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Abstract. A renormalization procedure is proposed. It gives rigorous mathe-
matical meaning to the infinite cancellations in this model. A space cutoff is intro-
duced in the interaction term V and so V has the form f V(x) dx, but there are

no momentum cutoffs in V. There is an infinite constant and an infinite boson mass
renormalization in this model. The main result is that the renormalized Hamil-
tonian is rigorously defined as a bilinear form in the Fock Hubert space.
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0. Introduction

We consider Quantum Fields interacting with Yukawa coupling
in two dimensional space time. The interaction potential V is restricted
so that particles interact only when they lie in some bounded interval
of space. But in all other respects the interaction is relativistic and does
not contain momentum cutoffs. A renormalization procedure is proposed
which gives rigorous mathematical meaning to the standard infinite
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cancellations involved in defining the renormalized Hamiltonian. The
renormalized Hamiltonian,

^ren — ̂ free + ^ + (infinite terms) ,

is realized as a symmetric bilinear form densely defined in Fock space.
We split the interaction term V into two parts,

7=^+7,.

F! contains terms corresponding to fermion pair creation and fermion
pair annihilation, while F2 contains the remaining terms which correspond
to the emission or absorption of a meson by a nucleon or antinucleon.
We set

HI = Hίΐee -f Ft -f (infinite terms)

#ren = #1 + ^2

This definition is reasonable because in this model the only infinite
renormalizations are the vacuum energy and the boson mass renormaliza-
tions, and both of these are due to terms from Fj alone. We realize H1

as a symmetric operator defined on a dense domain @HI contained in
Fock space. F2 and thus HIGΐί are defined as symmetric bilinear forms
on&Hι x &Πι.

We show that H± and #ron are limits of operators Hla and HKna,

(0.1)

σ, (0.2)

in a sense which will be made precise later on. The cutoff operators, when
expressed in momentum space, have all variables cut off at some σ,
a -> σo. The renormalization terms in the cutoff operators are finite,depend
on σ and tend to infinity as σ tends to infinity.

The interaction term is given formally by the singular expression

F = / : Ψ*(x) Ψ(x) : Φ(x) h(x) dx .

Here ψ is the fermion field and Φ is the boson field, while h is a cutoff
function which limits the spatial extent of the interaction. Thus we assume
h is a smooth function which is identically one for x in some bounded
interval and which is identically zero for x in the exterior of some larger
bounded interval. The presence of this factor h φ 1 means that the
Schrodinger picture (in which we work) is not relativistic. We offer
three reasons for including the space cutoff. First, all evidence indicates
that a relativistic Schrodinger picture does not exist if one remains
in the Fock Hubert space. (As h -> 1, δ factors appear in our formulas
or in perturbation theory. In the axiomatic approach, Haag's theorem
is applicable if h == 1, see [8, p. 161], [9, § 6]). Secondly, our nonrelativistic
Schrodinger picture can be used to construct (formally, at least) a
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relativistic Heisenberg picture. To show this, we write

• r̂enW = ^ren

to show the dependence of //ren on h. Let A be an observable associated
with a bounded region of space time. Assume that the Schrόdinger
picture dynamics exist. That is, assume Hτeτί(h) is a self adjoint operator.
Take h to be one on a large interval. Then

A -> exp(-ΐί#ren(&)) A exp(itHΐQn(1ι)} = A (t) (0.3)

defines an automorphism of the observables which is formally the correct
relativistic dynamics in the Heisenberg picture, for t suitably bounded.

In a subsequent paper we will show that the Schrόdinger picture
dynamics exist. However this result will require a finite and Λ-dependent
mass renormalization in addition to the infinite renormalizations and
thus we must be more careful in defining the automorphism (0.3).
We work with an h which is identically one on some interval [— e, 1 + c],
where c is the speed of light. This fixes the mass renormalization parameter
δm2. If A is an observable associated with the interval (0.1) then (0.3)
defines dynamics A (t) which formally is relativisticly correct for |ί| ^ 1.
If A is an observable associated with an interval (α, a -f 1) then A ( t )
can be defined for |ί| < 1 by translations in space. An arbitrary observable
B is a limit of sums of products of observables At associated with inter-
vals (ai} at + 1), and so it might be possible to define B ( t ) for |ί| g 1
also, and this might yield the correct relativistic dynamics. If so, the
process could be repeated and B ( t ) could be defined for |ί| ^ 2, ̂  3, . . ..
As a third reason, if one were willing to work in a framework larger than
the Fock Hubert space (cf. [1] and [5]), it is possible that some meaning
could be given to the limit of our formulas as h -> 1.

The fact that we work in two dimensions instead of the physically
correct four dimensions is more serious. This eliminates a second infinite
mass renormalization (the fermion mass) and it eliminates an infinite
charge renormalization.

We exhibit the domain @Hι explicitly. We will construct an operator

T = :exp- ΓQ: (0.4)

with a domain ^Hί containing all Fock space vectors which
a) have at most a finite number of particles,
b) have compact support in momentum space.
In essence, we define

&Hί = range T = T3fτ . (0.5)

There is a perturbation expansion for the correct choice of Q [2]. We
do not use the full expansion, which in any case probably does not con-
verge. Instead we use certain terms from the first and second order con-
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tributions to this perturbation expansion. This is a sufficient number of
terms so that the infinities present in the theory cancel exactly, but a
small enough number of terms so that the infinite series defining T
converges. Thus we follow standard perturbation theory (in constructing
&HI) only far enough to obtain an exact cancellation of the infinities;
once this is done we must obtain estimates to bound the remaining
finite part (of H^φ, φ £ ^HI? for example).

The mass renormalization parameter dm2 appears to agree with per-
turbation theory to all arders in the coupling constant (modulo a finite
renormalization) and the constant renormalization counter term
we use appears to agree with perturbation theory at least up to second
order.

We now try to motivate the formula (0.5). In the formal theory one
finds a unitary equivalence between HτQn and HQ,

HIenU=UH0. (0.6)

In attempting a rigorous solution one should look for less. Our T gives
an approximate solution to (0.6). In fact we show that

HI T = TH0 + finite terms .

The finite terms in this formula are rigorously defined unbounded ope-
rators. This formula, of course, leads to (0.5).

One thinks of states in the range of T as representing physical par-
ticles. If Ω is the (free) vacuum state, then TΩ is an approximation to
the physical vacuum. Now Vl has the effect of creating and annihilating
nucleon and antinucleon pairs, and this is responsible for the infinities
of the theory. If TΩ is to approximate a physical vacuum, then TΩ
is approximately an equilibrium state with respect to the creation and
annihilation of pairs. This can happen only if TΩ contains a large number
of nucleon antinucleon pairs. This phenomena is known as polarization
of the vacuum. Since Ω is a state with no particles at all, T must be an
operator which creates a large number of nucleon antinucleon pairs.
This will be the case provided the Q in the definition of T also creates
pairs. We choose for Q just the terms up to second order from perturba-
tion theory which create pairs. We could have included more terms in Q,
for example the terms up to second order which annihilate pairs. However
it seems to cause essential difficulties if one attempts to put intoQ
terms coming from both V1 and F2 In Sec. 3.1 and Sec. 3.3 we give
simple formal arguments to show how our choice of T permits us to
identify and cancel the infinities in the theory.

We now discuss the convergence of T. The jΓin (0.4) is not an operator
but an operation performed on the operator Q. Γ is approximately an
inverse to ad H0, so
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(We could work with an exact inverse to ad H0 , and did this in a pre-
liminary version of this paper. However the exact inverse to ad HQ

presents technical difficulties which seem larger than its advantages.)
Because H0 is unbounded for momenta of large magnitude, ΓQ is
small relative to Q as far as large values of momenta are concerned. This
difference between ΓQ and Q is very important. ΓQ is an unbounded
operator with a dense domain. Q, however, is not an operator in the strict
Hubert space sense. It maps nonzero vectors into a function space larger
than Hubert space. Q is essentially the operation of taking tensor pro-
ducts with some given function q, and q is not in L2. If φ ξ L2, φ φ 0,
then q 0 φ $ L2 . ΓQ is essentially a tensor product operator also, but
the associated function γq is in L2.

In Sec. 2 we show that

\\:ΓQ»:φ\\~n\K"\\φ\\.

This depends upon the fact that the interaction term V is at most cubic
and contains at least one fermion. The n\ comes from the symmetriza-
tion laws. If we considered a general F of order jτ in the fermion fields and
of order j2 in the boson fields then the n ! would appearently be replaced

by

if fa < 0 and by

otherwise. Thus in some sense the first fermion does not count. We give
in Sec. 2.4 some general estimates of this flavor. These estimates would
probably be useful in studying other problems.

For

we thus have the estimate

\\τ\\
Here K is large, in fact K -> oo as h -> 1. To deal with this, we remove
from Q and ΓQ a part which contains only momenta of bounded magni-
tude. Call the remainders QQ and ΓQQ. It is sufficient to work with ΓQQ

because the infinities are associated with the unbounded regions of
momenta. Let TQ = : exp(— ΓQρ) : . Our estimates give us

\\Tβφ}\~(ΣK»)\\φ\\

and KQ -> 0 as ρ -> oo. We choose a fixed ρ large enough so that KQ < 1,
and we replace T in (0.5) by TQ.

The author's understanding of this subject has been aided by conversations
with a number of people, including K. SYMANZIK, P. KBISTENSEN, D. KASTLEB and
D. KUELLE. We thank W. FABIS for finding a number of minor errors and misprints.
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1. The Unrenormalized Hamiltonian and the Definition of Q

The Lorentz group in two dimensions is much more elementary than
the Lorentz group in four or three dimensions. The homogeneous Lorentz
is one dimensional and its identity component consists of the trans-
formations

. /coshα sinhα\
A^= \sinh α coshα/ '

This leads to notable simplifications in notation. (It may also lead to
simplifications of the mathematical difficulties, cf. [9, p. 34], but we
have not made use of this.) In particular the Dirac equation in two di-
mensions can be replaced by a scalar valued Klein Gordon equation.
Thus we construct three Hubert spaces

D+,D+/, and K+

consisting of scalar valued functions of a single real variable k or p,
with the inner products

(/, g)o = (/, ff)jy = f J ( P )

(f,g)κ
where

μ(k) = (μ0*

and ω0, μ0 > 0. The spaces D+ and D+' are respectively the spaces of
single particle nucleons and antinucleons, while K+ consists of the single
particle meson wave functions. The Fock space for our problem is the
tensor product

θD+ /)<8> 8(K+) .

Here G(Ό+ φ D+/) is the Grassmann algebra over D+ φ D+/, that is the
direct sum of alternating tensors of all orders from D+ φ D+/. Similarly S
denotes a symmetric algebra, or the direct sum of symmetric tensors
of all orders. We introduce the annihilation operators

b(p), bf(p), a(k)

and their ad joints, the creation operators

b*(p), V*(p), a*(k)

which annihilate and create nucleons, antinucleons and mesons respec-
tively. These are normalized so that

(6 (p), δ* (q)} = {6' (p), V * (q)} =δ(p-q)
and
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Let φm be a state in F with exactly m mesons. If we write
φm= φm(k1, . . ., km) as a function of its meson variables (and we sup-
press the fermion variables) then a and α* are defined formally by the
formulas

(a(k) Ψm) (klt . . .,km^) = 0(fc)-im)i/2 φ^k,, . . ., fcm_1, k)

(a*(k)φm)(kl,...,km+1)

= (μ(k) (m + l)-^Σδ(k - k}] φm(kλ, . . ., i,_ι, ki+1, . . .,km+1) .
j

To obtain a similar expression for the b 's, it is convenient to distinguish
between the nucleon and antinucleon variables. To do this we introduce
a variable ε which takes on the value ± 1 only. We associate -f 1 with
nucleons and— 1 with antinucleons (so that ε represents nucleon,, charge").
We denote by

a single fermion state, where

are the projections of φl onto D+ <g> $(K+) andD+/ <8> $(K+) respectively.
Let φ be a state in F with exactly n fermions. We can write

φ= φ(plίεl9 . . .,pn,εn)

if (as above) we suppress the meson variables. Then b and 6* are defined
formally by

(b(p) φ)(pl,ε1,...,pn_1,εn_l)

= (ω(p)-ln)l/2φ(pl,εlί . . ., pn_ly en_ l f p, - f l)

(δ* (P) ψ) (Pi , «ι , - ,Pn+ι > eΛ+ι)

= (ω(p) (n + I)-1)1/2 2: (-1)'-"- l δ(p - Pj) δ(l - ε,) X
}

Xφ(pl,εl, . . ^p3 -ι,εj^l)pj+lί εj+l, . . .) .

The expressions for b' and V* are similar and are given by replacing
+ 1 by — 1. The meson field is given by (cf. [4, p. 102])

φ(a ) - / eW*~MWa(k)μ(lc)-W dk +

According to well known ideas, this expression is a distribution in the
variable x and / Φ(x) f(x) dx has meaning as an unbounded operator
in Fock space F. If one admits a wider framework than Fock space, then
Φ(x) is meaningful for each x. The fermion (nucleon- antinucleon) field
Ψ(x) is slightly more complicated. It has two components,

24: Coramun. math. Phys., Vol. 5
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and in contrast to Φ, does not transform as a scalar under Lorentz trans-
formations. In the single particle spaces we introduce the representation

/t(α) f ( p ) - * f ( p coshα — ω(p) sinhα)

Λ(<x) : f(k) -> f(k coshα — μ(k) sinhα) .

There is a unitary representation U(Λ) of the connected homogeneous
Lorentz group in F. It is simply the direct sum of tensor products of the
above single particle representations. The field Ψ(x) must satisfy the
transformation law ([4, p. 163, p. 305])

We have the formulas

Ψ*(x) = / eί(ί>*l-«>(2θs0) (ω(p) -j_ p)i/2 ω(p)-ι/2 b(p) dp -f

+ f e-ί(px*-<»(pW (ω(p) + p)l/2 ω(p)-l/* fr* (p) dp

Ψ*(x) = / eί(v*l~<»(vW (ω(p) - p ) 1 / 2 ω ( p ) - 1 / 2 b ( p ) dp -

__ f e-i(pX*-»(pW) (ω(p) __ p)l/2 ω(p)-l/2 V*(p) dp .

For the relation between this expression for Ψ and the conventional Ψ
as an operator on spinor valued functions, see the appendix. We define
the adjoint fermion field by the formula

The inner product over the indices ί = 1, 2 of Ψ^ and Ψ is

ΦΨ(x) = Ψ*(x)* Ψl(x) + ψ*(x)* Ψ 2 ( x ) .

Finally V is given by the Wick ordered integral

F=

On Fock space this is a formal expression but not an operator. The free
Hamiltonian is

HO = / [δ* (p) ω (p) 6 (p) + 6'* (p) ω (p) V (p)] dp +

+ f a * ( k ) μ(k)a(k)dk

= ^o/ + Hob 9

and the unrenormalized Hamiltonian is H — HQ + F. For simplicity
we have set the coupling constant g = 1. Our results are valid for any
value of g.

Each of the fields Ψ and Φ entering into the definition of V can be
expressed as a sum of its positive and negative frequency components,
and this gives rise to a decomposition of V into a sum of eight terms.
Two of these terms, those corresponding to fermion pair creation, are
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present in Q. In particular we let

, ft,)

?.(ft > ftt, *) = %ι + ?2 - *) β(*) ft* (ft) *'* (Pi) μ~lf2 fl(ft , p.)
where h is the Fourier transform of h, ω^ = ω (p^) and

(ω2 + 2>2)V« - (1.1)

Then the (formal) operators

(?! = /<&. ̂ 1 ̂ ^2 ^^ (1-3)

and
Qa = fq2dp1dp2dk (1.4)

are these two terms from F, Whenever we have an expression such as
(1.3) or (1.4), we will call the integrand qi the operator kernel of $z .
It will also be convenient to introduce the numerical kernel

Thus the operator kernel gt is just the numerical kernel qt times the ap-
propriate annihilation and creation operators.

Following FBIEDBICHS [2] we define

Because of the decrease at infinity, ΓQl is better behaved than Qi
and we will see without difficulty that ΓQΊ is an unbounded densely
defined operator. Let

(ωι + ω2 ~ μ — *)~1 ^2 ^ î dp2 dk

(1.6)

The expression Q2 -o- PQj is called the attached product and is de-
fined by the equation above, see [2].

We now define the Wick product indicated by the double colon in
(1.5). A Wick product

rJ?! . . . Rn:

is multilinear in the factor R19 . . . , En . Thus it is sufficient to define
the Wick product

:α (ίi). . . ft* (pj:

This Wick product is just plus or minus the ordinary product of the same
operators, but arranged in such an order that all the creators are at the
left and all the annihilators are located to the right. The minus is chosen
if there is an odd number of interchanges of adjacent fermion operators
required to achieve this new order. Otherwise the plus is chosen.
24*
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The formal operator Q3 contains four fermion creators, and so it
can be expressed by an integral similar to (1.3) and (1.4). That is, there
is an operator kernel q3 ,

?3 = &(ft» 2>2> fti, Pi) 6* (ft) V
and

Q3 = / 03 Λft <^2 <

Let

ΓQz = f (<*>ι + ω2 + ω3 + et^)-1

Finally we define

Q - Qι + Q2 + 6

ΓQ = Γ& + ΓQ2

jΓ is an approximate inverse to ad H0 . In other words formally we have

[£Γ0, /•*&] = &, ί = l or 3

[HQ, ΓQ2] = Q2 + / ^(ωj + ω2 - ^ - ί)-1 g2 Λ^ ίZp2 ^A; .

We have the following explicit formula for the numerical kernel q3

in (1.5)
^4? *) (ωs + ω4 + μ)-1 dk . (1.6')

Observe that g3 is not antisymmetrical in its four variables and that
there is a decrease at infinity in the last two variables which does not
occur in the first two variables.

We now show that ΓQ is an operator. The next lemma is known and
is not hard to prove, starting from the definition of the annihilation and
creaton operators.

Lemma 1.1. Let r(p9 k) be an L2 function of j variables and let

. . . b' (ph) α* (kj . . .a(k2)dpdk (1.7)

be an operator with a numerical kernel r. Then

\\B\\ ^ const, \\f\\, 1 (N + I)' ψ\\

for any state φ in the domain of (N -f I ) j , and the constant depends only
on j.

In this lemma, jV is the number of particles operator and we assume
that the operators in the integrand of (1.7) are Wick ordered.

Lemma 1.2. Suppose 0 ̂  τ < 2~l. The following functions are in L2.

(ωl + ω\ + μτ) K + ω2 + μ)-1 & (1.8)

(Σωl)(Σωi)-^q9 (1.9)

Σω^to . (1.10)
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Also the function
(ωf -j- ω|) (cox -f- co2 — μ —- i)"1 q2 (1.11)

is in L2 on any set in which the k variable of q2 is bounded.
From this lemma we see that ΓQ is an operator and furthermore that

Λ(l , T) = / (cof -j~ col ~h μτ) (ft>ι ~f" ^2 ~^~ /Ό"1 9Ί ί̂5 ^^

^(2, τ) = / (ωί + ω|) (ωx + ω2 - ^ - i)'1 q2dpdk

are operators for 0 5j r < 2"1.
Proo/ o/ Lemma 1.2. The function jζ is rapidly decreasing at infinity

because h is smooth. We set

η = Pι + Pz> ξ = Pι~Pz
Then (1.8) is bounded by

K + ω2 + μH1-^ l&l ^ const. (|f I -f l)-(V2)-r^-d/2)-y (\η + k\ + i)-ι

for some positive y depending on r. The constant depends only on h,
and we see that (1.8) is in Lz. The same reasoning implies

(ω\ + ωl) (ωt + ω^ |ga| ^ (c^ + ωj-d-r) |?a| g

^ const.(|f| + l)-α/2)-yμ-V2 (|^| + !)-y (\η + fc| + !)-ι / '

so (1.12) is in L2. For Jb restricted to a bounded set, this shows that (1.11)
is in L2 .

To show that (1.10) is in Z/2 we have to bound

ωl <»l (Σ u>i}~1 §s
i

where j2 = 3 or j2 = 4. This function is bounded by

/ K + αg-α-*) |ft| (ωι + ω2 + ^J-α-T) 1^1 rfA; ,

which is in L2 by our estimates above. Since ωj is bounded away from
zero, we also conclude that (1.9) is in L2.

In order to deal rigorously with the (formal) operators Q and Qt

we introduce cutoff versions of these operators. The cutoff operators will
have dense domains.

Let or == (σ6, af) be a pair of positive numbers. If 6* is a fermion
annihilation or creation operator we define the cutoff operator 6* by
the formula

\0 otherwise .

We define the cutoff meson operators aa(k) and a*(k) similarly. Given an
operator Ql , etc. depending on δ* (p), etc., we define Qlσ to be the operator
obtained by substituting b$(p) for b*(p), etc. In order to obtain conver-
gence of our series for T (even for large values of the coupling constant)
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we also introduce the lower cutoff

QIQ = / qidpidp^dlc
IPil^Q

620 = / qzdp^dpzdk
\PJ\^Q

QSQ = / #3 dp ,

\PJ]£Q

and we consider operators QlQa, etc. with a double cutoff. In the course
of our proofs we choose a large fixed value of ρ and we let σ -» oo.

2. The Dressing Transformation Tρ and the Domain of the Renormalized
Hamiltonian

2.1. Introduction and Notation

In Sec. 2 we construct explicitly the domain 0Sι . In Sec. 3 and Sec. 4
the renormalized Hamiltonian will be realized as a bilinear form on
@HI X 2Hι . We prove in Sec. 2 that 2Hι is a dense subset of Fock space
(Theorem 2.3.3). Of course the most significant part of this is that @HI

is contained in Fock space (consists of normalized vectors) or in other
words that the power series defining the dressing transformation TQ

converges (Theorem 2.2.1 and 2.3.1).
Let D (n, K) be the set of all Fock space vectors which
a) have at most n^ fermions and at most n2 bosons, n± -f 3n2 ^ n,
b) are equal to zero whenever at least one of the bosons has a mo-

mentum Icj with magnitude larger than K.
Let

TQ = :exp(-ΓQQ): (2.1.1)

9T=V D(n,K).
nt Ά.

We prove that for sufficiently large ρ, the series for

TQ φ , φ ζ @τ

necessarily converges to an element of F. We will pick a suitable such ρ
and then we define

SHι=Tρ(^τn^) (2.1.2)

= {2 τ

βφ:yζ^ a, and

The Wick exponential T factors into a product of two ordinary
exponentials,

T = !7\ T2
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and TQ and TQG factor similarly. Only the first factor presents difficul-
ties and we treat it separately. The infinite series defining T2 breaks off
after a finite number of terms, and thus is trivial.

For 0 ̂  τ < 1, let

Fr - F(τ) = / α* (k) μτ a(k) dk +

Thus F0 = N is the number of particles operator and as τ -> 1, Fτ -> HQ.
If φ ζ F let φn be the n particle component of φ. It will be convenient to
introduce the following subspaces of F, depending on λ > 0 (cf. [6]):

- {φ : Σ \\eλn <Pn\\* < ™}

, τ) =

2.2. Properties of T^

Theorem 2.2.1. The operators T2) T2ρ and T2Qσ are ίnvertίble maps of
Qiτ onto &τ . They leave each subspace D(n, K) invariant and map

D(n,K)r\$Hl

onto a subspace of D(n, K) which is dense in D(n, K) in the F norm. Also

lim T2ρσ φ = T2Q φ , φ ζ 9T .
a— >co

lim T2a φ = T2 φ , 99 ξ Sy .
σ— >oo

Proof. Let ./£" be given. In order to study

ΓQ2φ,φξ:D(n,K),

we can limit the k integration in the definition of ΓQ2φ to the interval
[~K,K}. This changes ΓQ2 but does not affect the product ΓQzφ.
However the new operator has the form of the R of Lemma 1.1 and the
kernel is in L2 by Lemma 1.2. We conclude that ΓQ2φ is in F and it
is easy to see that it is also in D(n — I, K). It follows that the power
series for

terminates after a finite number of terms and T%1 — exp(/'Q2). This
proves the first statement.

Let θ ζD(n, K) and let (T^θ)λ be a sequence in D(n9 K) r\ 2ti*
converging to T%1 θ. From Lemma 1.1 we see that jΓQ2

 and T2 are
continuous as operators from D(n, K) into F. Thus

θ=T 2 Ti- 1 θ = limϊ'2(ϊ'i-1θ)Λ.

The limit statements in the theorem also follow from Lemma 1.1.
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The proof of Theorem 2.2.1 also gives us
Lemma 2.2.1. Let 0 < τ < 2"1. Then

R ( 2 , τ ) , R(2,τ)Q, R(2,τ)ρσ

L"0> •* T52ρj vie ' L "0> -* x>2ρ<Jj ^fίga

define bounded operators from D(n, K) into F. Also

< lπα(Λ(2,τ) ρ-Λ(2 Iτ) ρ σ) ? . = 0

- r ρ σ ] - # + ρ σ ) = o
for φ in &T and the, convergence is uniform if φ lies in a bounded set in
D(n,K).

This lemma is typical of a sequence of lemmas that we will prove in
Sec. 3. They will concern operators

R = / r(p, k) c(p, k) dp dk
and

R(σ) — f r(p, k, σ) c(p, k) dp dk

where c is a Wick ordered product of creation and annihilation operators
as in (1.7). We will prove

a) R(H0 4- /)~2 and It (a) (H0 -f- I)~2 define bounded operators from
D(n,K) intoΓ.

b) lim (R — R(a)) φ = 0 for each φ in &τ r\ &H% and the conver-
gence is uniform in φ's for which the vector (HQ -f I)2 φ lies in a bounded
set in D(n, K).

Theorem 2.2.2. Let R and R (a) be given as above and suppose a) and b)
Then

a') :T2QR: and :T2QσR(σ): are defined as operators from &τ r\ &n\
into Γ.

b7) The limit
(:T,QR-T2QaR(σ):}ψ-*0

holds for each φ in &τ r\ ^πl -
If we assume a) but not b) then the conclusion a' ) is still valid.
Proof. It is sufficient to consider :ΓQ2Q

mR: in place of :T2QR:.
Let 99 be a state in D(n, K) r\ &n\ with a definite number of mesons.
Let k" denote the last m meson variables and let kf denote the other
meson variables in φ. If we hold k" fixed and regard φ as a function of k'
and the fermion variables, the result is a state 0(fc") in D(n, K) r\ &u\
depending measurably on a parameter k" '. By hypothesis R θ = (Rθ) (k")
and R(σ) θ are defined; they depend measurably on k". Moreover

/ || (Λθ) (i")|| di" ^ c/ || (#„ + /)« θ(4")| |«dfc" ^ Ίi(#o + W Ψ\\z (2-2.1)

and

/ \(R(σ) θ) (k") - (Rθ) (k")\\*dk" <z c(σ)*f\\(Hϋ + /)» θ(k")\\* die"

<c(σγ\(H0 + I)*φ\*, (2.2.2)
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and c (a) -> 0. Now the Wick product : ΓQ2Q™R : φ is obtained by applying
the m annihilation operators in ΓQ2ρ

m to the m meson variables k"
in (Rθ) (k"). Our previous results do not apply since Rθ, as a function
of k" and its other meson variables, is not symmetric and so is not in Γ.
However the proofs are still correct and we can see that :ΓQ2ρR: φ
is a state in Γ. This depends upon the fact that R θ is zero if one of the
variables lCj in k" has a magnitude greater than K. It also depends on
the L2 estimates for (1.11), as in the proof of Theorem 2.2.1. Thus a7)
is proved.

To prove b') we observe that

™ -^ \\ ΓQΐeσ

m(R(a) - R): φ\\ + \\ :(ΓQ2β

The operators ΓQ2Qσ

m are bounded uniformly in σ when restricted to states
with a bounded number of particles and with a bound on the support
of the meson variables. This depends upon the L2 estimates for (1.11)
and it remains true even when the annihilators in ΓQ2ρ

m are applied to k" .
Thus the first term tends to zero by (2.2.2). In the same way it follows
from (2.2.1) and the convergence of the kernels in ΓQ2ρσ that the second
term tends to zero.

Lemma 2.2.2. Let 0 fg τ < 2"1 and let λ and ρ be given. Then

Proof. Since T2ρ &τ contains only states with a finite number of
particles, the only nonobvious fact to be proved is that

However if φ ζ 3$T r\ @HO then φ ζ @F (τ) also and

Fr T2ρφ = Fτ exp(-ΓQ2ρ)φ = :(Λ(2, τ)ρ + Fr) exp(- ΓQ2Q):φ

is in F by Lemma 2.2.1 and Theorem 2.2.2.
Remark. The same proof shows that T2Qa φ £ ̂ "(λ, τ) and

Fτ(T2ρσ - T2Q) φ -> 0 for φ ζ @τ π ®HΛ .

2.3. Properties of Tlρ

Theorem 2.3.1. Let λ ^ 0 and τ £ [0, 1/2). For all sufficiently large
λ1 and ρ, the power series for Tlρ and Tlρσ converge to define Tlρ and Tlρσ

as invertible operators /rom^(A1) into <f>(λ) and from ̂  (λλ, τ) into ̂  (λ, τ).
When restricted to a subspace of Γ with a bounded number of particles,
Tίρ and Tlρ(J are bounded operators.

Theorem 2.3.2. Let ρ be sufficiently large. Then

T — T _> 0•^Iρ •*• Iρσ ~~^ u

uniformly on any subspace of Γ with a bounded number of particles.
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Theorem 2.3.3. Let ρ be sufficiently large. Then

is a dense subset of F.
Theorem 2.3.4. Let 0 <: τ < 1/2. Then the domain of the operator F(τ)

contains &HI . Let 0 < τ < 1. Then F (τ) defines a bilinear form on @HI x &HI.
For φ ζ @T r\ &HO we have

These four theorems are based upon the following lemma, whose
proof is postponed to Sec. 2.4.

Lemma 2.3.1. Let r ζ [0, 1/2). Then

R(l,τ)Q(N + I)-\ B(l,τ)QO(N + !)-*,

R (3, τ)ρ (N + I}~\ R (3, τ)ρσ (N + I)-1

are bounded operators from F into F, and their norms tend to zero uniformly
in a as ρ ->• oo. As a -> σo

, τ)βa - Λ(3, τ)β) (tf + I)-1! -* 0 .

Proof of Theorem 2.3.1. We give the proof only for Tlρ, since the
proof for Tlρσis identical. If φ ζ ( ? ( λ r ) then

Wl SΞ const. e-«/2,
and if ψ = Tleφ,

\\ψn\\^ Σ IKM

Σ l(ΓQlQ + ΓQ3β)(N
(«/4) S j + Ic S »

Σ l(ΓQlβ + ΓQ3e) (N + /)-ψ 4* 2» |

By Lemma 2.3.1 in the case τ == 0,

for large ρ (depending on A'). Thus

||?/;n||
2 ^ const. τι422

and

Σ eλn \\Ψn\\* ^ const. Σ r
n

which is finite for λ' > λ + 2^2. Thus
If 99 has at most nQ particles then

||^J2 ^ const, n* 2*n e~λ>n eλ'

Σ |W2 ^ const. eλ/Λ ||
71

where the constants do not depend on φ.
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We choose
A! > λ' -f 2ln2, λ' > λ + 2ln2 .

Then Tlρ maps ^(λj) into (ί(λ')C<e(λ) and by the same estimates as
above, exp(ΓQle -f ΓQ3ρ) converges absolutely as an operator from
<o(λr) into $(λ). Thus the power series for

exp(ΓQlρ + ΓQ3Q) Tlρ = exp(Γ£lρ + Γρ3ρ) exp(-ΓQlρ - ΓQ,Q)

converges absolutely as an operator from<f (λj) into^(λ). After rearrange-
ment, this series converges to /, so Tlρ is invertible. This proves Theorem
2.3.1 as far as S(λ) is concerned.

Now suppose φ ζ^^λj, τ). Then

Fτ Tlβ φ = T18(R (1, τ)β + R (3, τ)8 + Fτ)ψ.

It follows from Lemma 2.3.1 that B(\,τ)e φanάR(3, τ)ρφare in(f(Aj — ε)
for any ε > 0. Thus

, τ)β + B(3, τ), + Fτ) φ £*& - ε)

It follows that Tlρ φ ̂ ^ (λ, τ) and the proof is complete.
Proof of Theorem 2.3.2. The operators ΓQiρσ, etc. which we are con-

sidering contain only creation operators. Thus they commute with one
another and this enables us to use the formula

j-l

aβ _ & ί = (a-b) Σ ^fr'-*-1

i = 0

from commutative algebra. Let φ be a state in Γ with at most nQ particles.
For brevity we let

If ψ=(Tlaa-Tle)φ, then

ιwι < Σ a i)-1 i i [(« (

^ const, n^i i z1 & Ik - ill HI* liψ-' -
(nl^)-n0<j^n ΐ = 0

g; const. HI ||α - &1 ^ (8|HI + 8|δ|V g

< const. || ̂ 1 ||α - 6|| (8||α|| +

if ρ is sufficiently large, so that

8 H + 8||6|| < 1 .
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If n ^ 4%0 we have the more elementary estimate

l g : const, | -δ

^ const. ||φ|| ||α- 6|| .
Thus

| |VJ» £ const. |MH|α - δ||»

and this tends to zero as σ -> oo, in view of Lemma 2.3.1 and the defini-
tion of a and b.

Proof of Theorem 2.3.3. From Theorems 2.2.1 and 2.3.1 we see that
Tlρ φ is in the closure &HI of &HI if φ is any state with a finite number of
particles. Let θ be a state with a finite number of particles. It is sufficient
to prove that θ ζ ^#χ. We choose a λ such that

λ> -2ln8\\b\\ + 2ln2

(b is from the proof of Theorem 2.3.2) and such that Tlρ is defined as
an operator on S'(λ). We let

If φ^ft is the projection of φ onto the subspace of Γ of states with at
most k particles, then it is sufficient to prove that

since T^φ^ £ ̂ ^ and TlQφ = θ.
We have

(φ^k - φ)n\\ £ Σ \\b¥ ̂ m^ \\Ψι\\ ̂
(nl^^j + l^n J'l

k<l

^ const. Σ (8\\b\\γ2lexp(-λll2)

since φ ζ^(λ). This is bounded by

const. 2fc exp(-;U/2) (8l|δ||)^/4)-^ ̂

^ const. (8||&||)*/4exp(&(^2 - (λj2) - lnS\\b\\)) .

We note that the coefficient of k is negative and that

\\TiQ(<Pgk ~ ψ)\\* ^ const exp(2k(ln2 - (A/2) - Zw8||δ||)) .
This tends to zero as k -> CXD, and the proof is complete.

Proof of Theorem 2.3.4. Let τ £ [0, 1/2) and let φζ@τ^^H0'
We use formulas from the proof of Theorem 2.3.1 and Lemma 2.2.2
to obtain

, τ)e + Λ(3, τ)

i=l

and a similar formula with the cutoff σ present. By Lemmas 2.2.1 and
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2.3.1, the pair of operators

Fτ + ΣR(i,τ)e
i = I

and

satisfy the hypotheses of Theorem 2.2.2. By the convergence in Theorems
2.2.2 and 2.3.2,

F φ m -> F T wx r - z ρ σ γ y £ r - i - ρ γ y

This proves the first statement. The remaining statements follow from
what we have proved together with the inequality

Fo < F2

•*• 2τ ^ -*• τ

2.4. The basic Estimates

The next theorem is an improvement on Lemma 1.1. It states that
one of the fermions can be neglected in determining the bound on R
defined by (1.7). Let Nυ and Nf be the number of bosons and number of
fermions operators, respectively.

Theorem 2.4.1. Let R be the operator defined by (1.7). Then

\\(Nf + /J-to-1)/2 (Nb + /Γ>»/2 R\\ ̂  const. ||r||a (2.4.1)
provided j1^: 1 . The constant depends only on j± and j2 .

Proof. In the case jl= 1, j2 = 0, this theorem is well known and the
proof is based upon the fact that at most one fermion may be present
in any given fermion state. We prove the theorem by induction. Suppose
Jι ^ 2 and suppose the theorem proved for operators R depending on
?! — 1 fermions and/2 = 0 bosons. We make two simplifying assumptions.
First we suppose that the fermion operator b^(pl) associated with the
first variable in r is a creator. (If this is not the case, replace R by JR*).
Second, we suppose that the kernel r is a continuous function with
compact support. (This assumption is permissible because it is sufficient
to prove the theorem for a sequence Rn of operators with kernels rn

converging to r in L2.) Let

-β(Pι) = f rfa, P^ •)
Then

B
and if φ is a state then

by the definition of the creator δ*. By our induction hypothesis,

\\(Nf + IΓ^-^Rψf ^ I \\(Nf + IΓ^-Wβ(Pl) φfdVl ί£
^ const. I φf f (/ |r (ft , . . .)|2 dp, . . . dph) dPl g
^ const, p ί .
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This completes the induction and the theorem is proved whenever 92 = 0.
We use a similar induction on ?2 and thereby prove the theorem in general.

Remarks. Let E be a measurable subset of the real numbers. Let
Nf(E) be the operator which measures the number of fermions with
momenta in E. If R creates or annihilates one fermion with momenta
definitely in E (that is, if there is a j0 such that r(k, p) = 0 whenever
pjo (£ E) then one of the factors (Nf + I)"1/2 in (2.4.1) may be replaced

by the factor (Nf(E) -f /)~1/2 If another fermion in R has momenta
definitely in a set F then another factor (Nf 4- J)"1/2 may be replaced
by (Nf(F) -f I)"1/2, etc. If $ has at least one fermion creator then Nf-\-I
in (2.4.1) may be replaced by Nf. If the creator has momentum definitely
in E then (Nf(E) + 7)-1/2 may be replaced by Nf(E)~1/2. If jβ has at
least one fermion annihilator then (Nf -f I) —to—1)/2 jβ may be replaced
by RN-&-U12 in (2.4.1). The operator #-to-i)/2 js onιy defined on the

orthogonal complement of the zero fermion states. Similar considera-
tions apply to the operator Nb in (2.4.1). Next we describe a circumstance
in which we can ignore two fermions. Suppose r factors into a product,
r = st, where s and t depend on distinct variables and suppose s and t
each depend on at least one fermion variable. Then

\\(Nf + I)-tfι-2)/2 (N, + /) -'-/a B\\ £ const. ||r||a .

This inequality follows directly from (2.4.1).
The next result is known.
Theorem 2.4.2. Suppose the kernel r of the operator R is a smooth

function with compact support .Then (JV6 + I)~^2 R is a bounded ope-
rator. The bound can be estimated by the diameter of the support of r and
by the L2 norms of r and a finite number of its derivatives.

Outline of proof. First suppose j2 — 0. Choose a suitable orthonormal
basis {et} of L2. (For example, and exponential (2π)~1/2 exp (ink)

times the characteristic function of a periodic interval 2πm ^ k ̂
< 2π(m + 1) would be a suitable et). We expand r as a sum of tensor
products of basis elements,

The assumptions on r imply that

Σ\^,...,lh\

is finite, and this quantity provides a bound for ||jR||.
Next suppose /2 > 0 and use induction on j2 as in the proof of Theorem

2.4.1.
We say that an operator B is infinitely small with respect to a positive

operator A if for each ε > 0 there is a K = K (ε) such that

\(φ,BΨ)\ ^ (φ,(εA + KI)ψ) (2.4.2)

for all in the domain of
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Corollary. Suppose ^ ̂  2 and j2 ^ 1 and suppose that r ζ L2 . Then
R is infinitely small with respect to N.

Proof. We can find a smooth function rQ with compact support such
that

\\r - Όlli ^ «
Let RQ be the operator with kernel r 0 . Then

X^K^Nt
<ε(Nb +

by Theorem 2.4.2 and
R-RQ^ const. ε(N + I)

by Theorem 2.4.1. The constant depends only on ̂  and this completes
the proof.

The operators we will deal with do not all have L2 kernels and so
the theorems we have proved will not be strong enough. The kernels
fail to be in L2 due to an insufficiently rapid decrease for large momenta.
The operator Fτ is much larger than N when the momenta are large, and
so we can obtain better estimates if we dominate R by powers of Fτ

instead of dominating it by powers of N. Let Fτb be the boson part of Fτ .
Lemma 2.4.1. Let R^) be a bounded operator depending continuously

in the norm topology on the variable kv Let R ( . ) have compact support and
let

R = fa*(k1)R(k1)dkl.
Then

\\(Nb + /)-V^p <ς / \\R(lc^dk, (2.4.3)

||(^τ6 + /)-V» £||2 ^ / /*&)-* IIΛίfcJP dk, (2.4.4)

\\(Fτb + /)-!/* (N* + J)-V* Λ||> ^ fμfa)-*/* \\R(k^ dk, . (2.4.5)

Proof. The first inequality is elementary and was used in the proof
of Theorem 2.4.1. We omit the proof. To prove the second inequality, let

= f a*(k)R(k)dk
A

A

Let {^41? A2, . . .} be a partition of the real numbers into disjoint mea-
surable sets. Then

Σ m>(Ai)
(Σ K*1^,) + WZΨ\\*Σ IIC^(Λ ) + ιγ^R(A}}\^ \\Ψ\\
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If we substitute (Fτb + I)-l/2ψ for ψ we can conclude that

I(ί τ5 + /)-V Λ||« g Σ il(^6(A) + i
y

Let

Then
\\(Fτb + /)-V> Λ||»

j
At this point we use a refined form of the first inequality :

\\(N*(AS) + I)-WR(A,)\\* <; / \\R(k)\*dk .
Aj

Thus

As the mesh length goes to zero, we obtain

To prove the third inequality we note that

μ(ki)τ1!2.
\ ΐ = l

Thus.F(r/2)& ^ F^WN1/2 and the left hand side of (2.4.5) is bounded
by ||(-F(T/2)& + i)-1/2^!!2 and so (2.4.5) follows from (2.4.4).

By passing to adjoints we can estimate / E (k) a(k) dk. We can obtain
similar bounds for fermion operators f b * ( p ) E(p) dp and their adjoints.
If R ( . ) has support contained in a set E then (Nb + I)-1/2 or (Fτb + 1)-1/*
can be replaced by (N^E) + Γ)~1/2 or by (Fτb(E) + I)-1/2.

We return to the operator ̂  of Theorem 2.4.1. We divide the variables
of r into three disjoint sets, A, B, and C. Let the variables 1cs and pt

in (7 be associated only with creators, let the variables kj and pt in A
be associated only with annihilation operators, and let the variables
in B be either creation or annihilation variables. Let \A\ be the number
of variables in A, etc. Let EA = ω(pi) μ(k) . . . be the product of the
energies of the variables in A. Let Ec be defined similarly.

Theorem 2.4.3. Suppose B contains at least one fermion variable. Then

|| (Fτ + I)-\c\l*R(Fτ -f I)-\A\'2(N 4- /)-<l*|-D/2|| (2.4.6)

^ const. \\EA-
τ/*Ec-

τ/*r\\2

and

^ const. ||̂ -r/4 ^c-
τ/4 r||2 .

The constants depend only on the number of variables in r.
Proof. We proceed by induction on \A\ + \C\. If \A\ + \C\ = 0 we

are in the case of Theorem 2.4.1. Suppose \A\ + \C\ > 0 and suppose for
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example that \C\ > 0 and that one of the variables in C is ^, a meson
variable. The operator on the left side of (2.4.6) can be written

where

as in the proof of Theorem 2.4.1 and

P(kί) = (Fτ + I + μ(k1))-^WlzE(k1) (Fτ + I) \A\IZ (N

Now

so our induction hypothesis implies that

IPft)!2 <: const. / μτ(kλ] EA-* Ec~
τ \r(kv . . .)|2 dk2 . . . .

Assume that the kernel r of R is continuous with compact support. Then
the hypothesis of Lemma 2.4.1 is satisfied, and so

\\(Fτ + I)~1/2f a* (&ι) P(kl) dk^ < const. / EA~
τ E0~

τ \r j2 d\ dk2....

The case of a general kernel follows from the case of a continuous kernel
Λvith compact support by limits. This proves (2.4.6). The proof of (2.4.7)
is similar.

Remarks. There are some obvious refinements in this theorem. We
may replace some of the factors (Fτ ~f- /)~1/2 by boson operators (Fτ 6 + I)~1/2

and we may replace some by fermion operators (Fτf -j- I)"1/2 .If certain
particles are created or annihilated only with momenta in some set E
then we can replace the corresponding operators (Fτ -j- I)"1/2 by the
operators (Fτ(E) -f I)"1/2. If the kernel r factors into a product, r — st,
and if s and t depend upon distinct variables and if each factor con-
tributes a fermion to B then one of the factors (Nf 4- I)"1/2 in (2.4.6)
and (2.4.7) may be omitted. This does not follow from the theorem but
is proved by induction, as the theorem was.

To illustrate what this theorem means, we list the three special
cases which arise from a trilinear boson fermion coupling.

Case I . R = f ra* (k) 6* (pj V* (pz) dk dpl dp2

Case 2. JB = / ra(k) δ* (pj bf * (p2) dk dpl dpz

Case 3. jB = / ra* (k) b* (p-^ b (p2) dk dρ1 dp%
Corollary. Suppose
Case 1. μ~τ/2 r ζ L2 or ω-f"7/2 r ζ L2 or ω2~

τ/2 r ζ L2

Case 2. μ~τ/* ωrτ/a r £ L2 or μ~τ/* ω2~
r/2 r ζ L2

Case 3. μ~τ/* ω2~
τ/2 r ζL^ .

Then ^ is infinitely small with respect to jFτ .
Eemark. The restrictions on r in case 1 are the strongest, and the re-

normalizatioii associated with this term is the most likely to be infinite.
25 Commun. math. Phys., Vol. 5
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Proof. We consider only case 3. We find a smooth function r0 with
compact support such that

\\μ-τ/*ω2-
τ/*(r-r0)\\2<s.

If RQ is the operator with kernel r0 then RQ is infinitely small with respect
to Fτ by the corollary to Theorem 2.4.2. Also

\\F, + I)-W(R - R0) (Fτ + /)-va|| < const ε .
Thus

\(ψ, (R ~ R0) ψ)\ ^ const. ε\\(Fτ + /)V2 ^p <g

^ const. ε(ψ, (Fτ -}- I) γ) .

This completes the proof in case 3. The remaining cases are similar.
Proof of Lemma 2.3.1. The assertions concerning R(l, τ) follow from

Theorem 2.4.1 and Lemma 1.2. The treatment of R(3,τ) will also be
based on Theorem 2.4.1. Because we need to be able to neglect the effect
of two fermions in R(3, r) instead of the one allowed by Theorem 2.4.1,
the reduction is now more complicated. Let

r= (Σ ωf) (Σ ω^1 (ω3 + ω4 + μ)~l q2(Pι>P2, &) q^(p^ 2>4» *)

Then

/ (/ r|2 dp}W dk < 1(0)! + ωa)-*1-*) §a||a || (ω8 + ω4 + /)-1 gJU

and the norms on the right are finite. (See Lemma 1.2 and its proof.)
Thus for almost every k,

B(k) = f r(p, k) δ* (ft) 6'* (ft) &* (p8) 6'* (p,) dp

defines an operator on F (Lemma 1.1) and

jB(3,τ) = / R(k)dk

\\R(3, τ) (N + I)-1]! < f \\R(k) (N + /)-i|| dk .

There is a similar inequality between the cutoff operators 7£(3,τ)ρ

and -R(3, τ)ρσ and the corresponding k dependent operators R(k)ρ and

B(k)βa.
Because of the factor (Σ <*>l\ the kernel r ( . , k) is a sum of four terms.

i

Except for the factor (£ ωΛ"1, each term splits into two factors, the
i

first depending only on pλ and p2 and the second depending only on p3

and £>4 . Let f0 be the characteristic function of the interval [j co0 , (j + 1) co0).
Let

ω(ί') = ω1 + α>2 -f-

Then
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We substitute this in one of the four terms contributing to r( . , k)
and we obtain infinite series rίm( - > &)• Furthermore each term in

this series factors,

r*m(P> k) = *jm(Pι,P*> k) tίm(ps, p ± , k ) .

Where /^(ω3 -f ω4) φ 0 we have \δjω(ω^)~'1 5g 2~l and so

jm

We assert that

j

is finite. By Theorem 2.4.1, we then conclude that

is finite. We have a similar inequality for B(k)ρ and E(k)ρσ and this tells
us the operators

B(3,τ)6(N + I)-\ Λ(3,τ)β β (# + /)-*

of Lemma 2.3.1 are bounded. The difference between these operators
and their limits (as ρ -> oo or σ -> <χ>) can be estimated by the same argu-
ment. For example

is bounded by a finite sum of terms like

IΣ( f \rin(p,k)\*dp)Wdk.
JΊM \Pi\>Q

This term tends to zero uniformly in a by the Lebesgue dominated con-
vergence theorem. Thus the lemma will follow from this assertion.

The integral we asserted to be finite is bounded by

CO

? = 1

oo

x Σ (f (Jωo)~l~γ(ω3 + ω4 + μ)~l~γ fj |ίι|2 dp3 dpi dk)1/2

j = l

for some positive γ depending on τ. The first integral is finite. (See the
proof of Lemma 1.2.) Thus the above quantity is bounded by

const. Σ Γ1-"1'2 Σ II(ω8 + ω4 + ^)-d-v)/a /, q
V = ι / V = ι

^ const. ||(ω3 + ω4 -f
and this is finite by Lemma 1.2.
25*
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3. The Definition of jEΓrβn (Beginning)

3.1. Introduction

In Sec. 3 and Sec. 4 we define Hιen. In Sec. 3 we show that
Hl (=HτQn — F2) is an operator on the dense domain @HI constructed
in Sec. 2. This means that if y ζ &HI then H^y can be defined and
is in F. The definition of Hl is the main step in defining #ren. The
reason for this is that Hl contains all of the infinite renormalizations
in this model. (The fermion mass renormalization, which is associated
with F2, is finite, and we omit it entirely.) In addition to defining H-^ψ
we show that our definition agrees with a limit of cutoff renormalized
operators Hlσ. For φ ζ &T we set

ψβ=Tβaφ

and we recall that in Sec. 2 we showed

lim <ψa = ψ
σ~>oo

exists (and equals Tρφ). We will show

lim Hla'ψa
σ— >oo

Thus the quadratic forms converge,

It will follow from this that H ̂  is a symmetric operator.
In Sec. 3.2 we choose the finite σ-dependent renormalization terms

L(σ) for the cutoff operator Hla. Then

fflσ = #0 + Vlβ + L(σ).
We will see that

H^TQa = TQσ HQ — IIQCS QQσ 1 2ρσ : + -^Iρσ : (QϊQβ ~~ L "θ> •*• V2ρσl) -̂  2ρσ :

We depend upon a formula of FRIEDBICHS [2] which gives P(σ) and

P(a) for which

^lσ ^ρσ ~ ^iρσ '• P (&) ^2ρσ :

L(σ)Tβa=Tleσ:P(σ)T,eσ:.

This formula will be given in Sec. 3.3. To define H± as the limit of the
Hlσ we add these formulas and obtain

The last two terms in the parenthesis have a sum which approaches a
limit (Lemma 2.2.1). It only remains to show

-Qβa+P(σ) + P(a) (3.1.1)
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approaches a limit as a -> oo. None of the three terms in (3.1.1) approaches
a limit as σ -> oo and so we must take advantage of cancellations to find
a limit for the sum. These cancellations, of course, are the well known
infinite cancellations of Quantum Field Theory (in so far as they are
present in the model we consider). These cancellations are performed in
Sec. 3.5 and Sec. 3.6. There are two reasons why the limit P(oo) of the
P(σ)'s does not exist. One portion of P(oo) maps vectors in Γ into func-
tions which are not in L2, due to the fact that they decrease too slowly
at infinity. This part of P(oo) is cancelled by — QQ. Another part of
P(σo) can be described loosely as in integral operator with a kernel
identically equal to plus infinity. This part of P(oo) is cancelled by P(oo).

3.2. Definition of H10

We now give the definition of a cutoff version, Hlσ,oί our operator H1 .
This can be done directly because the renormalizations in Hlσ are finite.
We set

Hla = H0 + Vlβ + δmlf :Φa(xγ: h(x)*dx + cal . (3.2.1)

Here δma and cσ are the positive constants defined by the equations

δm* = 4ln(2σf+ 1) (3.2.2)

cGI^V10-o~Qlσ. (3.2.3)
2,1

The meaning of the symbol on the right side of (3.2.3) will be explained
in Sec. 3.3 and does not concern us now.

Theorem 3.2.1. Hlσ is a symmetric operator on the dense domain

&HI<J defined by

and

HQTρσφ = TρσHQ + Tlρσ(-Qρσ + Q2Qΰ - [£Γ0, ΓQ2ρσ]) T2ρσφ (3.2.4)

for φ ζ @τ r\ &HO .

Proof. The results of Sec. 2 imply absolute convergence of the power
series and so we may compute term by term. We get

[HQ9 Tρσ]φ=[H0)Tlρσ]T2Qσφ+TlQσ[HQ, T2ρσ]φ

and this gives us (3.2.4). The operator Vlσ has an L2 krenel, so Vlσ

is an operator on the domain of jV3/2, and Flσ is defined on ̂ .̂ We
compute the kernel of

/ :Φσ(x)*:h(x)*dx . (3.2.5)
Let
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Then (3.2.5) equals

= f(fi*ίi)(-k-l) :Φσ(k) Φa(l) : (μ (k) μ (Z))-1/* dk dl .

The kernel is in Lz . (This is independent of the momentum cutoff σ on
the field Φσ.) Thus (3.2.5) is an operator defined on &N and on &HI

for σ ̂  oo.
3.3. Diagrams and Attached Products

We use diagrams in the sense of FBIEDRICHS [2] to express operators.
A diagram with I solid legs pointing to the left and m pointing to the
right denotes an operator which annihilates m nucleons or antinucleons
and creates I of them. Similarly the dotted lines denote boson annihila-
tors and boson creators. The diagram then represents an operator such
as (1.7), that is the integral of a function times the Wick ordered product
of the annihilation and creation operators indicated by the diagram.
The function is the numerical kernel of the operator and we see that the
operator is uniquely determined by its numerical kernel together with

Fig. 1

its diagram. For example Ql and Q2 have diagrams given by Fig. 1.
The product R8 of two such operators R and S does not have the same
form since the annihilation operators in R follow the creation operators
in 8. However by use of commutation (or anticommutation) relations
we can replace a ( k ) a * ( k f ) by a*(k') a(k) + δ(k — kf) (for example).
After a number of such replacements, the product RS is expressed as a
sum of terms of the form (1.7). In each term a certain number c& of the
pairs a(k) α* (kr) have been replaced by a δ (k — kf) and a certain number
cf of the fermion pairs b(p1) b*(p2) or b' (p ̂  b'*(p2) have been replaced
ky δ(p1 — p2). We denote this term by the symbol

R -o- 8
Cf>Cb

and call it the contribution to the product with cf fermion contractions
and cb boson contractions. We associate a diagram to this operator. It
is the diagram obtained by joining cf of the annihilating fermion legs

-ft- 3 .................. 3
Fig. 2

of R each with a creating fermion leg of S, and similarly connecting c&

of the boson legs. That is, the legs corresponding to contracted pairs are
joined. Thus — Q% is given by Fig. 2.
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Following FRIEDRICHS [2] we define a connected product

P- :R^...Rn:

to be the sum of all contributions to the ordinary product

P .B,...^:

in which at least one creating leg from each factor Rj is contracted with
an annihilating leg from P. If n = 0, we define the connected product to
be P. In particular we will be concerned with

Fσ- :ΓQβ":.

Since Vσ has only three legs, this connected product is zero if n ^> 4.
Of basic importance to us is Friedrichs' formula [2]

CO

V1Tβ= Σ (-irW)-1:^-^ :ΓQ»:)Tβ:.
n = 0

In our case this reduces to

Vl Tβ = Γlρ : ( V1 - V, -o- ΓQβ + 2~> Vί - : ΓQ* : - 6^ Vί - : ΓQ* :) T2β:

(3.3.1)

The quantity in the parenthesis is the limit P(oo) of the term P(a) of
(3.1.1). Let Δa be the cutoff boson mass renormalization counterterm
proportional to (3.2.5). Friedrichs' formula also tells us an expression
for

(3.3.2)
The quantity in the parentheses is the term P (a) of (3.1.1).

Since the right sides of these formulas (3.3.1) and (3.3.2) appear con-
siderably more complicated than the left sides, we explain why the for-
mulas are useful. The formulas express an ordinary product (of an operator
times a Wick exponential) as a sum of terms, each one of which is Wick
ordered. Thus each term has the form of the operator R of (1.7). Such
an operator causes trouble only when the kernel r is bad. Thus the
infinities appear in the kernels of certain terms in the parentheses in
(3.3.1) and (3.3.2). It is easy to identify the infinite terms and to pair
them together in such a way that the infinities cancel. For example the
key cancellation of the theory involves the boson mass renormalization
and occurs in the sum

4ea(σ) = A, - Vlβa -o- (ΓQlβa + ΓQ2βa) .
2,0

In Sec. 3.5 we show that Zlren(σ) has a finite limit as a -> oo.
We now give Friedrichs' formal derivation of his formula. Any pro-

duct V : Gn : can be written as a sum of those contributions in which
V is contracted with j of the factors of: Gn:} letting / run from 0 to n.
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The contribution with j factors contracted is

(*):(F- :β* :)&>-':

since there are n\jjl(n — j) I choices of the j factors. Thus

and
V:eG: = Σ(n\ )~1 V:Gn:

3.4. Convergent Contributions to H^

The formula (3.3.1) is formal and it contains divergent integrals,
i.e. infinities. The next lemma deals with those contributions to (3.3.1)
which are not divergent.

Lemma 3.4.1. Let R(β) be any one of the following operators and let R
be the corresponding operator obtained by omitting the cutoff a. Then
hypotheses a) and b) of Theorem 2.2.2 are satisfied.

-6-1 Flσ- :Γ(2ρ<,»: (3.4.1)

2-ι Flσ - : (ΓQlQa + ΓQ2ρσ)
2 : - Aa (3.4.2)

2-ι F lσ- :Γρ3ρσ

2: (3.4.3)

O + ΓQ2Qσ) ΓQ,Qa: - Bσ (3.4.4)

- Vla -o- ΓQ3ρff + Ca (3.4.5)
2,0

- Vlβ -o- ΓQβa - Vv -o- ΓQea . (3.4.6)
1,0 1,1

Definition of A and Aa, B and Bσ, C and Cσ. The quantities A, B
and C are infinite quantities given by certain terms which contribute to
2-1 Fj -̂  :(ΓQle + ΓQ2ρ)

2:, etc. The difference

(for example) is defined as the sum of all terms contributing to the first
part 2"1 F! -̂  -ΓQQ

2: which do not contribute to the second part, A.
The terms contributing to A, B and (7 are expressed by the diagrams in
Fig. 3. Aa, Ba and Ca are obtained by replacing V1 by Flσ and QQ

by Qρσ in these diagrams, the integrals involved in defining Aσ etc. are
finite and A0, etc. are operators (Lemma 1.1). A could equivalently be
defined by the formula

A = (V, -o- ΓQlβ) -o- (ΓQlβ + ΓQ2β) . (3.4.7)
0,1 2,0
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-4 =

B - CD Ξ)
ΓQZQ

Fig. 3

This has only a formal interpretation, but the corresponding formula

Λ = ( Via -o- ΓQlQσ) -o- (ΓQlQσ + ΓQ2ρa) (3.4.8)
0,1 2,0

has a rigorous meaning. To get a similar description of B and C, we must
work with the definition (1.6) of the kernel of Q3. Both B and C consist
of all terms in which both fremion legs from Q2ρ (as part of ΓQ3Q) are
contracted with V1 . In other words, in the B and C terms, the variables
P! and pz of ΓQ3 are contracted with V1 . Now Bσ has a simple definition
in terms of Cσ ,

Ba = Cσ -o- ΓQlβa (3.4.9)
0,1

but Cσ cannot be expressed as an attached product of V and the ΓQi .
Thus we write out the integral defining Cσ .

(2>a)^

X (ω' + ω" + ωx -f ωg)"1 (ωj, + ω2 + μ(l}}^ X

X ?2ρ<r(3>', P"> l) $ιQσ(Pι>P*, l) dP dk dl (3.4.10)

Proo/ of Lemma 3.4.1. Only the fermion pair annihilation terms from
V1 enter in these attached products. Except for five terms (certain
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contributions to (3.4.2) and (3.4.4) and all of (3.4.6)) both fermion legs
from F! are contracted and they are contracted either with distinct
factors of :ΓQQ

2: or of :ΓQQ

B: or else with two variables of ΓQ3Q and in
this case the variables are not both from Q2ρ. We multiply and divide
by ωτ, 1/4 < τ < 1/2, in each of the integrals corresponding to the fermion
contractions in (3.4.1)— (3.4.5). We multiply the ΓQQ factor by ω(pj)τ

and divide the F factor by a)(pj)τ, where ps is the variable in question.
The result does not change the products (3.4.1)— (3.4.5) but Vl is re-
placed by an operator W with a kernel w bounded by

const. /ι(fc)-α/»+* ω(p1)-v ω(p2)~τ (\ ± k + Pl + p2 \ + l)-<W+ ,

ε = (τ — (l/4))/2 > 0. Along rays through the origin this function is
bounded by const, (ρ + l)-(3/2)-ε. Here ρ is the distance from the origin
and the constant depends upon the ray. However the constant is in L2

on spheres, so w is in L2 . The factor from ΓQQ is also replaced by a new
operator and the new operator has a domain containing 2T. To see
this we consider several cases. ΓQlQ is replaced by an operator whose
kernel is bounded by the magnitude of the kernel of jβ(l, τ), and this
was shown to be in L2. When restricted to a fixed subspace D(n, K),
ΓQ2ρ is replaced by an operator with an L2 kernel. (See formula (1.11)
of Lemma 1.2.) ΓQ3ρ is replaced by an operator whose kernel is bounded
by the L2 function (1.10). Thus the new kernels are all in L2 and the
assertions a) and b) now follow from Lemma 1.1.

The exceptional terms can be treated by a similar argument. Here
we make use of the fact that φ ζ &HO- Thus if φ is multiplied by CD(PJ),
the resulting state has a finite norm, (ω (PJ) φ is in L2 , but is not anti-
symmetric in the #>'s.) This completes the proof.

The fermion pair creation part of Fj is Q1

Jr Q2, and the fermion
pair annihilation part of Fj is V1 — Q1 — Q2 . The latter also gives a
convergent contribution to (3.3.1).

Lemma 3.4.2. Let

Then hypotheses a) and b) of Theorem 2.2.2. are satisfied.
Proof. By Lemma 2.2.1 we can replace the commutators [HQ, ΓQ2Qσ]

and [fiΓ0, ΓQ2Q] by Q2Qσ and Q2Q respectively. The operators Ql - QlQ

and Q2 — Q2Q have integrands which vanish for large fermion momenta,
and it is not hard to see that the integrands are in L2 . In view of Lemma 1 . 1
it is sufficient to consider

Λ»= Vlσ-Qlσ-Q2σ

R' = F! - Ql - Q2 .
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The fermion operators in E' and E' (a) are annihilators. Thus we can
multiply and divide by ω (p^ , i = 1, 2 in the products R' φ and R' (a) φ,
where φ ζ D (n, K ) r\ &π% This is equivalent to replacing R' by an opera-
tor with a kernel in L2. (See formula (1.12) from the proof of Lemma 1.2.)
Also the state φ is replaced by an unsymmetrized state φ and

Thus R(HQ + 7)~2 is a bounded operator from D(n, K) r\ &πl into F,
and the same estimates show that E' (σ) — Rr tends to zero as a -> <χ>,
as required by b).

The same argument proves
Lemma 3.4.3. Let

0,1

B=-V1 -o- ΓQle - Q3e .
0,1

Then hypotheses a) and b) of Theorem 2.2.2 are satisfied.

3.5. The Divergent Boson Self Energy Contribution to H±

Let Dρσ be the operator

DQa - Via -o- (ΓQlea + ΓQ2Qσ)
2,0

and let Δβ be the cutoff boson mass renormalization counterterm in
(3.2.1). If the cutoff σ is removed from either of these operators, an in-
finite expression is obtained which does not define an operator. None-
theless their difference

Λen = Δ ~ DQ

can be defined as a limit of cutoff differences

^ren(ff) = Δ0 - Dρσ .

Lemma 3.5.1. Let R(a) denote one of the operators

ΛenW (3.5.1)

4e» -o- ΓQlβa (3.5.2)
0,1

4en(σ)-o-:Γ<2lρΛ (3.5.3)
0,2

Then the limit R exists and hypotheses a) and b) of Theorem 2.2.2 are
satisfied. In (3.5.2) and (3.5.3) the limit can be evaluated by removing the
cutoff,

lim 4en(σ) -°- ΓQiQ* = 4en -o- ΓQlρσ 0,1 0,1

Hm zJren(σ) -o-: ΓQlρσ

2: = Jren -o-: ΓQlt*: ,
σ 0,2 0,2

with strong limits on Dτ .
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Proof. Διeτί(a) divides naturally into a sum of four terms and each
of the terms has the form of (1.7) with an L2 kernel. These kernels, of
course, depend on σ, and as σ -> oo we will prove that they converge in L2

to limits. All the statements of the lemma follow directly from this
convergence, with the help of the Lemma 1.1. The limits of the kernels
permit us to define the operator zlren. The limits are the kernels of four
operators whose sum is Διen:

The proof that the kernels converge is complicated by the fact that
we consider several different regions of integration and that we use
different estimates to obtain convergence in each region. If Ω is a meas-
urable set in Euclidean four space E*, we define

(l+\ξ\γi(μ(k)μ(l))-Wdpdkdl.

We have Δσ(E*} — Δσ because

2~1 dη dξ = dpl dp2 = dp
and

δma = 4ίn(2<r/ + 1) = 2 /'(I + [f |)-ι df .

We also define

DQAΩ) = f χQah(η-l)h(-η-k):Φσ(k) x

X (ωι + ωΓ-^-T + ^Γ1 + ω a + / : ̂ (*) A«(0)-1/a ^to5 ^2)
2 dp dk dl

where χga is the fermion cutoff function, μ = μ(l) and S is given by (1.1)
and (1.2). Here also we have DQσ(Eί) = JDρtf.

The expansion of Δσ as a sum of four terms comes from substituting
the definitions

Φa(k) = aσ(k) + α*(-*); Φσ(Z) - α t f(Z) + «?(-?)

in our formula for Δa. In the same way we have Dρσ and Διen(σ) written
as a sum of four terms. When ρ = 0 in DQa(Ω), the lower or ρ cutoff
is missing entirely. We call this operator Dσ(Ω).

We introduce the region

We will prove that Dσ(~ Σ) and Δσ(~Σ) each have limits as σ->σo.
Thus the infinite mass renormalization is associated with the region Σ.
We also introduce the region Λa defined by the equation

\ωl ^ ω2 — μ — i\ ^ μa .
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We prove the convergence of the kernels in a sequence of lemmas.
These lemmas will thus prove Lemma 3.5.1.

Lemma 3.5.2. The kernels of Da(Λ^/8) converge to a limit in L2 as σ -> oo.
Proof. The second and fourth quadrants of the p1, p% plane contribute

to the kernels of Dσ (Λ3/8) functions bounded by the function

const. ( | fc+ l\ + I)'1 μ(ty-V* μ(l)-1'* f (\η ~ l\ + 1)~2 dη , (3.5.4)

which is in L2 and does not depend on a. In the first and third quadrants
of the p1 , p2 plane we use the bound

£2 < const, (cor1 + ωg-1)2 . (3.5.5)

These two quadrants contribute to the kernels of Dσ(Λ$/8) functions
bounded by the function

2μ

const. ( | i fe + l\ + I)-1 μ(k)~1/2 μ(l)-V* f ω'1 dω , (3.5.6)
ω0

which is in L2 and does not depend on σ. For fixed Z, the definition of Λ3/8

puts a bound on the magnitude of the pi which enter into Dσ(/l3/8).
Thus for fixed I, the kernels are independent of σ if σ is large. The lemma
now follows from the Lebesgue bounded convergence theorem

Lemma 3.5.3. The kernels of Dσ (/!3/4) converge to a limit in L2 as a -> oo.
Proof. We can work in the complement to Λ^/8 and thus we can use

the estimate

\ωι + ωz — μ ~ i ~1 = μ~3/8

The second and fourth quadrants of the p1} p2 plane contribute to the
kernels of Z>σ(/l3/4) functions bounded by (3.5.4) and the first and third
quadrants contribute functions bounded by (3.5.6). The kernels converge
pointwise (for fixed k and I) as before and the lemma follows from the
bounded convergence theorem.

Lemma 3.5.4. The kernels of Dσ(~ Σ) converge to a limit in L2 as
a -> oo.

Proof. We work in ~Λ.3/4 and thus we use the estimate

!<*>! + ω2 — μ — i\~λ ^ μ~3/4 g const. (ω1 + ω2)~3/4 .

We introduce the cone Σ' defined by the inequality ]^| ^ 2 \ξ\. The
kernels of Da(Σ' — /l3/4) are bounded by

const. (\k -f l\ + I)-1 (μ(k) μ(l)~1'2 f (ω1 + α>2)-2-(3/4) dp .

(We have used (3.5.5).) On the complement of Σ',

(ω1 + ω2)~3/4 ^ const. (\ξ\ + 1)~3/4 .

Thus the kernels of Dσ(~ (Σ w Σ' w /!3/4)) are bounded by

const. ( | fc + l\ -f I)-* μ(k)-W μ(l)~W M (3.5.7)
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where
2M

M = f μ ( l ) - * / * (\-η + l\ + I)-* / (\ξ\ + l)-*/*dξ dη g
-2k!

^ const. / μ (Z)-3/8 M1/* (|- 77 + Z| + 1)

is bounded independently of I. The kernels converge point wise and the
lemma is proved.

It is easy to prove that the kernels of Dρσ — Dσ converge.
Lemma 3.5.5. The kernels of Δ0(~Σ) converge to a limit in L2 as

a -> oo.
Proof. The kernels are bounded by a function of the form (3.5.7)

where
2W

M = fμ(l)~*/* (\-η + l\ + I)-2 / (W + l^dξdη
-2\η\

is bounded independently of I. The kernels converge pointwise and the
lemma is proved.

Lemma 3.5.6. The kernels of Δa(Σ r\ Az/^) converge in L% as σ->oo.
Proof. The kernels are bounded by a function of the form (3.5.7)

where
2μ

M = f μ ( l ) ^/*(\~η + l\ + l)-*f (\ξ\ + 1)'* dξ dη .
-2μ

The cutoffs in Δa and in Da are defined differently. Before comparing
these two operators, we eliminate this difference. Let Ωσ be the region

{bii ^ <*/ OΓ W ^ f f f } r \ Σ .
Lemma 3.5.7. The kernels of Δϋ(Ωσ} converge in L2 as a -> oo.
Proof. The kernels are bounded by (3.5.7) where

20/
M= f \-η + l\~* f (Iξl + l^dξdη^

W^Of 2σ/-M

< const. In (-^ - - — | = const.- \ 2 σ / - σ / /
since \η\ ̂  2"1 \ξ\ in Ωσ. For fixed η, the integrals

2σf-\η\

converge to zero and this implies that the kernels converge pointwise.
Lemma 3.5.8. The kernels of

Δa(Σ ~ (Am w Ωσ)) -Dβ(Σ~ Am)

converge in L% as a -> oo.
Proof. In Σ ~ /t3/4 we have

|4- S2\ ^ const. (\ξ\ -f I)-2

K i l l + I)'1 - K + ω2 + μ)\~ι < const. μW (\ξ\ + I)-5/*
K i l l 4- I)-1- (ωl + ω2 ~ μ - i)\~l < const. ̂ (||| + l^

^ const. 3
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Thus the kernels are bounded by (3.5.7) where

M = f(\-η + l\ + I)"2 / (III + I)"5/* dξ dη .

This completes the proof of Lemma 3.5.8 and Lemma 3.5.1.

3.6. The Self Energy as a Divergent Internal Line in Other Diagrams

We show that the infinities cancel in the sums

-Δ-o-ΓQίe-C + A = E (3.6.1)
0,1

2-1 A -o- Γ<9lρ

2 + B = F . (3.6.2)
0,2

To this end we define the sums

0,1

Fβ=2-*Δβ-o-ΓQlβtt*+Ba.
0,2

These sums are well defined, but the expressions (3.6.1) and (3.6.2)
for E and F have only a formal meaning.

Lemma 3.6.1. There are operators E and F with the following property.
The pair E, Ea and the pair F, Fσ each satisfy the hypotheses of Theorem
2.2.2.

Proof. In view of Lemma 3.5.1 we can replace A by D in the above
formulas without loss of generality. Thus we define

E'a = ~Dσ -o- ΓQlQσ -Cσ + Aσ
0,1

and we find an E1 so that E'a and E' satisfy the hypotheses of Theorem 2.2.
Now Dΰ -o- ΓQlQa can be written as the sum of two terms, one for each

0,1
of the two boson variables in Dσ which can contract. In fact

Dσ -o- ΓQlQσ = (Flσ -o- ΓQlea) -o- (ΓQlQσ + ΓQ2QO) +
0,1 0,1 2,0

+ / 6* (ft) &'* (pa) [«*(*) &;(?', p", k) + a(k) <?fσ(/, p", k)] x

X (ω' 4- ω" - μ(l) - i)"1 (ω1 + ω2 + μ(l))~l q2ρσ(p', p" , 1} X

X 2iρ*(ft» P*> 0 dpdkdl .

The first term is Aσ itself (cf. (3.4.8)) and results from the contraction
of the boson from the Vla part of Dσ = Flσ -o- (ΓQlQσ + ΓQ^Qσ).

2,0
We call the second term C'a. It results from a contraction of the boson
from the ΓQ2ρσ part of Dσ. (See Fig. 4.)

We observe that the integrands of — Cσ and C'a are almost identical
(cf. 3.4.10) and differ only in the energies ω;, etc. which enter into the
denominators. The kernel of the operator — C'a — Cσ is a function of the
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C" =

variables p1, p2, A;. We assert that the kernel is in Z2 as a function of these
variables and converges in L2 to a limit as σ —> oo. This limit is then the
kernel of an operator

E' = -C' -C

and the assertion will prove half of Lemma 3.6.1. However it will prove
the other half also because one can check that

0,1 0,2

By definition of Bσ, we have

Ca -o- ΓQlβa = Bβ

0,1
and hence

(2-ι Zlren(σ) -o- Γρiρσ

2 + 2~* Da -o-
a ° 0,2 0,2

= lim (2-ι ZU(<r) -o- ΓQίt<? + (C'a + Ca) -o- Γ<2lρσ

2) .
σ 0,2 0,1

Thus by Lemma 3.5.1 and our assertion, F = limFa exists and the pair
a

F, Fσ satisfy the hypotheses of Theorem 2.2.2.
To prove the assertion we deal separately with the contributions to C'0

and Cσ coming from the region /l3/4 described by the inequality

\ω'+ ω" - μ(l)\ ^ μ(l)*l* .

By Lemma 3.5.3, this contribution to Da has L2 kernels and the kernels
converge to limits as σ -> oo. There is a similar convergence for the kernel
of ΓQlQ(S (Lemma 1.2). Thus the contribution to C'σ coming from /!3/4

has an L2 kernel and the kernel converges in L2 as a -> oo. This last
statement applies to Cσ also because on /l3/4 the kernels of Cσ are bounded
by the kernels of C'σ. This is based upon the fact that

(α/ + oj" + coj + ωg)"1 ^ const, (ω' + ω" — μ ( l ) — ΐ}~~1

on ΛS/I .
Next we consider the contribution to the kernels of —C'σ — Ca

coming from ~/l3/4. We use the identity

I (α/ + ω" -f ω1 + ω2)~l (ωl + ω2 + μ)~l — (ωf + ωff-μ-~ ί)~l (ωλ + ω2 -f- μ)~l

= \(ω' + ω / r + ωj + ωa)-1 (ω' + ω" - μ - ^(l + i(ω^ + ω2 + ^α)-

^ const, (ω' + ω'')-1-26 (ω1 + ω2)-^2)-ε
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on ~/!3/4, where ε = 1/12. Thus these parts of the kernels are bounded by
a multiple of

/ (o)' + ω")-1-" [&(?', p", i)| + |g,(jp', p", fc)|] |&(p', p", Z)|
K + ω2)-<V2)-e j&fo, p,, Z)| [dp1 dp" dl .

The function above is in Lz and in fact its Lz norm is bounded by

|£2|]||2 !(«,' + ω»)-σ/ί>- y , x

The kernels of — C'a — Cσ converge pointwise (for fixed p1 , p2 , k) and by
the Lebesgue bounded convergence theorem, they converge in L2.
The lemma is proved.

3.7. The Definition of H±

It is now easy to prove the main result of this section.
Theorem 3.7.1. Let φ ζ 2T r\ ^H^ and let

As σ-> oo, the limit of Hla^a exists. We call this limit H^y, so

H-Lψ = limHlσψσ .

This equation defines H^ as a symmetric operator with a dense domain &HI .
Proof. We need (3.3.1) and (3.3.2). The formal proof we gave in

Sec. 3.3 involved rearrangement of the power series. By Sec. 2 the power
series converge absolutely. Thus the rearrangement is justified and the
proof of these two formulas is rigorous. We add (3.2.4), (3.3.1) and (3.3.2)
to obtain

Hlσψσ= Tlρ0:B(a)T2Qσ:+ TQGHQ

where
Λ(σ) = Qβa + P(σ) + P(σ) - [H0, ΓQZeσ] + Q2ρσ

0,1

+ [- Vίo -o- ΓQQσ - Vlσ -o- ΓQeσ]
1,0 1,1

+ [- Vla -o- (ΓQlea + ΓQttσ) + Δa}
2,0

H- [- Vι, -o- ΓQ3tσ + Oσ] +
2,0

+ [- Flσ -o- ΓQlβa + cal] +
2,1

+ [2-ι Flβ -̂  :ΓQeσ*: - Aa - Ba} +

+ [- Δσ -o- ΓQeσ - Ca + Aa] +
0,1

+ [2-Mσ-o- :ΓQ\a: + £„-] +

+ [-6-1F1'σ- :Γgρβ>:].
26 Commun. math. Phys., Vol. 5
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According to the lemmas of this section, each term in the brackets has
a limit as a -> oo and the convergence satisfies the hypotheses of Theorem
2.2.2. Thus there is a limit operator E and the pair E (a) and E also satisfy
these hypotheses. Thus

lim :R(σ)T2βa:φ= :RTza: φ
a

and since the convergence takes place in a subspace with a bounded
number of particles, we have

}imTlρσ :B(σ) T2ρ(J: φ = TlQ :ET2ρ: φ
σ

by Theorem 2.3.2. Again by Theorem 2.3.2

HmTQσH0φ= TQHQφ.
Thus the limit

exists. If ψ = 0 then φ — 0 since TQ is invertible (Theorem 2.3.1).
Thus %=Teσφ = Q, and so JE^y = lim^O = 0. It follows that H^
is an operator. Hl is symmetric because each Hla is symmetric. H^ is
densely defined because of Theorem 2.3.3.

Eemark. Theorem 3.7.1 is independent of a finite change in the re-
normalization constants. Let E be the operator

R = af :Φ(x)*:h(x)*dx + bI

(with a and b finite numbers). What we are asserting is that if H^ is
replaced by H1 + E and HI<y is replaced by HIσ -f E then the theorem is
still true. To see this we note that the first term in E has an L2 kernel
when expressed in momentum space. Thus the domain of E contains the
domain of N and this contains the range of TQ and Tρσ for each a.
This proves the assertion.

4. The Definition of lfrθn (Conclusion)

We complete the definition of HΐQn as a symmetric bilinear form on
DHι x DHι . Since

#ren = &l + ^2 >

it only remains to define F2 as a bilinear form. This can be done quite
easily. After multiplying and dividing contracted fermion variables by
ωτ as in Lemma 3.4.1, 4"1 < τ < 2"1, we can replace F2 by an operator F2

with an L2 kernel. The desired result then follows from the trivial Lemma
1.1. We do not follow this method, however. Instead we prove a sharper
result. We prove that F2 and F2σ define bilinear forms which are infini-
tely small with respect to Fτ, uniformly in σ, for 2""1 < τ < 1. Thus we
prove that for each ε>0 there is a K = K(ε) which does not depend
on σ such that

I(V, V**Ψ)\ ^ e(ψ, (Fr + KI)ψ) . (4.1)
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We also prove that
limσ (ψl9 F2σ^2) = (ψί, F2^2) (4.2)

for ipi , ̂ 2 in the domain of J7//2. These two facts combined with Theorems
2.3.4 and 3.7.1 give us the next theorem, which is a summary of the main
results of this paper.

Theorem 4.1. Hΐen is a symmetric bilinear form defined on DHι x DHι.
jjfren is a limit of the bilinear forms #ren(σ) = Hla -f F2σ in the following
sense. If

ψa = TQσφ, <pt@Tr\@Ho

2

then ψa -> ψ = TQ φ and

(ψ0, Hτen(σ) ψa) -> (φ, HΐQnψ) .

Remark. This theorem is independent of a finite change in the re-
normalizatiori constants.

Proof of (4.1) and (4.2). F2 contains four terms corresponding to
emission and absorption of mesons by nucleons and antinucleons. These
terms are all similar and we consider only one, corresponding to emission
of a meson by a nucleon. This term has the form

R = fr(p1,p2,k)a* (k) δ* (pj b(pz) dp1 dp2 dk .

We assert that
μ-τ/2 ω2~

τ/2 r £ L2 . (4.3)

Then F2 and F2σ are infinitely small with respect to Fτ for any given or,
by the corollary to Theorem 2.4.3. From the theorem itself we conclude tht

|(y» (TV - Fίβ.) y)| ^ o(i) (φ, (Fτ + κi)Ψ)
where o(l) -> 0 as <sr -> cr and

\(γ, (F2 - Vίa) ψ)\ £ o(l) (ψ, (Fτ + KI) Ψ)

where 0(1) ->0 as σ->σo. The second statement implies (4.2), and the
two of them together imply that the K in (4.1) can be chosen indepen-
dently of σ.

Our kernel r is given by the formula

where

T(Ά., Pύ = K«>2)-
1/2 [((«! + Pi) (ω« -

We note that

in the first and third quadrants of the p1 , p% plane
In the region 2 |f | < \η\9 I7 is bounded by const (1 + l^])"1 and

(4.3) is bounded by

const. μ-(τ+!)/2 ω-*/a (1 -f |f + ^j)-1 (1 + l^l)-1

which is in L% for any τ > 0. The contribution to the L2 norm of (4.3)
26*
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which comes from the complementary region 2 \ξ\ ̂  \η\ is bounded by

const. ( / μ-τ-^ω^-τ(l + \ξ + k\)-* dk dξ dp2}
1/* ^

^ const. (/μ-τ- Ml + |l|)-r+1(l-f |f + k\)-*dkdξ)1/*

which is finite for τ > 1/2.
Let S1 be the region

and let
Q2(Ξ) = f q2dpldp2dk

Q2(~Ξ) = Q2-Q2(Ξ).

Then Q2 (Ξ) is the only part of Q2 which contributes to the infinities, and
Q2(Ξ) could have replaced Q2 in the definition of Q. If this were done, the
term Q2(~Ξ) would be included in the small bilinear form F2 rather than
in the operator H1. To show that this is possible we prove.

Proposition 4.1. Let 2~l<τ<l. Q2(~Ξ) and Q2σ(~ Ξ) define bi-
linear forms on DSi which are infinitely small with respect to Fτ , uniformly
with respect to a. On the domain of -F//2, Q2σ(~Ξ) converges to Q2(~Ξ)
as a -> oo.

Proof. This will follow from Theorem 2.4.3 and its corollary. As in
the proof of (4.1) and (4.2) we have only to show that

ω^Pμ- Ί* \qt\tL,

or that

/ (\η - &| + 1)~2 ^Γτ μ~l~τ dpl dηdk<oo .
z*Ξ

However the pl integration can be bounded by
Jφ|l/2(l-T)

/ ω1-
τdp1 ^ const. (1 + \η\1^) ,

o
where K is some constant, and so the previous integral is finite as re-
quired.

Appendix

For the reader's convenience we give here a proof that our expression
in Sec. 1 for the free fermion field can be obtained from a more customary
expression in which the Fock space consists of spinor valued functions.
Our notation comes primarily from [4].

Let e0 and e1 be a base for R2. We choose a Lorentz inner product
( . , . ) in R* so that

(e0,e0) = -1, (e1)e1) = +1 .
Let
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Let y° = — γQ , γl = γ1 and if ^ == uμ eμ (summation convention) let

We compute directly

{γ(u), γ(v)} = 2(u, v) = 2(-uQ VQ + ulvl) .

The Dirac equation is

ωo) Ψ = o ,
where <φ is a function with values in O2, complex two space. If ip(x)
= ^ eίί)ίc is a solution, we must have

0 = (i γμpμ + ω0)u = ( ί γ ( p ) + ω0) u

and hence (p, p) + ω^ = 0 and if pQ > 0 then u must be a multiple of

Let {, } be the hermitian inner product in C2 (antilinear in the first
variable), and let β be the antilinear map from O2 to its dual given by

(βu) (v)== ((-iγ0)u,vy

= ΰl v2 -f ΰ* vl .

We set βu — u^ and we define uc, the charge conjugation of %, to be the
complex conjugate of the vector

/I 0\
(o-ι) t t

We note that v^v = 2ω0 = — vc^vc and v^vc = 0 = ^Cl> if °̂ > 0. Also

if pQ > 0.
If /ζD + then

ψ ( p ) ^ f ( p l ) v ( p ) (A.I)

is the expression in Fourier Transform space of a solution $(#) of the
Dirac equation. We introduce the norms

2?°>0

* -1 2 1" ,*,= (2ω0)-1 / I / I * = -1 2 1"

where dΩ is the Lorentz invariant measure on the hyperboloid
(p, p) + ωl = 0.

The equation (A.I) thus defines a unitary equivalence between D+

and the conventional single particle space of positive energy solutions
of the Dirac equation. The isomorphism extends to tensor products and
provides an isomorphism of F with a Fock space in which the nucleons
are spinor valued functions. Under this isomorphism, the operators
25a
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b (p1) and ό* (p1) are mapped onto the operators

b(&)
and

Let bf and £>'* be the antinucleon annihilation and creation operators,

acting on the Fock space of spinor valued antinucleon functions. The

field Ψ is given by the expression (cf . [4, p. 156] for simplicity we have

set £° = 0).

This integral corresponds to the definition of Ψ*(x) given in Sec. 1.
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