>00

Proof. Let K be given. In order to study
FQZQP; (P ED(?’I/, K) bl

we can limit the % integration in the definition of I'@, ¢ to the interval
[~ K, K]. This changes I'Q, but does not affect the product I'Q,¢.
However the new operator has the form of the B of Lemma 1.1 and the
kernel is in L, by Lemma 1.2. We conclude that I'Q,¢ is in F and it
is easy to see that it is also in D(n — 1, K). It follows that the power
series for

exp(£1' Q) p, @CDr

terminates after a finite number of terms and 75! = exp(I'Q,). This
proves the first statement.

Let 0 ¢ D(n, K) and let (T710), be a sequence in D(n, K) N Zn3
converging to 751 0. From Lemma 1.1 we see that I'Q, and T, are
continuous as operators from D (n, K) into F. Thus

0="T,T;16= hin T, (T316);.

The limit statements in the theorem also follow from Lemma 1.1.
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The proof of Theorem 2.2.1 also gives us
Lemma 2.2.1. Let 0 < 7 < 271 Then
R(2,7), R(2,7),, R(2,1),,
[(Ho, I'Qa0] — Q2> [Ho, I'Qap0] — Q20
define bounded operators from D (n, K) into F. Also
a]incl’o (‘R (2, T)Q - R(2, T)Qa) p=0

a]j—go([Ho’ FQ2Q - FQZQG] - ng + QZQO’) Q= 0

for @ in Dy and the convergence vs uniform if @ lies in a bounded set in
D(n, K).
This lemma is typical of a sequence of lemmas that we will prove in
Sec. 3. They will concern operators
R=[r(p k)c(p, kydpdk
and
R(O') = f T(p> k, U) C(p7 k) dp dk
where ¢ is a Wick ordered product of creation and annihilation operators
as in (1.7). We will prove

a) R(Hy + I)~% and R(0) (H, + I)~2 define bounded operators from
D(n, K) into F.

b) lim (R — R(0)) ¢ = 0 for each ¢ in Zp N P53 and the conver-
gence is uniform in ¢’s for which the vector (Hy + I)? ¢ lies in a bounded
set in D (n, K).

Theorem 2.2.2. Let R and R (o) be given as above and suppose a) and b)
Then

a') 1Ty, R: and :T,,,R(0): are defined as operators from Dp N Du}
mto F.

b’) The limit

(:TgoR — TypeR(0):) ¢ >0
holds for each @ in Dy N Dgt.

If we assume a) but not b) then the conclusion o’ ) is still valid.

Proof. It is sufficient to consider :I'Q,,™R: in place of :T,R:.
Let ¢ be a state in D(n, K) N @53 with a definite number of mesons.
Let k" denote the last m meson variables and let &’ denote the other
meson variables in ¢. If we hold k&’ fixed and regard ¢ as a function of ¥’
and the fermion variables, the result is a state §(k') in D(n, K) N Dn3
depending measurably on a parameter £''. By hypothesis R = (R0) (k')
and R(o) 0 are defined; they depend measurably on k£’. Moreover
JIRO) (R)2AE" = ¢ [ |[(Hy+ 1)* 6(k")|* dk” < c||(Hy + I)* @] (2.2.1)
and

[1(B(0) 0) (") — (RO) (k") dk" = c(0)® [ [|(Hy + 1)* 0 (k")|* d&”
< c(o) | (Hy + 11 ¢, (2.2.2)



Yukawa Coupling 357

and ¢ (o) - 0. Now the Wick product : I'Q,,™R: ¢ is obtained by applying
the m annihilation operators in I'Q,,™ to the m meson variables k"
in (R) (k'"). Our previous results do not apply since R0, as a function
of k' and its other meson variables, is not symmetric and so is not in F.
However the proofs are still correct and we can see that :I'Q,R: ¢
is a state in F. This depends upon the fact that R0 is zero if one of the
variables k; in k&’ has a magnitude greater than K. It also depends on
the L, estimates for (1.11), as in the proof of Theorem 2.2.1. Thus a’)
is proved.
To prove b’) we observe that

11 Qoo™ Rl0): ¢ — :1'Qyp B: ] =

= [ 1Quo™ (B (0) — B): @l + [ :(I'Qzos™ — I'Qa™) B ¢ -
The operators I'Q,,,™ are bounded uniformly in ¢ when restricted to states
with a bounded number of particles and with a bound on the support
of the meson variables. This depends upon the L, estimates for (1.11)
and it remains true even when the annihilators in I'Q,,™ are applied to £”’.
Thus the first term tends to zero by (2.2.2). In the same way it follows
from (2.2.1) and the convergence of the kernels in 1'Q,,, that the second
term tends to zero.

Lemma 2.2.2. Let 0 =< v < 271 and let A and p be given. Then

T9o(Dr N Dy,) CF(A,1)E(A).
Proof. Since Ty, Z7 contains only states with a finite number of
particles, the only nonobvious fact to be proved is that
T3Py N D) C Dy -
However if ¢ ¢ D5 N Dy, then ¢ € Dy, also and
Fr ng(P = F‘t eXP(—Tng)Q? = :(R(?’! T)g + Fr) eXP(—Fng)Z‘P
is in F by Lemma 2.2.1 and Theorem 2.2.2.

Remark. The same proof shows that 7,,, ¢ €#(4,17) and
F(Tyyo — Ty,) ¢ =~ 0for ¢ €Dp N Dy, .

2.3. Properties of Ty,
Theorem 2.3.1. Let A = 0 and 7 € [0, 1/2). For all sufficiently large
A and g, the power series for Ty, and T',, converge to define T, and T},,
as invertible operators from & (4,) into & (1) and from F (3, 7) wnto F (2, ).
When restricted to a subspace of F with a bounded number of particles,
Ty, and T ,, are bounded operators.
Theorem 2.3.2. Let g be sufficiently large. Then

Tlg - Tlgo -0
uniformly on any subspace of ¥ with a bounded number of particles.
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Theorem 2.3.3. Let p be sufficiently large. Then
Dy, =Ty (DpN D3
18 a dense subset of F.
Theorem 2.3.4. Let 0 < v < 1/2. Then the domain of the operator F (z)

contains Dy, . Let 0 = v < 1. Then F (t) defines a bilinear formon Dy X Dy,.
For ¢ € Dpn Dy, we have

F@ayr T,y —>F@a)?T,p.
These four theorems are based upon the following lemma, whose
proof is postponed to Sec. 2.4.
Lemma 2.3.1. Let v € [0, 1/2). Then
R(l,7), (N + D)7, R(1,7),, (N + 1)1,
R(3> T)Q (N + I)_l: R(3a T)ga (N + I)_l
are bounded operators from F into ¥, and their norms tend to zero uniformly
inoasp—>oo. Asg— oo
”(R(l’ T)go' - R(L T)g) (N + I)_IH g O
(B3, T)ps — B(3,7)g) (N + )7} - 0.
Proof of Theorem 2.3.1. We give the proof only for 7',, since the
proof for T, is identical. If ¢ €& (4’) then

lpel < const. e=**/2
and if y = 7', ¢,

lvall = 2 O @+ I'Qsf gl =

BSj+E=n

= p) [(I'Qso + I'Qgp) (N + 1)1 4]'(2;1—";)“'“‘7%“ <
MY sji+ksn jlk!

£ 2 (@t I'Qsp) (N -+ D)7 47 20 [y

B MHSj+HEksn
By Lemma 2.3.1 in the case 7 = 0,
4[(I'Qup+ I'Qsp) (N + )Y = e
for large o (depending on A’). Thus

H’/)'n”2 < const. nt 22n g— 41
and

2 & p,|2 < const. X nt 221 ¢@=¥)n
n

which is finite for A’ > A4 4 2{n2. Thus T, €& ().
If @ has at most n, particles then

Il = const. nt 22m e=¥n & g2,
%7 lall? < const. e | g]?

where the constants do not depend on ¢.
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‘We choose
> A+ 202, X >2A+2In2.

Then 7,, maps &(4,) into &(A) C&(A) and by the same estimates as
above, exp(I'Q, + 1'Q,) converges absolutely as an operator from
& (X') into & (4). Thus the power series for

exp(rng + FQ3Q) Tlg = eXP(Fng + FQ3Q) exp(_ FQIQ - FQ3Q)

converges absolutely as an operator from & (4,) into & (4). After rearrange-
ment, this series converges to I, so T, is invertible. This proves Theorem
2.3.1 as far as &' (4) is concerned.

Now suppose ¢ € F (4, 7). Then

FIT]Q(p: TIQ(R(I’T)Q+R(33 T)Q+Fr)¢ .

It follows from Lemma 2.3.1 that R(1, 7), ¢ and R(3, 1), are in & (4, — &)
for any £ > 0. Thus

(R(]-; T)Q + R(3’ r)g + Fz) P €éa(}'1 - 8)
Ty (R(1,7), + R(3,7),+ F) ¢ €6 (2) .

It follows that T, ¢ € % (4, 7) and the proof is complete.

Proof of Theorem 2.3.2. The operators I'Q;,,, etc. which we are con-
sidering contain only creation operators. Thus they commute with one
another and this enables us to use the formula

j—1

@ —b=(a—>b) 3 atbi-i-1

i=0
from commutative algebra. Let ¢ be a state in F with at most n, particles.
For brevity we let

a = (—Fngo‘ - Fquo') (N =+ I)‘l
b= (—TQ,— I'Qs,) (N + I)7?
Ifp= (T, — T4,) @, then

lwal = X2 GO7H[(@@ + DY — G + D)1 oill =
MHEI+HESn

Smollg] X Jai-p] o LERE

) —ne<jsn jing! =
j—1
< const. @] 3 & a—0b] X |a]tp]ii-t =
[ —ny<isn i=0

< const gl la—b] 5T (Sla] + 81y =

n)—nSisn

IA

const. | ] & — 8] (8]al -+ 86/~
if p is sufficiently large, so that
8laj + 8Jb[ < 1.
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If n < 4n, we have the more elementary estimate
[l < const. @] X [laf — b7 =<

= const gl fa — b (lal + [b] + D =
= const. g [ — 5]
Thus

lpl* = const. [@]?®[a — b]?
and this tends to zero as ¢ — oo, in view of Lemma 2.3.1 and the defini-
tion of @ and .

Proof of Theorem 2.3.3. From Theorems 2.2.1 and 2.3.1 we see that
T, @ is in the closure 25, of Dy, if ¢ is any state with a finite number of
particles. Let 0 be a state with a finite number of particles. It is sufficient
to prove that 6 € 27,. We choose a A such that

A> —2In 8[b| + 2In2
(b is from the proof of Theorem 2.3.2) and such that T, is defined as
an operator on & (1). We let
p=T 0cE).
If g is the projection of ¢ onto the subspace of F of states with at
most k particles, then it is sufficient to prove that

Tiop<i—~> Tiop
since T, @<y, € Dy, and T, = 0.
We have

[(Tlpse—onl= 5 ppoltilye] <

(n/4)%7’<~%il§n
< const. P (8]6]) 2t exp (— A1[2)
nH—k<ji<n

k<1
since ¢ €& (A). This is bounded by
const. 2% exp (— Ak/2) (8]|b]) /D ~* <

< const. (8b])*/* exp(k(In2 — (1/2) — In8|b])).
We note that the coefficient of k is negative and that
[Tyo(p<r — @) = const. exp(2k(ln2 — (A2) — In8]B])).

This tends to zero as k — oo, and the proof is complete.

Proof of Theorem 2.3.4. Let 7 ¢[0,1/2) and let ¢ € Drn Dpg,.
We use formulas from the proof of Theorem 2.3.1 and Lemma 2.2.2
to obtain

Frquv = FtTlgTZQ(p
— Tyo(B(L, ), + B3, 7), + ) Ty

3
=T, (‘21R(i’ 7), + F,) Top:
i=

and a similar formula with the cutoff ¢ present. By Lemmas 2.2.1 and
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2.3.1, the pair of operators
3
F,+ 3 R(i, 1),
i=1
and
3
F, + 2 Bz, T)ga
i=1
satisfy the hypotheses of Theorem 2.2.2. By the convergence in Theorems
2.2.2 and 2.3.2,
F.T,,0->F.T,p.
This proves the first statement. The remaining statements follow from
what we have proved together with the inequality

F,, < FZ.

2.4. The basic Estimates

The next theorem is an improvement on Lemma 1.1. It states that
one of the fermions can be neglected in determining the bound on R
defined by (1.7). Let N, and N, be the number of bosons and number of
fermions operators, respectively.

Theorem 2.4.1. Let R be the operator defined by (1.7). Then

|, + )=G=DI2 (N, + )72 R| < const. |r,  (24.1)
provided j; = 1. The constant depends only on j; and j,.

Proof. In the case j; = 1, j, = 0, this theorem is well known and the
proof is based upon the fact that at most one fermion may be present
in any given fermion state. We prove the theorem by induction. Suppose
71 = 2 and suppose the theorem proved for operators R depending on
7, — 1 fermions and j, = 0 bosons. We make two simplifying assumptions.
First we suppose that the fermion operator b (p,) associated with the
first variable in r is a creator. (If this is not the case, replace E by R*).
Second, we suppose that the kernel r is a continuous function with
compact support. (This assumption is permissible because it is sufficient
to prove the theorem for a sequence R, of operators with kernels r,
converging to 7 in L,.) Let

R(py) = [r(p1, gy - ) bF () .. 6% () dpy. . . dpy, .

R = [b*(p) E(py) dpy
and if ¢ is a state then
|B|* = [Ny + I R(py) @l* dpy
by the definition of the creator b*. By our induction hypothesis,
[Ny + D= DER|? = [, + =522 R(py) g|*dp, =
=< const.||@| [ ([ |r(py,.. )2 dp,...dp;) dpy =
= const. |¢]? 7|

Then
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This completes the induction and the theorem is proved whenever j,=0.
We use a similar induction on j, and thereby prove the theorem in general.

Remarks. Let E be a measurable subset of the real numbers. Let
N;(E) be the operator which measures the number of fermions with
momenta in E. If R creates or annihilates one fermion with momenta
definitely in E (that is, if there is a j, such that r(k, p) = 0 whenever
;, ¢ B) then one of the factors (I, + I)~%2 in (2.4.1) may be replaced
by the factor (N,(Z) + I)~%2 If another fermion in R has momenta
definitely in a set F then another factor (N, + I)~%/% may be replaced
by (N, (F) + I)~%2, ete. If R has at least one fermion creator then N,+ I
in (2.4.1) may be replaced by N;. If the creator has momentum definitely
in B then (N,(E)+ I)~Y/2 may be replaced by N,(E)~Y2. If R has at
least one fermion annihilator then (N, + I)~%—1D/2 R may be replaced
by RN—G:=DI2 in (2.4.1). The operator Nf-(?'1~1)l2 is only defined on the
orthogonal complement of the zero fermion states. Similar considera-
tions apply to the operator N, in (2.4.1). Next we describe a circumstance
in which we can ignore two fermions. Suppose r factors into a product,
r = st, where s and ¢ depend on distinet variables and suppose s and ¢
cach depend on at least one fermion variable. Then

(N + D=2 (N, 4 I) 742 R| = const. [r[, .

This inequality follows directly from (2.4.1).

The next result is known.

Theorem 2.4.2. Suppose the kernel r of the operator R is a smooth
function with compact support .Then (N, + I)7%/2 R is a bounded ope-
rator. The bound can be estimated by the diameter of the support of r and
by the L, norms of r and a finite number of its dertvatives.

Outline of proof. First suppose j, = 0. Choose a suitable orthonormal
basis {e;} of L,. (For example, and exponential (27)-%/2exp (ink)
times the characteristic function of a periodic interval 2am < k <
=< 2z (m + 1) would be a suitable ¢;). We expand r as a sum of tensor
products of basis elements,

is finite, and this quantity provides a bound for |R|.

Next suppose j, > 0 and use induction on j, as in the proof of Theorem
2.4.1.

We say that an operator B is infinitely small with respect to a positive
operator A if for each ¢ > 0 there is a K = K (¢) such that

l(w, By)| = (y, (¢4 + KI)y) (24.2)
for all y in the domain of A41/2,
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Corollary. Suppose j; =< 2 and j, < 1 and suppose that r € Ly. Then
R is infinitely small with respect to N.

Proof. We can find a smooth function r, with compact support such
that

[r—role = .

Let R, be the operator with kernel r,. Then
By = Ky (N, + ) =

SeNy,+I1)+erK31

by Theorem 2.4.2 and
R — R, < const. ¢(N + I)

by Theorem 2.4.1. The constant depends only on 4, and this completes
the proof.

The operators we will deal with do not all have L, kernels and so
the theorems we have proved will not be strong enough. The kernels
fail to be in L, due to an insufficiently rapid decrease for large momenta.
The operator F, is much larger than N when the momenta are large, and
S0 we can obtain better estimates if we dominate B by powers of F,
instead of dominating it by powers of NV. Let F,, be the boson part of F, .

Lemma 2.4.1. Let R (k,) be a bounded operator depending continuously

©n the norm topology on the variable k,. Let R( . ) have compact support and
let

R = [ a*(k,) R(k,) dk, .
Then
[y + D)7 R < [|B(ky)|? dky (2.4.3)
[Py + DR R = [l IRA)P A (244)
[(Fep + D)7V (Ny + DR < [ p(ly)~ 2[Rk dley . (2:4.5)

Proof. The first inequality is elementary and was used in the proof
of Theorem 2.4.1. We omit the proof. To prove the second inequality, let

R(A4) = [ a* (k) R(k) dk
A
Foo(d) = [ pld) a* (&) a(l) d

Let {4,, 4,, ...} be a partition of the real numbers into disjoint mea-
surable sets. Then

[, Ro)|= 2" |(, B(4;) )| =
< S I(F (A + TPy [(Fon(dy) + T35 RO gl =
= (S I + Dyl 3 I(Pun(4)) + Iy (A2 gl
< + D] (Z 1ol + DI RANEYR gl
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If we substitute (¥, + I)~}/2y for y we can conclude that
[(Fzy + DRI < X (Fry(4y) + D)2 R(A)]2
i

Let

Mg = klgﬁj/‘(k) .
Then

I(Fep + D72 R[ = X g~ (N3 (Ay) + D)7/ R(A)]*
7

At this point we use a refined form of the first inequality:
[(No () + D72 R(A)* = [ IR db

Thus
[(Fep + 1) R < ZM*f’Af | B (k)2 dE .
j 3

As the mesh length goes to zero, we obtain
|(Fep + DR < [ = |R(R)|* Ak .
To prove the third inequality we note that

3 ey = e ( b u(km)m .
] i=1

=1
Thus F /gy, < F,p Y2NY2% and the left hand side of (2.4.5) is bounded
by | (F /9y + I)~? B||? and so (2.4.5) follows from (2.4.4).

By passing to adjoints we can estimate [ R (k) a (k) dk. We can obtain
similar bounds for fermion operators [b* (p) R(p) dp and their adjoints.
If R(.) has support contained in a set £ then (N, + I)~Y/2 or (¥, -+ I)~1/?
can be replaced by (N, (E) + I)"1/2 or by (F,,(E) + I)~¥2

We return to the operator R of Theorem 2.4.1. We divide the variables
of r into three disjoint sets, 4, B, and C. Let the variables k; and p;
in C be associated only with creators, let the variables k; and p; in 4
be associated only with annihilation operators, and let the variables
in B be either creation or annihilation variables. Let |4| be the number
of variables in 4, etc. Let B4 = w(p;) u(k) ... be the product of the
energies of the variables in 4. Let E be defined similarly.

Theorem 2.4.3. Suppose B contains at least one fermion variable. Then
|(F, + I)~I°2 R(F, + D)~H4I2(N + I)=(BI-DE2| (2.4.6)

< const. |B 42 B2 1|,
and
|(F, + I)=10U R(F, 1 I)=I4lt (N 1 [)~BI=D—(4]+|Chi4] (2.4.7)
< const. |[E 4~ Eg="/tr|,.

The constants depend only on the number of variables in r.
Proof. We proceed by induction on |4| + |C|. If |4| + |C] =0 we
are in the case of Theorem 2.4.1. Suppose |4| + |C| > 0 and suppose for
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example that |C] > 0 and that one of the variables in C is k,, a meson
variable. The operator on the left side of (2.4.6) can be written

(Fo 4 D72 [ a* (ky) P (ky) dley
where
R = [a*R(k)) dk,
as in the proof of Theorem 2.4.1 and
Pl = (F, + T + (k) (OFDR R (ky) (F, + Iy MU (N + Iy(B-DE2,
Now
e+ DR (F, + I+ p(l)) ] =1,
so our induction hypothesis implies that
[P (k|2 < const. [yt (k) B4~ B¢ |r(ky, .. )|dky. .. .

Assume that the kernel r of R is continuous with compact support. Then
the hypothesis of Lemma 2.4.1 is satisfied, and so

I(F, + )12 [ a* (k) P (k) dly|® < const. [ B~ By~ |r2dk, dk, . . ..

The case of a general kernel follows from the case of a continuous kernel
with compact support by limits. This proves (2.4.6). The proof of (2.4.7)
is similar.

Remarks. There are some obvious refinements in this theorem. We
may replace some of the factors (¥, 4 I)~%/% by boson operators (¥, ,+ I)~1/2
and we may replace some by fermion operators (I, , + 1)~1/2 .If certain
particles are created or annihilated only with momenta in some set £
then we can replace the corresponding operators (#, + I)~%% by the
operators (F,(E) + I)~4/2. If the kernel r factors into a product, » = st,
and if s and ¢ depend upon distinct variables and if each factor con-
tributes a fermion to B then one of the factors (N; 4 I)~Y/2 in (2.4.6)
and (2.4.7) may be omitted. This does not follow from the theorem but
is proved by induction, as the theorem was.

To illustrate what this theorem means, we list the three special
cases which arise from a trilinear boson fermion coupling.

Case 1. R = [ ra* (k) b*(p,) b'* (py) dk dp, dp,

Case 2. R = [ ra(k)b*(p,) b *(p,) dk dp, dp,

Case 3. R = [ ra*(k)b*(p,) b(p,y) dk dp, dp,

Corollary. Suppose

Casel. u=2r € Ly or w,~"%r € Ly or w,~"2r € L,

Case 2. p="? w2 r € L, or u="2 wy,="%r € Ly

Case 3. u="1? wy "2 r € Ly .

Then R is infinitely small with respect to F.

Remark. The restrictions on r in case 1 are the strongest, and the re-
normalization associated with this term is the most likely to be infinite.
25 Commun. math. Phys., Vol. 5
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Proof. We consider only case 3. We find a smooth function r, with
compact support such that

L1 = (r — ro)| s < & .

If R, is the operator with kernel 7, then R, is infinitely small with respect
to I, by the corollary to Theorem 2.4.2. Also

|F, + I)"Y2(R — Ry) (F, + I)"1/?] < const e .
Thus

[(w, (R — Ry) w)| < const. e|(F, + I)72 p|2 <

< const. e(y, (F, + I)y) .
This completes the proof in case 3. The remaining cases are similar.
Proof of Lemma 2.3.1. The assertions concerning R (1, 7) follow from
Theorem 2.4.1 and Lemma 1.2. The treatment of R(3,7) will also be
based on Theorem 2.4.1. Because we need to be able to neglect the effect
of two fermions in R (3, 7) instead of the one allowed by Theorem 2.4.1,
the reduction is now more complicated. Let
r= (20} (X 0)™ (05 + g+ u) §a(P1, o k) G1(P5, Ps F) -
Then
S P dp)?dk < [0y + @) =@ Goflp | (w5 + @y + )7 Gl
and the norms on the right are finite. (See Lemma 1.2 and its proof.)
Thus for almost every £,
R (k) = [ r(p, k) b* (py) 0" (py) b* (ps) b'* (ps) dp
defines an operator on F (Lemma 1.1) and
R(3,7)= [ R(k)dk

IBB,7) (N + D7 = [|R(E) (N + 1) dk.
There is a similar inequality between the cutoff operators R (3, 7),
and R (3, 7),, and the corresponding k dependent operators R(k), and
R(k),s-

Bgecause of the factor ( P wg), the kernel #( . , k)is a sum of four terms.

3
Except for the factor ( P wi)—l, each term splits into two factors, the
i

first depending only on p; and p, and the second depending only on p,
and p,. Let f; be the characteristic function of the interval [jwg, (7 + 1) w,).
Let

0,0 = wy + Wy — jW,

0® = @, + wy + jwg .
Then

oo

(& o) = ] ;{05 + @) (09 + 0;0)7

7=1

=2 fi(w3 4+ @) (0D)="=1(— ;)™ .

jm
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We substitute this in one of the four terms contributing to (., k)

and we obtain infinite series 3 r;,,( ., k). Furthermore each term in
im
this series factors,

Tim(f’» k) = s:im(ph P2 k) tim(pm Ps> k) .
Where f;(ws + wy) =+ 0 we have |§;w(0¥)"1| < 2-1 and so

[ il dple = 2 3 (f [ryoft dpe.

im j

We assert that
2 (Nrio(p, B)2 dp)* dk
j
is finite. By Theorem 2.4.1, we then conclude that
JIB (&) (N + )7 dk

is finite. We have a similar inequality for R(k), and R (k),, and this tells
us the operators

R@B,7), N+ D)7t R(3,7)0 (N + I)7?

of Lemma 2.3.1 are bounded. The difference between these operators
and their limits (as p — co or ¢ — oc) can be estimated by the same argu-
ment. For example

1B(3, T)ga (N + I)7H| + [R(3, 7) (N + 1)~
is bounded by a finite sum of terms like
f ( [ (o k)2 dp) /2 k.

|pil>e

This term tends to zero uniformly in ¢ by the Lebesgue dominated con-
vergence theorem. Thus the lemma will follow from this assertion.
The integral we asserted to be finite is bounded by

X (@) HE i) (w5 + o+ )72 Bl |1 dp)dk =
j=
= (f (0 + @)t |Gol? dpy dpy dR)E X
X Z(f jo) " (ws + g + @)Y f; @] dps dpy A2

for some positive » depending on 7. The first integral is finite. (See the
proof of Lemma 1.2.) Thus the above quantity is bounded by

const. { 7} £ oy + o4+ -0y e =
=1 =1

= const. [[(ws + @, + @)= N2 G|,
and this is finite by Lemma 1.2,
25¢
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3. The Definition of H,,, (Beginning)

3.1. Introduction

In Sec. 3 and Sec. 4 we define H,,. In Sec. 3 we show that
H, (=H,, — V) is an operator on the dense domain Py constructed
in Sec. 2. This means that if ¢ € Py then H;y can be defined and
is in F. The definition of H; is the main step in defining H.,. The
reason for this is that H; contains all of the infinite renormalizations
in this model. (The fermion mass renormalization, which is associated
with V,, is finite, and we omit it entirely.) In addition to defining H,y
we show that our definition agrees with a limit of cutoff renormalized
operators H,,. For ¢ ¢ D we set

Yo = Toogp
and we recall that in Sec. 2 we showed
Jim oy, =y
exists (and equals T, ). We will show
lim Hy,p, = Hyy.

g —>Q

Thus the quadratic forms converge,

(WG: Hlo 1/)6) g (1/)’ HIW) .

It will follow from this that H, is a symmetric operator.
In Sec. 3.2 we choose the finite ¢-dependent renormalization terms
L (o) for the cutoff operator H,,. Then

H,=H,+ Vs + L(o) .
We will see that
HO TQU = Tgo' HO - Tlgu :Qeo TZQG: + Tlgo :(ngu - [Hm FQZQO’]) TZQO':

We depend upon a formula of FriepricHs [2] which gives P(c) and
P (0) for which
Vlcr TQO' = L1960 :P(G) nga:
L(o) Tyo = T, :P (o) Topo: -

Qo

This formula will be given in Sec. 3.3. To define H, as the limit of the
H,, we add these formulas and obtain

Hl Tgcx = TgaH0+ Tlgo': (- Q96+P(G)+P’(G)+QZQG‘ [HO’ I’Q2ga]) TZQG:

The last two terms in the parenthesis have a sum which approaches a
limit (Lemma 2.2.1). It only remains to show

—Qps + P(0) + P(o) (3.1.1)
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approaches a limit as ¢ — co. None of the three termsin (3.1.1) approaches
a limit as o0 — oo and so we must take advantage of cancellations to find
a limit for the sum. These cancellations, of course, are the well known
infinite cancellations of Quantum Field Theory (in so far as they are
present in the model we consider). These cancellations are performed in
Sec. 3.5 and Sec. 3.6. There are two reasons why the limit P (cc) of the
P (0)’s does not exist. One portion of P (co) maps vectors in F into func-
tions which are not in L,, due to the fact that they decrease too slowly
at infinity. This part of P(cc) is cancelled by —@,. Another part of
P(cc) can be described loosely as in integral operator with a kernel
identically equal to plus infinity. This part of P (co) is cancelled by P (cc).

3.2. Definition of H,,

We now give the definition of a cutoff version, H ,, of our operator H, .
This can be done directly because the renormalizations in H,, are finite.
We set

Hyy=Hy+ Vig+ 0m2 [ D, (x)2: h(z)2da + ¢, 1 . (3.2.1)
Here dm, and ¢, are the positive constants defined by the equations
dm2 = 41n(20, + 1) (3.2.2)
el = Vig—0— @iy - (3.2.3)
2,1

The meaning of the symbol on the right side of (3.2.3) will be explained
in Sec. 3.3 and does not concern us now.
Theorem 3.2.1. H,, 4s a symmetric operator on the dense domain
D, defined by
Dy = Ty (D N Zy,)
and

HO qua(p = Tga HO + qua('—QQG + ngo - [H()a Fngc]) ngo'(P (324’)
for ¢ € Dpn\ Dy,.

Proof. The results of Sec. 2 imply absolute convergence of the power
series and so we may compute term by term. We get

[HO? Teo'](p = [Ho ) Tlga] nga?ﬁ + Tlgo'[H()f TZea]q)
= Tlgcr[HO’ TQQG] TZQU(P )

and this gives us (3.2.4). The operator V,, has an L, krenel, so 7,
is an operator on the domain of N%2, and V,, is defined on Py . We
compute the kernel of
[ i@ (x)?: h(z)2 de . (3.2.5)
Let
@a(k) = au(k) + aa* (— k) .
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Then (3.2.5) equals
J h(@)? Dy (k) D, (l): eiE+De (4 (k) p(l)) Y2 da dk dl
=[(h*h)(—k—1) :D, (k) Dy (1): (u(k) p())2dk dl.
The kernel is in L,. (This is independent of the momentum cutoff ¢ on
the field @,.) Thus (3.2.5) is an operator defined on Py and on Py,
for ¢ < oo.
3.3. Diagrams and Attached Products

We use diagrams in the sense of FRIEDRICHS [2] to express operators.
A diagram with [ solid legs pointing to the left and m pointing to the
right denotes an operator which annihilates m nucleons or antinucleons
and creates [ of them. Similarly the dotted lines denote boson annihila-
tors and boson creators. The diagram then represents an operator such
as (1.7), that is the integral of a function times the Wick ordered product
of the annihilation and creation operators indicated by the diagram.
The function is the numerical kernel of the operator and we see that the
operator is uniquely determined by its numerical kernel together with

D D ..........

Qs Q.
Fig. 1
its diagram. For example @, and @, have diagrams given by Fig. 1.
The product RS of two such operators R and S does not have the same
form since the annihilation operators in R follow the creation operators
in §. However by use of commutation (or anticommutation) relations
we can replace a(k)a* (k') by a*(k')a(k) + 6(k — k') (for example).
After a number of such replacements, the product RS is expressed as a
sum of terms of the form (1.7). In each term a certain number ¢, of the
pairs a (k) a* (k") have been replaced by a §(k — k') and a certain number
¢; of the fermion pairs b(p;) b*(p,) or b’ (p,) b’ * (p,) have been replaced
by d(p; — p,). We denote this term by the symbol
R —o0- 8
R

and call it the contribution to the product with ¢; fermion contractions
and ¢, boson contractions. We associate a diagram to this operator. It
is the diagram obtained by joining ¢, of the annihilating fermion legs

P P — =

of R each with a creating fermion leg of S, and similarly connecting c,
of the boson legs. That is, the legs corresponding to contracted pairs are
joined. Thus — @), is given by Fig. 2.
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Following FrIEDRICHS [2] we define a connected product

P+ R ...R,:
to be the sum of all contributions to the ordinary product
P:R,...R,:

in which at least one creating leg from each factor E; is contracted with
an annihilating leg from P. If n = 0, we define the connected product to
be P. In particular we will be concerned with

Vo= :1'Q.: .

Since V, has only three legs, this connected product is zero if » = 4.
Of basic importance to us is Friedrichs’ formula [2]

", =n,§0(—1)” ()7 (Vi< 1 TQr) Ty
In our case this reduces to
Vily=T:(Vi—=Vi—0-T'Q,+ 27V, < : I'Q2: — 671V, < :1'Q2:) Ty,:
(3.3.1)
The quantity in the parenthesis is the limit P(c0) of the term P(o) of

(8.1.1). Let 4, be the cutoff boson mass renormalization counterterm

proportional to (3.2.5). Friedrichs’ formula also tells us an expression
for

(Agt D) Tyo=T1po:(co I+ Ag—As 0= T'Qpy + 271 A= : I'Qp0%:) Typs: -
(3.3.2)
The quantity in the parentheses is the term P (o) of (3.1.1).

Since the right sides of these formulas (3.3.1) and (3.3.2) appear con-
siderably more complicated than the left sides, we explain why the for-
mulas are useful. The formulas express an ordinary product (of an operator
times a Wick exponential) as a sum of terms, each one of which is Wick
ordered. Thus each term has the form of the operator R of (1.7). Such
an operator causes trouble only when the kernel r is bad. Thus the
infinities appear in the kernels of certain terms in the parentheses in
(3.3.1) and (3.3.2). It is easy to identify the infinite terms and to pair
them together in such a way that the infinities cancel. For example the

key cancellation of the theory involves the boson mass renormalization
and occurs in the sum

Aren(o') = Au - Vlgd —200‘ (Fnga + Fnga) .

In Sec. 3.5 we show that 4., (o) has a finite limit as o — oo.

We now give Friedrichs’ formal derivation of his formula. Any pro-
duct V:G@": can be written as a sum of those contributions in which
V is contracted with j of the factors of: G”:, letting j run from 0 to =.
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The contribution with j factors contracted is
(;Z) (V< :67:)Gr—1:
since there are n!fj!(n — 5)! choices of the j factors. Thus
V.gr: =} (TL):(VL @) Gri:
Y,
and
Viet: = X(n)1V: G
=2X(n—HNGH1 (V< :G7:) Gr—i:
= 2NV + :G7:) (:e¥2):
= (V< %) (:e%):.

3.4. Convergent Contributions to H,

The formula (3.3.1) is formal and it contains divergent integrals,
i.e. infinities. The next lemma deals with those contributions to (3.3.1)
which are not divergent.

Lemma 3.4.1. Let R (o) be any one of the following operators and let R
be the corresponding operator obtained by omiiting the cutoff o. Then
hypotheses a) and b) of Theorem 2.2.2 are satisfied.

=671 Vo< 1 17Qp%: (3.4.1)

20 V= (T Qugo + T'Qaeo)?: — 4, (3.4.2)
271 Vo= 1 1Qg,0% (3.4.3)
Vie = (I'Qupe + ['Qago) Q306 — B (3.44)
Va0 Tage + O, (3.4.5)

—Vie=0=1I'Qps — Vio —0—I'Q,s . (3.4.6)
1,0 1,1

Definition of 4 and 4,, B and B,, C and C,. The quantities 4, B
and C are infinite quantities given by certain terms which contribute to
271V, <« (I'Qy, + I'Qy,)%:, etc. The difference

271V, « Qi — A
(for example) is defined as the sum of all terms contributing to the first
part 21 V; < :I'Q,?: which do not contribute to the second part, 4.
The terms contributing to A, B and C are expressed by the diagrams in
Fig. 3. 4,, B, and O, are obtained by replacing V; by V,, and @,
by @,, in these diagrams, the integrals involved in defining 4, etec. are
finite and 4,, etc. are operators (Lemma 1.1). A could equivalently be
defined by the formula

A = (Vy-0-T10Q,) —o— (I'Qy, + I'Qy,) . (3.4.7)
0,1

2,0

Ly
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.............

This has only a formal interpretation, but the corresponding formula

A5 = (Vi —Ool— I'Q45) —2%— (I'Q1p6 + I'Qs40) (3.4.8)

has a rigorous meaning. To get a similar description of B and C, we must
work with the definition (1.6) of the kernel of @;. Both B and C consist
of all terms in which both fremion legs from @,, (as part of I'Q;,) are
contracted with V;. In other words, in the B and C terms, the variables
p, and p, of I'Q, are contracted with V,. Now B, has a simple definition
in terms of C;,

B, = 0y —0-I'Qy 40 (3.4.9)

0,1

but €, cannot be expressed as an attached product of ¥ and the I'Q;.
Thus we write out the integral defining C,.

Co=— [ b*(p,)b"* (o) [a* (k) G (', 1", k) + 0 (k) G1o (P, 0", K)] X
X (0" + 0" 4+ w0, + w) (0 + vy + p(l)™ X
X Qan(p,’ p”: l) qlgd(pl’ Pz, l) dp dk dl . (34-10)

Proof of Lemma 3.4.1. Only the fermion pair annihilation terms from
V, enter in these attached products. Except for five terms (certain
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contributions to (3.4.2) and (3.4.4) and all of (3.4.6)) both fermion legs
from ¥, are contracted and they are contracted either with distinct
factors of :I'Q,%: or of : I'Q,%: or else with two variables of I'Q,, and in
this case the variables are not both from @,,. We multiply and divide
by w?, 1/4 < T < 1/2, in each of the integrals corresponding to the fermion
contractions in (3.4.1)—(3.4.5). We multiply the I'@, factor by w (p;)*
and divide the V factor by w(p;)?, where p; is the variable in question.
The result does not change the products (3.4.1)—(3.4.5) but V; is re-
placed by an operator W with a kernel w bounded by

const. (k)09 ¢  (3) 7 @ (pa) " (| & + By + po | + 1)=0 2,

¢ = (vt — (1/4))/2 > 0. Along rays through the origin this function is
bounded by const. (o + 1)~ @/»—¢, Here p is the distance from the origin
and the constant depends upon the ray. However the constant is in L,
on spheres, so w is in L,. The factor from I'@, is also replaced by a new
operator and the new operator has a domain containing Z,. To see
this we consider several cases. I'Q,, is replaced by an operator whose
kernel is bounded by the magnitude of the kernel of R(1,7), and this
was shown to be in L,. When restricted to a fixed subspace D(n, K),
I'Q,, is replaced by an operator with an L, kernel. (See formula (1.11)
of Lemma 1.2.) I'Q,, is replaced by an operator whose kernel is bounded
by the L, function (1.10). Thus the new kernels are all in L, and the
assertions a) and b) now follow from Lemma 1.1.

The exceptional terms can be treated by a similar argument. Here
we make use of the fact that ¢ € 5 . Thus if ¢ is multiplied by w (p;),
the resulting state has a finite norm. (w(p;) @ is in L,, but is not anti-
symmetric in the p’s.) This completes the proof.

The fermion pair creation part of V; is @, + @, and the fermion
pair annihilation part of V; is V; — @, — @,. The latter also gives a
convergent contribution to (3.3.1).

Lemma 3.4.2. Let

R(O) = Vl - Qloo’ - [Ho, FQZQG]
R=V,— @, — [Hy, I'Qy,] .
Then hypotheses a) and b) of Theorem 2.2.2. are satisfied.
Proof. By Lemma 2.2.1 we can replace the commutators [H,, I'Qq,,]
and [Hy, I'Qq,] by Qgp and @, respectively. The operators ¢; — @,
and @, — @,, have integrands which vanish for large fermion momenta,

and it is not hard to see that the integrands are in L, . In view of Lemma 1.1
it is sufficient to consider

Rl(g) = VIG - Qla - QZD’
B=V,-Q — Q.
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The fermion operators in R’ and R'(¢) are annihilators. Thus we can
multiply and divide by w (p;), ¢+ = 1, 2 in the products R’ ¢ and R’(0) ¢,
where ¢ € D(n, K) N 2g3. This is equivalent to replacing R’ by an opera-
tor with a kernel in L,. (See formula (1.12) from the proof of Lemma 1.2.)
Also the state ¢ is replaced by an unsymmetrized state @ and

1§] < |(Ho+ 1) ¢f < o0.

Thus R(H,+ I)~2 is a bounded operator from D(n, K) N Qg3 into F,
and the same estimates show that R’(¢) — R’ tends to zero as ¢ — oo,
as required by b).

The same argument proves

Lemma 3.4.3. Let

-R(G) = - Vld —ol_' FQIQG - Q3Q0
0,
R=—-V,-0-1Q,,— @, -
0,1
Then hypotheses a) and b) of Theorem 2.2.2 are satisfied.

3.5. The Divergent Boson Self Energy Contribution to H,
Let D,, be the operator
Dgo = Vlo‘ —O— (Fnga + FQZQJ)
2,0
and let A, be the cutoff boson mass renormalization counterterm in
(3.2.1). If the cutoff ¢ is removed from either of these operators, an in-
finite expression is obtained which does not define an operator. None-
theless their difference
Aren = A4~ Dg
can be defined as a limit of cutoff differences
Aren(0) = 45 — Dgc .

Lemma 3.5.1. Let R(c) denote one of the operators

Aren(0) (3.5.1)

Aren (0) —0— FQleg (3.5.2)
0,1

Aren (0) —0—: I'Qy 6% (3.5.3)
0,2

Then the limit R exists and hypotheses a) and b) of Theorem 2.2.2 are
satisfied. In (3.5.2) and (3.5.3) the limit can be evaluated by removing the
cutoff,

lim Aren (G) —0— Fnga = Aren —0— Fng
g 0,1 0,1

lim Agen (0) 0= I'Q1o®t = Aren —0—: ['Qy %1,
c 0.2 0,2

with strong limits on Dy.
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Proof. Ayep(o) divides naturally into a sum of four terms and each
of the terms has the form of (1.7) with an L, kernel. These kernels, of
course, depend on ¢, and as ¢ — oo we will prove that they converge in L,
to limits. All the statements of the lemma follow directly from this
convergence, with the help of the Lemma 1.1. The limits of the kernels
permit us to define the operator A,,. The limits are the kernels of four
operators whose sum is 4., :

The proof that the kernels converge is complicated by the fact that
we consider several different regions of integration and that we use
different estimates to obtain convergence in each region. If 2 is a meas-
urable set in Euclidean four space E*, we define

A, Q) =4 [ h(p—Dh(—=n—k) :D,(k) D,y (l):
(p.k,1)ER
[é]=20r
(L [E) (u(k) ()2 dp dk dl .
We have A,(E%) = A, because
91y d& = dp, dpy = dp
and
20f

Omy=4In2o,+1)=2 [ (1 + |&))1dE&.
—20
We also define
Do) = | Yoo B = D h(—n — k) : D, (k) x

as (1) @*s(—1)
X (w1+wz_ w—1 + 0, + W, + p

): (k) )2 Sy, o dp ke

where y,, is the fermion cutoff function, 4 = () and S is given by (1.1)
and (1.2). Here also we have D,,(£%) = D,,.

The expansion of 4, as a sum of four terms comes from substituting
the definitions

Dy (k) = ay(k) + a3 (—k); D;(l) = a;() + a5 (—1)

in our formula for 4,. In the same way we have D,, and 4,,, (o) written
as a sum of four terms. When p = 0 in D,,(£2), the lower or o cutoff
is missing entirely. We call this operator D, (£2).

We introduce the region

Z={(p, P, k. D)2 |E] = 2 9]} .

We will prove that D,(~2) and 4,(~ %) each have limits as ¢ — oc.
Thus the infinite mass renormalization is associated with the region 2.
We also introduce the region A, defined by the equation

loy + @y — g — 3] = po.
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We prove the convergence of the kernels in a sequence of lemmas.
These lemmas will thus prove Lemma 3.5.1.

Lemma 3.5.2. The kernels of D,(Ag/g) converge to a limit in Ly as o — oo.

Proof. The second and fourth quadrants of the p,, p, plane contribute
to the kernels of D, (A4/) functions bounded by the function

const. ([l + I + 1) p(B)2 p @ [ (I — 1| + 1)2dy,  (354)

which is in L, and does not depend on ¢. In the first and third quadrants
of the p;, p, plane we use the bound

S2 < const. (0,71 + wy™1)?. (3.5.5)

These two quadrants contribute to the kernels of D,(A,/) functions
bounded by the function

21
const. (|k 4 1] + 1)~ (k)2 u(l) 8 [ wldw, (3.5.6)

which is in L, and does not depend on ¢. For fixed /, the definition of A4/
puts a bound on the magnitude of the p, which enter into D,(Ayy).
Thus for fixed [, the kernels are independent of ¢ if ¢ is large. The lemma
now follows from the Lebesgue bounded convergence theorem
Lemma 3.5.3. The kernels of D,(A3/,) converge to a limit in Ly as o —> co.
Proof. We can work in the complement to A4/ and thus we can use
the estimate

log + wp — pp — 3|7t = p38 .

The second and fourth quadrants of the p;, p, plane contribute to the
kernels of D,(A;/,) functions bounded by (3.5.4) and the first and third
quadrants contribute functions bounded by (3.5.6). The kernels converge
pointwise (for fixed k£ and ) as before and the lemma follows from the
bounded convergence theorem.

Lemma 3.5.4. The kernels of D,(~2) converge to a limit in L, as
O —> 0.

Proof. We work in ~A,;, and thus we use the estimate
|y + wy — o — 1|71 £ p3* < const. (g + wy) 4.

We introduce the cone 2’ defined by the inequality || = 2 |&|. The
kernels of Dy(2" ~ Ag,) are bounded by

const. (|k+ 1] + 1)7* (u (k) w()~Y2 [ (w; + wy)"2~CM dp.
(We have used (3.5.5).) On the complement of 2",
(wy + wy)~%* < const. (|&] + 1)=%/4.
Thus the kernels of D,(~ (X v 2" U Ay,)) are bounded by
const. ([k + 7] + 1)1 g (k)12 o (1)1 11 (3.5.7)
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where
2|7
M= [pu®)=B(—n+1+1)2 2fH (€] + 1)t dEdn =
—2n

< const. [ ()= [t (|—n + 1| + 1)~2dy
is bounded independently of /. The kernels converge pointwise and the
lemma is proved.
It is easy to prove that the kernels of D,, — D, converge.
Lemma 3.5.5. The kernels of As(~2) converge to a limit in L, as
g —> oo,
Proof. The kernels are bounded by a function of the form (3.5.7)
where
2|n]
M= O (= + U+ 107 (€ + 17 e d
—ain
is bounded independently of /. The kernels converge pointwise and the
lemma is proved.
Lemma 3.5.6. The kernels of A,(X N Ay,) converge in Ly, as ¢ — .
Proof. The kernels are bounded by a function of the form (3.5.7)
where

2n
M=[u)y®B(=n+]+1)72[ (& +1)"dédy.
—2u

The cutoffs in A, and in D, are defined differently. Before comparing
these two operators, we eliminate this difference. Let £, be the region

{lpml = 0; or |pof=z0fn 2.
Lemma 3.5.7. The kernels of A,(£,) converge in L, as o — co.
Proof. The kernels are bounded by (3.5.7) where

20;
M= [ |—q+1 f’|<tsl+1>—1dsdng

|n| s or 20r—|n

2
< const. In ( o
20',—‘ G'f

since |n| < 271 |&] in 2,. For fixed 7, the integrals

201
J (& +1)1dé
20— |n]
converge to zero and this implies that the kernels converge pointwise.
Lemma 3.5.8. The kernels of
Ag(E ~ (A4 v 25)) — Do(E ~ Ayyy)
converge in Ly as ¢ — oo.
Proof. In X' ~ Ay, we have
|4 — 82| < const. (|&] + 1)-2
(1] + 17" — (@; + wq + p)[~" = const. g% ([£] + 1)~%4
(€] + 17 = (01 + 0y — p — )7 = const. p(|&]+ 1)~ (@ + wg— p)
< const. u3/8 (|| + 1)-5/4.

) = const.
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Thus the kernels are bounded by (3.5.7) where
M= [(=n+U+ 12 (& + 1) dédy.
This completes the proof of Lemma 3.5.8 and Lemma 3.5.1.

3.6. The Self Energy as a Divergent Internal Line in Other Diagrams
We show that the infinities cancel in the sums

~A—0-TQ,—C+A=E (3.6.1)
0,1
214 —o-T'Q, 2+ B=F. (3.6.2)
0,2

To this end we define the sums
E,=—4,-0-I'Qe — Oy + A,
0,1

Fo=2"1A,-0-I'Q,0* + B,.
0,2

These sums are well defined, but the expressions (3.6.1) and (3.6.2)
for £ and F have only a formal meaning.

Lemma 3.6.1. There are operators B and F with the following property.
The pair B, E, and the pair F, F, each satisfy the hypotheses of Theorem
2.2.2.

Proof. In view of Lemma 3.5.1 we can replace 4 by D in the above
formulas without loss of generality. Thus we define

-E<,1 = ~_-Da —0~— Fnga - Ca + Aa
0,1

and we find an £’ so that B/ and E' satisfy the hypotheses of Theorem 2.2.

Now D, —o— I'Q, ,, can be written as the sum of two terms, one for each
0,1
of the two boson variables in D; which can contract. In fact

D, —o- Fnga = (Vie —0— Fde) —O— (era + Pnga) =+
0,1 0,1 2,0

+ [ 0% (py) b *(py) [a* (k) Go0(p', 7, k) + a (k) Gio (0", P, k)] ¥
X (0 + o = p(l) = )7 (0 + 0 + 10)7 Gage (@', P, 1) X
X Q1ga(p1’ 28 l) dp dkdl .

The first term is A4, itself (cf. (3.4.8)) and results from the contraction
of the boson from the V,;, part of D,= V,, —o— (L@ + I'Qs40)-

We call the second term C,. It results from a contractlon of the boson
from the I'Q,,, part of D,. (See Fig. 4.)

We observe that the integrands of —C, and C| are almost identical
(cf. 3.4.10) and differ only in the energies w’, etc. which enter into the
denominators. The kernel of the operator —C; — C, is a function of the
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variables p;, Py, k. We assert that the kernel is in L, as a function of these
variables and converges in L, to a limit as ¢ — co. This limit is then the
kernel of an operator

E=-0—-C

and the assertion will prove half of Lemma 3.6.1. However it will prove
the other half also because one can check that

Co 0= I'Q1p6 = 271 Dy —0— I'Q 6% .
0,1 0,2
By definition of B,, we have
Co—0-1'Qy,0 = B,
0,1
and hence

lim Fy = lim (271 Ay, (0) —0— I'Qs 6% + 27 D —0— 1'Qy,.* + Bs)
o o 0,2 0,2

= lim (271 A, (0) —0— L'Qy,6* + (Cf + Cg) —0— I'Q1p62) .
o 0,2 0,1
Thus by Lemma 3.5.1 and our assertion, F' = lim F, exists and the pair
4
F, F, satisfy the hypotheses of Theorem 2.2.2.
To prove the assertion we deal separately with the contributions to C;
and C, coming from the region A3/, described by the inequality

lo" + o — u@)| = wl)t.
By Lemma 3.5.3, this contribution to D, has L, kernels and the kernels
converge to limits as ¢ — oo. There is a similar convergence for the kernel
of I'Q,s (Lemma 1.2). Thus the contribution to C; coming from g/,
has an L, kernel and the kernel converges in L, as ¢ — co. This last

statement applies to C;; also because on A/, the kernels of C; are bounded
by the kernels of C;. This is based upon the fact that

(0" + @ + 0, + wy)~ = const. (o + o — p(l) —0)~*
on /13/4.

Next we consider the contribution to the kernels of —C, — C,
coming from ~A,,,. We use the identity

(00" + 0" + 0y 4 @p) ™ (1 + 0y + p) ' — (0 + 0" —p— )™ (w+ 0y + 1) 7|
= (0" + 0" + 0+ w) "t (0 + @ — u— )" (L + i + wy + @)
< const. (o' + @) 7128 (0, + wy)~ WA ¢
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on ~ Ay, where ¢ = 1/12. Thus these parts of the kernels are bounded by
a multiple of
f ((,()' + w")—l—Ze [‘%(pl’ p,/> k)l + lQ2(p’, p”> k)l] lqz(p’, p”’ l)l
(w1 + @)~ WD = |Gy (py, po, V)| |dp’ dp” dl.
The function above is in L, and in fact its L, norm is bounded by
(" + @)= A= [1@] + 3|12 (0" + ")~ @B = Gyll, X
X (wy + @g)= WA= Gy, .
The kernels of —C, — C, converge pointwise (for fixed p,, p,, k) and by
the Lebesgue bounded convergence theorem, they converge in L,.
The lemma is proved.
3.7. The Definition of H,
It is now easy to prove the main result of this section.
Theorem 3.7.1. Let ¢ € Dp N\ Dz and let
Vo= Toops y=Top
As o — oo, the limit of Hy,y, exists. We call this limit Hyyp, so
Hyyp=1lmH,,y,.

This equation defines Hy as a symmetric operator with a dense domain Dy, .

Proof. We need (3.3.1) and (3.3.2). The formal proof we gave in
Sec. 3.3 involved rearrangement of the power series. By Sec. 2 the power
series converge absolutely. Thus the rearrangement is justified and the
proof of these two formulas is rigorous. We add (3.2.4), (3.3.1) and (3.3.2)
to obtain

Hyoyo = Ty40 1 B(0) Tyt + Tyo Hy

where

R(o) = an + P(o) + F(G) — [Hy. ]_'QZQO'] + Q20
= [Vld - Q1ga - [Ho’ TQ290]] +
+ [_ VIU _Ool_ PQIQU’ - Qsea] +

+ [ Vi —100— I'Qy6 — Vi —101— I'Qy6] +
- Vi ;é; (IQrgo + Qo) + 401 +
4= Vo "50” TQup0 + Cy] +
+ [~ Vie o I'Qigo + col] +

+[21Vlo"4 -Z-'Qgc:_A “Ba]+
+[-4 —o—FQQa~C' + 4o+

+[2 1A —O_ FQQO‘ +-B0']+
+ [- 61V10'4' 'Qps:] .

26 Commun. math, Phys., Vol. 5
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According to the lemmas of this section, each term in the brackets has
a limit as ¢ — oo and the convergence satisfies the hypotheses of Theorem
2.2.2. Thus there is a limit operator K and the pair R (o) and R also satisfy
these hypotheses. Thus

lim :R(0) Type: ¢ = :RTys: ¢
[

and since the convergence takes place in a subspace with a bounded
number of particles, we have

lign Tioo :B(0) Topo: o= Ty :RTpy: @
by Theorem 2.3.2. Again by Theorem 2.3.2
im7,, Hyp = T,Hy¢ .
Thus the limit
Hyp = limH,,p,

exists. If 9 =0 then ¢ =0 since 7|, is invertible (Theorem 2.3.1).
Thus s = T,op =0, and so H,p =lim,0 = 0. It follows that H,
is an operator. H; is symmetric because each H,, is symmetric. H; is
densely defined because of Theorem 2.3.3.

Remark. Theorem 3.7.1 is independent of a finite change in the re-
normalization constants. Let R be the operator

R=a /[ :D)?: h(x)?de+ bl

(with @ and b finite numbers). What we are asserting is that if H; is
replaced by H; + R and H,, is replaced by H;, + R then the theorem is
still true. To see this we note that the first term in R has an L, kernel
when expressed in momentum space. Thus the domain of R contains the
domain of N and this contains the range of 7, and 7,, for each o.
This proves the assertion.

4. The Definition of H,,, (Conclusion)

We complete the definition of H,,, as a symmetric bilinear form on

Dy, X Dy,. Since
Hyn=H + V,,

it only remains to define V, as a bilinear form. This can be done quite
easily. After multiplying and dividing contracted fermion variables by
w® asin Lemma 3.4.1,4-1 < 7 < 2-1, we can replace V, by an operator ¥,
with an L, kernel. The desired result then follows from the trivial Lemma
1.1. We do not follow this method, however. Instead we prove a sharper
result. We prove that V, and V,, define bilinear forms which are infini-
tely small with respect to F,, uniformly in g, for 2-* <7 < 1. Thus we
prove that for each ¢>0 there is a K = K (g) which does not depend
on ¢ such that

l(p, Vau)l + |(p, Vao)l = ey, (Fx + KD)y) . (4.1)
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We also prove that

limg (1, Vaoya) = (91, Vaa) (4.2)
for v, , 9, in the domain of F.1/2. These two facts combined with Theorems
2.3.4 and 3.7.1 give us the next theorem, which is a summary of the main
results of this paper.

Theorem 4.1. H,,, is a symmetric bilinear form defined on Dy X Dy, .
H,on 15 a limit of the bilinear forms Hyy, (o) = Hys + Vo in the following
sense. If

Vo= T, @C€DpnDy?
then p,— = T, and

(Yo, Hyen (0) Wo) = (9, Hren ) -

Remark. This theorem is independent of a finite change in the re-
normalization constants.

Proof of (4.1) and (4.2). V, contains four terms corresponding to
emission and absorption of mesons by nucleons and antinucleons. These
terms are all similar and we consider only one, corresponding to emission
of a meson by a nucleon. This term has the form

B = [7(py, pas k) a* (k) 0% (py) b(p,) dp, dpy de .
We assert that
W w1y € Ly (4.3)
Then V, and V,, are infinitely small with respect to F, for any given o,
by the corollary to Theorem 2.4.3. From the theorem itself we conclude tht

[, (Voo = Vi) p)l = o(1) (y, (Fr + K1)y)
where 0(1) - 0 as ¢’ — ¢ and

[, (Ve — Vao) p)l = o(1) (y, (F, + KI) y)

where o(1) - 0 as o — co. The second statement implies (4.2), and the
two of them together imply that the K in (4.1) can be chosen indepen-
dently of o.

Our kernel 7 is given by the formula

r="h(k+ p — p) 7 T (py - ps)
where
T(py, P2) = (0105) 2 [((03 + 11) (@2 — )2+ (03 — 11) (@5 + D)) 2]
We note that
[T (py, po)| = (077 + w7

in the first and third quadrants of the p,, p, plane

In the region 2 |&| < |y|, 7' is bounded by const (1 + |y|)~ and
(4.3) is bounded by

const. pu=CFD2 =72 (1 + |& 4 k)7 (1 + [9))7*

which is in L, for any 7 > 0. The contribution to the L, norm of (4.3)
26*
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which comes from the complementary region 2 |£| = |5] is bounded by
const. ([ uT eyt (L4 &+ k)2 dk dE dp,) <

2|& z(n|
< comst. (f =1 (L + [£)=+ (L + |€ + k|)-2 dk d &)

which is finite for 7 > 1/2.
Let 5 be the region
In| = [§[2¢-7
and let
Q2(E) = [ gz dp dp, dk
Qa(~E) = @y — Qa(5) .
Then @, (&) is the only part of @, which contributes to the infinities, and
@5 (=) could have replaced @), in the definition of . If this were done, the
term @), (~ =) would be included in the small bilinear form V, rather than
in the operator H;. To show that this is possible we prove.

Proposition 4.1. Let 27t <7 < 1. Qy(~5) and Q,,(~E) define bi-
linear forms on Dy, which are infinitely small with respect to F,, uniformly
with respect to ¢. On the domain of F 2 Qy,(~Z) converges to Qy(~5=)
as g — oo,

Proof. This will follow from Theorem 2.4.3 and its corollary. As in
the proof of (4.1) and (4.2) we have only to show that

TR T gy € Ly
or that
J(n =k + D)o ut~"dp dndk <oco.
However the p, integration can be bounded by
R|nra-v
w, " dp, < const. (1 + [n[/?),

where K is some constant, and so the previous integral is finite as re-
quired.

Appendix

For the reader’s convenience we give here a proof that our expression
in Sec. 1 for the free fermion field can be obtained from a more customary
expression in which the Fock space consists of spinor valued functions.
Our notation comes primarily from [4].

Let ¢, and ¢; be a base for B2 We choose a Lorentz inner product
(.,.)in R%so that

(€g; €0) = —1, (e, 6)=+1.
Let

ro=r@ = (7o) n=yer=(LJ5)-
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Let y0 = — y,, y* = y, and if u = u¥ ¢, (summation convention) let
0 (w4 w)
y(w) = w y":<i(u°——u’)( 0 )
We compute directly
{y ), y(@)} = 2(u, v) = 2(—u® ° + ulo?) .
The Dirac equation is
(y* (0)ox*) + we) p =0,
where 9 is a function with values in (2, complex two space. If p(x)
= u e¢!?% i3 a solution, we must have
0= (@ y"Pu + wo) u = (Ey(p) + ) u
and hence (p, p) + wf = 0 and if p° > 0 then w must be a multiple of
(0° + p)2 v (p)
)= (i ") = (o)
Let ¢, ) be the hermitian inner product in C? (antilinear in the first
variable), and let § be the antilinear map from C? to its dual given by

(Bu) (v) = {(—vy0) u, v)
=uto? L g2t

We set fu = u' and we define u¢, the charge conjugation of u, to be the
complex conjugate of the vector

o 1)

We note that »Tv = 2wy = —1°Tp¢ and »'9¢ = 0 = 3°Tp if p° > 0. Also
. (po + pl)llz
v (p) = (_ (p* — pl)m)
if p° > 0.

If f €D then
p(p) = f(p") »(p) (A1)

is the expression in Fourier Transform space of a solution (x) of the
Dirac equation. We introduce the norms

[P @2 = [p@)* = (-‘Zwo)‘1 f p'ypdQ(p)
= (2600 Of 12 vy dQ2(p) = [ 0t |fI2dp* = [f]3+,

P°>0
where df2 is the Lorentz invariant measure on the hyperboloid
(p, p) + = 0.

The equation (A.l) thus defines a unitary equivalence between D*
and the conventional single particle space of positive energy solutions
of the Dirac equation. The isomorphism extends to tensor products and
provides an isomorphism of F with a Fock space in which the nucleons
are spinor valued functions. Under this isomorphism, the operators
254
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b(p') and b* (p') are mapped onto the operators

b(pY) v(p)t = b(p)
and

b¥ (p") ¥ (p) = b* (p) -
Let 5’ and 6% be the antinucleon annihilation and creation operators,
acting on the Fock space of spinor valued antinucleon functions. The

field ¥ is given by the expression (cf. [4, p. 156]; for simplicity we have
set 2% = 0).

[ (@225 (p) b(p) + eiP= po%(p) b'* (p)) (p°) V2 dp* .

p'=w

This integral corresponds to the definition of ¥*(x) given in Sec. 1.
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