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Abstract. We prove the existence and uniqueness of a center-of-mass line as well
as a center-of-motion line, the latter due to G. DIXON, 1964. The validity of the
theorems depends on some assumptions listed in § 2, whose most restrictive ones
(in the sense of physics) state a certain weakness of the gravitational field. In the
concluding paragraph we give some corrolaries and a very simple application to
the problem of motion.

1. Motivation

To determine the motion of a finite number of material particles one
needs three sets of equations: (I) the field equations, (II) the equations
of motion and (III) the supplementary equations. By (III) we mean all
equations (if necessary inequalities too) that determine the problem
uniquely, e.g. equations of state. By (II) one usually means a set of
differential equations giving as solution timelike curves in the space
time F4 (F4 meant as solution of (I)), such that the curves are uniquely
attached to the particles. Up to now it is unknown whether there exist
solutions gab(x) of (I) such that the support of the matter field Tab(x)
is a finite set of timelike lines. We therefore take the point of view that
Tab(x) means a collection of extended sources (we make it precise in § 2).
Now two problems arise: (a) To find a timelike curve uniquely defined by
the given matter distribution; (b) EINSTEINS classical problem, to derive
from (I) the equation of motion (II) for the curves already found in (a).
Obviously (b) makes sense only when (a) has been solved. This paper is
devoted to the problem (a).

Up to now an answer to (a) was given either by taking over the center-
of-mass line of Special Relativity to curved space time, which works
for weak fields in connection with a suitable approximation method
(FOCK, 1939, et al.); or by taking singular sources and taking as the
required timelike curve the support of Tab(x) (EINSTEIN, INFELD, HOFF-
MANN1, 1938; TATJB, 1964; INFELD, PLEBANSKI, 1960 et al.). Taking the

* Essentially this work has been done during the authors stay at the Seminar
f. Allg. Relativitatstheorie, Univ. Hamburg.

1 Here the sources are singular in the mathematical treatment.
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second point of view, for the reason of uniqueness one has to introduce
supplementary conditions. Many of them have been proposed but
G. DIXON, 1964, was the first, who found an algebraic equation fixing2

the timelike line without using the equations of motion in its formulation
he explicitely states the logical independence of (a) from (b).

Because of the independence of the spacetime geometry of the
material field the center of mass line may be introduced in Special
Relativity using mainly Tab

ιιb = 0. If we want to include gravitational
phenomena we need the whole set of field equations and not the inte-
grability conditions alone, as will become explicit below. All assumptions
restricting the generality of F 4 are listed in § 2. Having in mind the use
of the center-of-mass line in approximation methods, we demand it to
be an extension of the center-of-mass line in Special Relativity; (regard-
ing classical mechanics as the "low velocity''-limit of Special Relativity
it is even an extension of the classical center-of-mass concept). We
therefore devote § 3 to the problem in Special Relativity; we show two
possibilities to define the center-of-mass — one due to SYNGE, 1935;
M0LLER, 1949, the other is an improvement of the idea of LANOZOS, 1929
PAPAPETROU, 1939; the theorem 3.1 states their equivalence. In the rest
of the paper we try to take over both definitions to General Relativity:
First we construct a timelike unit vectorfield in a sufficiently large region,
containing the particles under consideration, by the condition, that it
makes the real valued function (4.4) minimum. With the aid of this
unique vectorfield (4.14) defines a mapping of complete normed space of
continuous time like curves into itself. This mapping is contractive. By
the Banach-fixpoint-theorem there exists one and only one line mapped
into itself. We call it the "center-of-mass" line of the particles3.

DIXONS condition also fixes a unique "center-of-motion"-line which
will be proved essentially by reduction to the proof sketched above. But
now, in curved space time, both lines are different in general. Finally, in
§ 5 we give some properties of the center-of-mass so defined.

2. Basic Assumptions

In this paragraph we list all assumptions needed in the following. In
some cases it would be too cumbersome, to give the exact formulation
here; we give it in the context below.

The most important quantity will be the matter distribution de-
scribed by the symmetric tensorfield Ta h (x) with the properties:

2 DIXON did not prove this but he proposed a procedure that can be extended
to a proof as has been shown by W. KUNDT (Sem. Hamburg 1965).

3 A more detailed outline of the proofs was given at the London Conference
1965 [1].
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(2.1) Tabvb is timelike for all va timelike or null.

(2.2) Tah\\h = 0, where differentiation is meant with respect to the
metric in (2.7).

By T we denote the support of Ta b (x) in F 4, where F 4 is the Rieman-
nian manifold with the metric (2.7) of signature —2. Then:

(2.3) T is timelike and differentiable i.e. there exists a congruence
of timelike, differentiable curves of infinite length with support T.

(2.4) T is space-compact; i.e. the intersection of T with any space-
like hypersurface is compact in the topology induced by the metric
topology of F 4 on the hypersurface.

(2.5) T is space-equibounded; i.e. there exists D > 0 such that the
geodesic distance between any two points of T spacelike to each other
is less or equal to D.

(2.6) Tc^iT) and e'1 is diffeomorphic on St(T)\ &{T) is the Rie-
mann-convex hull of T defined as follows: Take all the timelike vector-
fields Vi(x), i ζl x ζ T and construct the geodesic surfaces ΓitX ortho-
gonal to vf(x); then: St{T) = U U exok{e~x o (ΓiyXr\ T)}. ex is the

exponential map of the tangentspace at x into F 4 and k means the con-
vex hull in the usual sense. Obviously &(T) contains the geodesic-
convex hull of T and (2.6) implies that the space-sections ΓitX r\ T are
covered by a Riemannian coordinate frame. Assumption (2.6) is very
strong and we will weaken it in the concluding paragraph of this paper.

(2.7) The metric used in this paper is meant to be the solution of

Einsteins field equations Rah —-y Rgab — Tab, where the right hand

side is the matter tensor discussed above.

(2.8) gab is of class <€\ s ̂  3 in Φ and therefore Tab(x) is of class
tfr, r ^ 1 in T.

(2.9) Take any timelike curve k in T and take the assembly of all
spacelike geodesic starting at k then this assembly taken as a point set
should cover T.

This condition is a consequence of (2.6)4 but is considerably weaker
and will be sufficient for the basic definitions needed below. I t just
guarantees that the whole of Tab(x) contributes to the center-of-mass
line.

(2.10) F 4 is regular in 0t(T) in the following sense: sup|Γ£.(f)| <
= $bc < °° The sup is taken over all Riemannian coordinate frames
adapted to υa (x) (υa = δ^) — va (x) varies over a compact region of the
unit mass-hyperboloid — and over all ξ, where ξ is a point in the region
of T covered by all these coordinate frames.

4 It follows also from (2.3), (2.4).
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(2.11) Condition (4.12) is valid. We need this condition to get
lemma 4.3 but it would be to cumbersome to make it explicit here.

(2.12) Pa(x), Pa

λ(x) are the total momentum quantities (see appen-
dix A) respective to the observers va(x), va

λ(x) with lim va

λ = va. Then

we assume for small λ that:

f T ^ d x < γ γ2(λ)φx(v), 0 ^

where

and K(λ) is the wedge "between" Γv(x) and Γv ^xy
h This condition looks

very technical. Physically it assures, that the difference in the total
momentum quantity measured in the restframe of the two observers
goes to zero faster than the difference in the total mass quantity this is
meant in the limit of λ, i.e. relative velocity, goes to zero.

In the terminology of appendix A the upper limit γ0 of γ is of the
order of αo; i.e. < 1 , as can be seen by the estimates of appendix B.
γ = 0 in flat space-time (see § 3).

(2.13) The weak field conditions made precise in the appendix.
Weakness of the fields is meant in the following sense: Measured in

the Riemannian coordinate frame adapted to ua(x) (resp. pa(x)) —
timelike vectorfields defined in § 4 (resp. § 5) — and given in e.g. CGS-
units, the fields should be numerically small. Because the units are
adapted to other physical (e.g. electrical) fields, \Γξc\ < 1 means, that
the gravitational field is small compared to the above (electrical) field
measured by the same observer. In this sense we use weakness in appen-
dix B.

We gave all assumptions very explicitly and in course of the proofs
we will refer to the numbers in this paragraph. It is worth to note, that
most of the above assumptions are fulfilled by general physical consider-
ations. Just the assumptions (2.6), (2.11) —(2.12) are somewhat restric-
tive and of a very technical character. Except of (2.11), which has to
be verified in any special problem, they state, that the fields are "not to
strong". In appendix B we give some numerical estimates, that show,
that in practical cases they are physically not very restrictive.

Throughout this paper the system T is free from nongravitational
exterior forces and, for simplicity, T — 0t(T) in §§3—5.

3. The Center-of-Mass in Special Relativity

In (2.7) we replace the solution of the field equations by the Min-
kowski-metric then (2.6) —(2.13) are fulfilled automatically.

5 The integral and the quantities φ, Γ are defined in § 4.
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It is well known (e.g. SYNGE, 1956) that the total momentum vector

Pa ΞΞΞ f Tah dx^ is timelike (see (2.1)) and independent of the special
Σ

choice of the spacelike surf ace Σ (because of (2.2), (2.4)). We redefine that
quantity:

Pa(x,υ{x)) = f Tabdxb (3.1)
rv{x)

where va (x) £ $Γ\ {C/f\ is the set of all timelike unitvectors at x pointing
in the future) and Γv(x) is the hypersurface spanned by the geodesies in
x orthogonal to va(x). Then the above statement says that Pa(x, v(x)) is
independent of x, υa (x) i.e. a constant vectorfield on M4 x C/f\.

Next we define the minimal vectorfield ua(x), ua(x) £«#*£, by the
condition: min va(x) Pa(x, v{x)) = : ua(x) Pa(x, u(x)) for all x ζ if4. The

constancy of Pa and the hyperbolic character of the metric gives
immediately: ua(x) is a constant vectorfield on M* and u^aP^ = 0. This
involves two statements: 1. The total mass M (x) = ua (x) Pa(x, u (x)) is
constant. 2. For all xf ζ Γu(x) Ξ= ΓX we have Γx = Γx>.

We define a map &>: M4 -> M4 by:

xa - ^ xa

M = (ur f Trs dx,)-1 ub f ξaTbc dxc + xa (3.2)

Λvhere ξa ζΓx; i.e. ξa is in the tangent space Tx at x fulfilling there
ua(x)ξa = 0. Physically (3.2) means: Calculate the center of mass in the
inertial-frame of an observer in x, who measures minimal total rest-mass
(or equivalently: who measures P α = 0, α = l , 2 5 3 ) — we call him
%α-observer. To (3.2) we apply a theorem well known in classical me-
chanics: The center-of-mass of a positive (see (2.1)) measure with com-
pact support (see (2.4)) normed to unity on a locally convex, positive
definite vectorspace (here Γx) lies in the convex hull of the measures
support; i.e. xM ζ T.

We may enlarge our map £f in a natural manner to timelike curves
x(s) by applying Sf pointwise such getting the curve xm{s), the center-
o/ mass-line of the given matter distribution Tah (x)Ί. I t lies in the convex
hull of T and because of the statement 2 above xM (s) is independent of
the x(s) we were starting with8 (the Lebesgue-measure dxa is translation-
invariant!). This, together with (2.3), (3.2) involves: s -> XM(S) ^S dίffer-

6 Σ(u9 v, w) be the parameter representation of the 3-surface Σ; then

dxa ~ ]/—g δabcd —z — du f\dυ f\ dw; δahcdis the alternating Kronnecker-

tensor.
7 The definition via the inertial-frames shows: xM (s) is a preferred line (because

of the minimum condition defining u(x)\) in the centroid of C. LANCZOS, 1929;
A. PAPAPETROΪJ, 1939; see J. SYNGE, 1956.

8 Consequently it is unique and completely fixed by the given Tah(x).
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%entiable. We calculate its tangent vector ta

M\ (dT ̂  uaT
ab d%b, *£ is the

u

Lie-derivative in ̂ -direction)

V \ V ^ I T
1 z V x I λ x

The vanishing of Aa is most easily seen in the uα-inertial-frame at xa(s):
Av = f ξγToo

lo d3x= - f (ξYT°«)lad
3x + / T°ydzx = f Tv*dx=Pr=0

rx rx rx rx

where we were aware of (2.2), (2.4), u^aPb^ = 0. Such we get tM^au^ = 0
and therefore tM^aP^ = 0.

We gave the procedure leading to the center-of-mass line in con-
siderable detail out of two reasons: 1. It contains all the physical ideas
serving lateron as a background for the generalisation to gravitational
theory, 2. Essentially, the much more complicated proofs in § 4 follow
the same outline given here.

Various authors (J. SYNGE, 1935, 1960; C. MΘLLER, 1949; C. PRYCE,

1949) proposed a different definition of the center-of-mass. They define
the total angular momentum Jab with respect to x0 ζ Γv(x) (pa(x) =
= {PrP

r)-V2 Pa(x), Γv(x) is the 3-surface orthogonal to pa(x) at x\
because of u^a/ph^ = 0 it is identical with Γx) by:

Jab(x, x0) Ξ Sa*(x) -2{x0- x)l«P*l (3.3)
where Sab is the spin quantity

Sab(x)^fξlaTVcdxc. (3.4)
rx

Evidently, Jab(x, x0) is independent of x ζ ΓXQ. On the other hand, there
exists a preferred x0 — we call it the center-of-motion xB — defined by:

J«b(xB)Pb = 0. (3.5)

By this we get a map ^ B : x -> xB. Again we enlarge it to timelike curves
x(s) -> %B{S)- The above says, that it is independent of the special choice
of x(s). A simple algebraic calculation combining (3.3) —(3.5) shows:

afi(s) = (pr f Trs dxs)-1 pb f ξaTbcdxc + spa . (3.6)
rx rx

i.e. Xβ{s) exists uniquely, it is a timelike geodesic with tangent vector
ta

B parallel to pa (see J. SYNGE, 1960). Comparing the properties of
XM(S)> XB(S)> especially (3.2), (3.6) we proved

Theorem 3.1. In flat space the center-of-mass line is identical with the
center-of-motion line. It is a timelike geodesic lying in the convex hull of T
the vectors Pa, ua, and tjfa are parallel to each other.

Lateron we will show (theorem 6.1, 6.3, 6.4) that in curved space-
time this theorem is no longer valid exept for special cases.

9 For tie differentiation of an integral see e.g. SCHOUTEN, J.A., 1954, p. 111.
The slight generalisation used here can be found in DIXON, G., 1964.
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4. The Center-of-Mass in Curved Space-Time

1. The minimal vector field on T

In the tangent space Tx at x ζ T we define the vector-valued 3-form

γ^(^f)d$r . (4.1)
For dxr see § 3; Π o Tab means a tensor at x one gets by parallel pro-
pagation of Tab(ex(ξ)) from ex(ξ) to x along the geodesic g(ex(ξ), x) with
initial direction £α and length \g(ex(ξ), x)\ = | | α | . Using the product
integral of SCHLESINGER, 1931, Λve may express it explicitly (see also

X

appendix A): Πota(ex{ξ)) = tr(ex{ξ)) f (δa

r + Γ*8(s)d88)10. λVhenever
ex(ξ)

ω% is a differentiate form, a simple calculation using (2.2) leads to the
4-f orm:

dω*(ξ) = -Πo(ΓζtT*'+ΓitT'*) (ex(ξ))dx . (4.2)

The form (4.1) gives the integral (see G. DE RHAM, 1955) we will use
throughout this paper; we introduce the notation

/ ωβ« - / T»» d$t. (4.3)
Σ Σ

It is a vector at x well defined by Σ a n c ^ "^ne matter distribution Tab(x).
With its aid we define

μx(v) : = va(x) f T«* d*h (4.4)
rv

a real valued function on JfJ. ^ ( v ) ̂  0 because of (2.1) and μx(v) — 0
if and only if Tah — 0 almost everywhere on ex(Γv). As va approaches the
light cone, μx{v) increases. We are interested in the minimum of μx(v)
and therefore we restrict our arguments on a compact11 domain K
suitably chosen in C%°\.

Because of (2.2), (2.9), (2.8), (2.4) μx\ X\-> 1R+ is continuous (see
also KOBAYASHI, NOMIZU, 1963, proposition III, 8.1). Therefore μx(v)
takes its minimum on K in say ua(x). We prove:

Lemma 4.1. ua (x) is unique in Jfx.
Without12 loss of generality we choose K such that

K:={ocv\vζK, ocζ IR+}

becomes a convex cone. We define by Φx(v): = μx [~\zrj a continuous

function: Φx: K -> 1R+. We show that Φx is strictly convex; i.e.

Φx(λυ + (1 - λ)w) < λΦx{v) + (1 - λ) Φx(w); (0 < λ < 1) (4.5)

for all v, w ζ K not collinear to each other. If so, Φx takes its minimum

1 0 R. BREHME, B. S. DE WITT, 1960; G. DIXON, 1964, called the product inte-
gral the bitensor of parallel propagation; it reduces to δ^ in flat space time.

11 We take the topology induced by Euclidian topology of Tx.
12 In the proof we omit the coordinate indices, if no confusions may arise.
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in exactly one ray, whose intersection with JfJ we call u(x). By con-
struction u ζ K and

μx (u) < μx (v) for all v φ u, v £ tf\ .

It suffices to take v, w £ K in (4.5). Than (4.5) is equivalent to (v(A) : =
= λυ+{l- λ)w)

1 I λv Γ T dx + (1 - λ) w f . . . I < λv f - - + (1 - λ)w f . . .
bWI \ / Σ I Σ Σ

, 1 < \v(λ)\ < oo. This means:

+ [the same replacing λ -> (1 — λ), v -> w>] < 0 . (4.6)

This is trivially true if the second summand (s.s.) in each bracket is
^ 0 (e.g. flat space time) we therefore assume it to be > 0 . Using Stokes
theorem (see also SCHLESINGEB, 1928) and (4.2) we calculate for (s.s.):

(s.s.)j=-t> β / dξ{(ΓlcT** + Γb

bcTrη(ex(ξ)) f (όf

β + Γ « ί τ )}. (4.7)
K{λ) ex(ξ)

Where K(λ) the section of the support of ω% "between ΣΌ(λ) and Σv". For
(s.s.)π in the second bracket we get an analogous result. Obviously (4.6)
is true if

> j ( 4 > 8 )
(S 'S)j ^ '

But (4.8) is fulfilled because of assumption (2.12). The same argument
holds for the second bracket.

We remark, that all our valuations are made in a fixed Riemann-
normal-coordinate frame adapted to any vector of K chosen once for
ever. Then everything is well defined, because of the compactness of K,
the compactness of the rotation group S03 and our regularity assumption
(2.10). Obviously the special choice of our coordinate frame affects not
our result, so we proved the lemma.

The above construction applied to all x gives us a uniquely defined
timelike unit vectorfield ua{x) in F 4 . We set μx(u)=:M(x) in the
following and call it the "mass quantity". The set of all points lying on
the geodesies starting from x orthogonal to ua(x) is called Γx; it is a
hypersurface in the neighborhood of x, where the exponential map is
diffeomorphic (e.g. EISENHART, 1949; KOBAYASHI U. NOMIZU, 1963).

Lemma 4.2. ua (x) is continuous in T.
Proof. For a suitable neighborhood Nx of the zero vector in Tx ex is a

diffeomorphism (KOBAYASHIu. NOMIZU, 1963). Assumption (2.6) implies:
Taken as a mapping of U Nx -> F 4 the exponential map is a diffeo-
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morphism, and furtheron, that the support of ω% lies in Nx for all x ζ T.
Then, as a consequence of (2.4), (2.8), (2.9), (2.10), μ(x, v) is continuous
for all x ζ T taken as a mapping of the principal fibre bundle
J* :=3l(T) x X\ into 1R+. (Obviously the structure group £P{ (proper
orthochronous Lorentzgroup) acts transitively on the fibre). By lemma 4.1
ϋ(x): x ~> (x, u(xγ) defines a cross section on £$. We have to prove, that
a is continuous on T.

Be x0 ξ T and {xk} -> x0 a converging sequence in a suitable neighbor-
hood W{xo)9 and be τ(x) a continuous cross section over %(x0) with
T (x0) = σ (x0). For any k there exists a gk ζ =£?£ defined by gfcτ (αjΛ) = σ (xk),
and our remark to lemma 4.1 shows, that the {gk} lay in compact domain
of jSPjf_ i.e. {£&}-> £70 We set /(#) ~ μ(x, τ(x)), which is a continuous
function into 1R+ with the property f{xk) ^ μ(xjc> 9icτixk)) > 0 This and
the uniqueness of the minimum of μ imply:

therefore ^0 = e and finally (7(0;̂ ) -> σ(α;0).
As a consequence we get
Corollary. M(x) is continous on T.
Remark. In flat space time ua(x), M(x) are constant and defined all

over Jf4. In this case M(x) is the total rest mass, which justifies the
terminology "mass quantity".

With the aid of lemma 4.2 we are in position to prove
Lemma 4.3. ua (x) is differentiable in T.
Proof. Let U (x0, v0) be a neighborhood of (x0, v0) £ U' X C/f\, U' open

in T, fixed once for ever and v0 = u(x0). In an arbitrary fixed coordinate
frame covering TJ' let va = (v°, v1, v2, vs). We have to prove, that the
functions u°(x), . . ., u3(x) are differentiable in T. Because of the defini-
tion of the minimum vectorfield u(x), those functions have to fulfill:

(a) gab{x)ua{x)u*{x) = 1
(4.9)

(b) (x, v) -> μx(v) becomes minimal for v = u(x) x ζ T .
Set ( / ^ 4 ) ^ ( ^ ^ V - ^ 3 ; 4 Then (t;0, . . ., vz) ->

Γv(a?)

-> Φf (v°, . . ., v3) is of class (ίos for alH = 0, . . ., 3 because of assumption
(2.6) (2.8); further x -> ΦJ° -v* (x) is differentiable. To see this, one has
to set v(xf) = r{x'), x' ζ ϋ1, where v(xo) = τ(xo) and τ is the cross-
section related to the parallel propagation. Then x ~> Γτ(x) is of class tfs

in x £ T. Because of (2.8) we see x -» Φ\(x) is of class Ήr (r ̂  1!) in T.
In the above terminology we may replace (4.9) by

(a) Px(v°, . . .,v*) = 1
3 . (4.10)

(b) μx{v°, . . ., vz) = Σ rfΦ* (?Λ . •? v3) minimal .
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We have to look for the minimum with respect to υ for fixed x £ U'. I t
is the solution of:

Φf (v°, ...,ύ*) + Σ «*Φ?*(v°, , f8) " Wi - <?,(*, «) = 0 (4.11)
fc-0

where A is a Lagrangian multiplicator, Qξ : = -~j-r Px a polynomial in

υ°, . . . v3 and φfk\— -j-γ Φ\. By the preceeding arguments we know:

x -> Grz (£c, f) is differentiable and so is v -> 6^(#, v) because of (2.8). By
lemmata 4.1 and 4.2 we know, there exists a continuous and unique
solution va = ua(x) (α = 0, . . ., 3) of (4.11). An elementary calculation
shows

(T) \-lis(T) \ I 13

where (DΌ)rs(Dv)~lrs = 11 and {D^)rs (α = as, v) is the rs-component of the
derivation matrix of Gr with respect to αs. Therefore the four functions
ua(x) are differentiable if and only if άet(Dv)rs Φ 0 in T. This means:

det(2Φ^5 + Σ u*Φ*k8 + λQ*s) Φ 0 (4.12)
& = o

where Φfks = y ^ Φfk and Q β̂ = -~— Qx

r. Our assumption (2.11) conclu-

des the proof.

We remark that (4.12) is true in flat space-time and in the Schwarz-
schild-solution filled with a perfect fluid, on the central line of spherical
symmetry14.

Corollary. M (x) is differentiable for x ζ T.

2. The Space Z(T)

We call Zf (T) the set of all timelike, differentiable curves h(==x(s)) in
T15. With the aid of our wα-field we define a distance function on Z' (T):

<&', fc"> s sup sup \g(Γx{s) n k\ Γx(s) ΓΛ k")\ . (4.13)
x(s)ζz\τ) sen

Obviously <jfc', k") = (k", k'), 0 ^ (kf, k") < oo, because of (2.5) and
lemma 4.2 and <&', k"} = 0 <=> k' = k". (Be k' Φ k" then there exists
x'(s0) with \g{Γx(So) r\ k', Γx(So) r\ k")\ > 0, which implies ψ, k") > 0!)
For the geodesic distance (g spacelike!) we have the inequality \g(x, y)\ -f
+ \y(y> z)\ = \9(x> z)\ which leads immediately to (k\ k} + (k, k"} ^

13 In flat-spacetime (Dx) = 0, (A)" 1 ~ Vab and consequently ϋβ(aί) is constant
affirming our result in § 3.

14 Whenever all the other of our assumptions are fulfilled, which is true in the
Schwarzschild-field of not to large rest mass, then (4.12) is a consequence of differ-
entiability of u(x); but the latter is true, u(x) being the tangentvector to the (geo-
desic, timelike) central line defined covariantly by the spherical symmetry.

15 Γz ΞΞ ex(Γuix)), where Γu{x) £ Tx as described in § 3.
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^ (k',k"y. All the properties stated above show, that ( , ) is a metric
on Z' (T). By Z (T) we mean the completation, with respect to this metric,
of Z' (T). Then Z(T) is a complete, normed space. Because of (2.4) all its
elements are continuous curves in T.

3. The Center-of-Mass Line

For any point x ζ T we define the map

x-^->xM = e^M-^x) ur{x) f ξaωr

x(ξ)} . (4.14a)
Γu{x)

In the following we will use the symbolic notation :

^ % Ξ f - i ( , ) , r ( , ) / ξ*T"dx8. (4.14b)

The real valued 3-form M~1(x)ur(x) ωr

x(ξ) defines a positive, normed
measure with compact support ((2.1), (2.4)) on Γu(x). We may identify
Γu{x) with IR3 and then it is well known, that this measure has a center -
of-mass and that the latter lays in the convex hull of its support. This
means in our case:

Lemma 4.4. xM in T, whenever x ζ T.
We extend (4.14) to x(s) £Z(T) defining x(s) -> XM(S) pointwise (i.e.

for each s ζ IR) by (4.14). This extended map also will be called £f and
we prove

Lemma 4.5. Sf is a mapping of Z'(T) into Z'(T).
Proof. Be x(s) ζZ'(T); the composition s -> x(s) -> xM(s) together

with lemma 4.3 shows, that XM{S) is a diίferentiable curve; lemma 4.4

shows that xM (s) ζ T for all s ζ R. It remains to prove, that t% :== -r- xa

M

is timelike. To do this we need some preliminary steps:
a) The Jc-map. (2.6), (2.8) assures the existance of a neighborhood

N(s) covering T Γ\ B(σ), where B(σ) is the sandwich "between" Γs and
Γs+σ, such that e~^ : N -> Tx(s) is difFeomorphic. In Tx(s) we introduce
an orthonormal tetrad ei(s)i (i = 0,1, 2, 3), with eo(s) = u(s) and pro-
pagate it by a generalized Fermi-transport along ^(s)16, namely:

^ ^ ef ± 0 (4.15)

where N%c = ί-̂ - u°\ ubuc — 2ua l-^ U(b) uc) (i.e. ua is transported into

ua and so is its orthogonal space). We relate those points of Γs and ΓS+(J,
whose corresponding vectors ξfy, ! ^ + σ) have the same components in
the (4.15)-related tetrads; all points related to ξ(s) lie on a curve hξ(s).
Because of lemma 4.3 kξ(s) is differentiable. If a is small enough the
curves kξ(s), ξ ζ Γx(s) r\ T do not intersect and therefore they constitute

16 G. DIXOK [4] already used this propagation with a somewhat different
meaning of ua.
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a one-to-one map of Γs-+ Γs+σ (σ > 0) called the &-map17. We find
always a positive a — (2.13) —, such that the above is true; so our map
has meaning in a finite slice containing Γs for all s. The tangent vectors
to the &-map give a continuous vectorfield in the above mentioned slice.
Using (4.15) and remembering, that ξa depends on x(s) as well as on

where ta — -^— and Xa

r is a tensor at x(s) constructed as follows: Pro-
pagate ξa parallely along g(x(s), ξ) and differentiate the vector so ob-
tained with respect to xr{ξ). This gives a tensor, whose inverse parallely
propagated along g(ξ, (xr)) to x(s) is Xa

r. We observe that ka(0) = ta,
ko(s) = x(s), which shows — together with lemma 4.3 — that ka is a
timelike vectorfield. In flat space-time (4.16) immediately gives ka = ta,
as it should be, according to the prescribed meaning of the &-map. As
parameter on the Mines we use the induced-one by the /^-layers, i e

induced by s in x(s).

b) Now we are in position to prove our statement. To do this we
calculate t% explicitely (i? means Lie-derivation in ^-direction):

\[
Γs

Obviously t®ua = 0, i.e. Vf is spacelike and = 0 in flat space-time. The
following we calculate in the 0ί(s)-system used in appendix^!. The

estimates given there show that \t%\ ^ 2D(ocQ + ocf

o) ~~ = AQ -W- it

\P\
means \ta

r\ ^ A -j^ with 0 < A < 1 and Ao is the upper limit of A. The

numerical value we have to expect is roughly estimated in appendix B.
It remains to discuss t%. By definition of the &-map we see immediately

ξ

t*= f ka(ξ)dT,wheτedT = M-1ub f (<5g + Γ%c dsc) Ths dxs for ab-

breviation. Using (4.16), (A.3) we calculate in the 0t(s)-system18:
i i in min m

~ f f r(s)Γ(s')dsds'+
\ o

ί \ξ\

H-lb

8(ξ)x 11+ /
0 0 0

17 It has the important property that g(x(s)9 ξ(s)) ->g(x(s + or), ξ(s + σ))
where ξ(s + σ) is the ̂ -picture of ξ(s).

18 We use the matrix notation of appendix A and set (gab(ξ) ξaξb)% == [ξ\.
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where

H>(ξ)=(f(l+Γds)>ξ%,)
\X(S) I

(
\X(S)

which gives explicitely:

Ifl Y I If I

wfΓds + wffΓ{8) Γ{sΊ ds ds'
0 0 0

By a simple calculation we find

d 1

and therefore

With notation of appendix A we get

leading immediately to the inequality: (D \\Γ\\ = c)

|ffί(f) - -5g| ̂  (eδ - 1) (1 + c) + c(l + ||d|| (1 + c)e«) = B o " .

Therefore we are allowed to write:

ka(ξ) = | α + Aα

6(w) ί5 + (w<) ̂  + ^ / α (4.18)

where ha

b(u) is the projection on the i£-restspace in x(s). The vector z'a

depends on Γgc and vanishes in flat space-time; to give its explicit
form would be cumbersome and fortunately we do not need it.

Going back to (4.17) we get

tM

a = ^ α + l f / * / β ( f ) + tar^ ua + za - ( 4 1 9 )
Γ.

We have normalized the parameter s such that ubtb = 1 and have used
the fact that ha

b(u)tb is a fixed vector in Γs.
Using the result we have got for ta

M, the second statement of appen-
dix A and the inequality for \H(ξ) — 1| we get2 0

^ = Co .

19 For the examples estimated in appendix B we get Bo — a; a is tabulated
there.

20 Looking at the estimates in appendix B we see, that Go is of the same order
of magnitude as Ao.
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Then it is easy to see that t%tMa > 0, i.e. t% is timelike, such proving the
lemma.

At this stage of our investigations we are in position to say what we
mean by the center-of-mass line of a given matter distribution Tab(x).
We define it, being the line x(s) ζZ{T) with xM(s) = x(s)'> m other words:
it is characterized by the fact, that in its 0t{s)-system x%(x) = 0 for
all s.

To prove the existence of such lines, we construct by (4.14) the con-
tinuous vectorfield xa

M (x), x £ T. Each of those vectors is spacelike and
therefore vanishes if and only if its projection on a spacelike hyper-
surface vanishes. As such a surface we take ΓXo (x0 fixed in T) and project
x%(x'), x' ζΓXoΓΛ T onto ΓXo. So we get a continuous vectorfield on
ΓXor\ T. Assuming T being geodesic convex and calculating x%(x"),
x" ζ (surface of ΓXo r\ J7) we see that x%[(x") points to the interior of T
and therefore the projection points to the interior of ΓXo Γ\ T. So,
finally we have a closed 3-domain and on this domain a continuous
vectorfield pointing into the interior everywhere on the surface then, by
BROUWERS fix-point-theorem, we get: It exists at least one point in
ΓXo Γ\ T where our vectorfield vanishes. This means by our argument
above that xa

M = 0 at those points, such proving our statement, when we
replace x0 by a differentiable curve xo{s) ζZ'(T).

This proof (given by J. MAD ORE 2 1) obviously shows a bit more,
namely:

Lemma 4.6. The center-of-mass line exists and lies in the geodesic hull
of the support of Taϋ(x). It is a continuous timelike curve.

The last statement is almost obvious remembering thatZ(T) con-
sists of timelike, continuous curves.

Up to now nothing is said about uniqueness and it still might happen
that we have several center-of-mass lines, the number of which is com-
pletely undetermined. We want to get rid of this ambiguity and prove:

Lemma 4.7. The map Sf : Z' (T) -> Zf (T) is contractive with respect
to the norm given in § 4.2.

Take k, ¥ ζZ'(T) and take the parameter s induced by k for all
curves of interest in the following. We have to estimate

\xM{s) - x'M{s)\ = I / ξadTx{s) - e-^ oex,is+δ) o / ξa dT'χ,{s+σ)\

where ex(s) is the exponential map Tx(s) ~> F 4 and x' (s -f- σ) is the point
on k' defined by: £Pχ'(s + σ) = %M(S) Without restriction to generality
we may assume that \g(x(s), x'(s))\ = \Δx\ is small (but > 0!). For

21 Oral communication via W. KUNDT 1966.
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abbreviation we set a' = \g(x(s), x' (s + σ))| and x'(s -f σ) = x + σ' then

NM - <4I = 2 2 «(«) P V ^

where the generalized Fermi-propagation

. dva , &

and
dva

~j^- ~ —uavbu\et
e + ua

ιlct
cubvb

with ta tangent to g(x(s), x + σ1'). Using the estimates of appendix A and
collecting the powers of a' we get:

\x'M -x\< ^Dσ {oil + 2||Γ|| e^U + a'0\l _ | |£| | e^^H-l l ί ί i ! }

•^(s)* Γχ{σ)> a r e spacelike, ^ α is diίferentiable then because of (2.5) we
get for \Δx\ small enough:

In the exponential we replace σr < Ώ by Ώ which leads to the inequality:

\XM ~ XM\ = M~-®(~^ ^ α o ^ ) {αoΠ + 2 \\Γ\\ β"0'̂ '1 +

t | P , _ (4.20)

+ ocό11 — ||$||1 eσ ~M~ α o 1 ί i f i r | l}|zl#| ΞΞΞ yo|Zla?[

XM(S) ~ XM(S)\ ^ y \Δ%\, where 0 ^ γ < 1 and y 0 is the upper limiti.e.

of γ. We made this estimate independently of s and therefore we get
finally: (Sfk, £fkts) ^ γ(k, Jc'} with the above y, such proving our
lemma.

Estimates of appendix B applied to γ0 show that γ0 ^ ΛQ, i.e. <ζl in
practical cases (with \P\ = M).

Applying the Banach fixpoint-theorem to Sf : Z' (T) -> Zf (T) we get
the main result of this paragraph:

Theorem 4.1. A space-compact, extended timelihe matter-distribution
Tab(x) in a Riemannian manifold F 4 obeying Einsteins field equations
gab _ γab^ possesses one and only one center-of-mass line. It is a continuous,
timelihe curve lying in the geodesic-convex hull of the support of Tab(x).

We hint at the fact, that the center-of-mass line has not to be differ-
entiable in the general case.

22 We may almost identify \xM—x'M\ in Tx{s) with \g(%M> XM)\ because of
(2.13).
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5. The Center-of-Motion Line in Curved Spacetime

G. DIXON, 1964, proposed to take over condition (3.5) into curved
space-time using it as definition of the center-of-motion line xB(s) of T.
In fact this can be done and will prove it by reducing the problem to § 4.

Any timelike unit vector va at x ζ T gives raise to the total momentum

quantity Pa(x, v) = / TaJ} dxb) the latter being a timelike vector in x.
rv{x)

Lemma 5.1. There exists one and only one timelike unit vector pa(x)
fulfilling fta{x) Pbl (x,p) = for any x ζ T.

To see this we construct the sequence {Pk}k = 1,2,... a ^ x d T bγ the
following procedure (it is an improvement of an idea of DIXON proposed
by W. KIJNDT) : Choose any timelike v% and construct Pa (v0) = P1 then
define vf= Pf/IPJ which gives raise to Pa(v1) Ξ== P\ etc., such leading
to the sequences {i\} and {ΓVk = Γk}. Estimating

\ + \ f f x b \ = \2 f Γ&T»)°dx\ = β * b n
Γk-i Γk K(Jcsk-l)

as in appendix A; we get easily v% + 1υka< ε v%vk_la with 0 ^ ε < 1.
The upper limit ε0 of ε is of the order of magnitude of α0 and ε = 0 in
flat-spacetime. Taking as a complete, metric space the unit-mass hyper-
boloid in x we get by the Banach fixpoint-theorem our lemma.

Because of this lemma we get a timelike unitvectorfield pa(x) on T
replacing the w-field in §4. In consequence, we replace Γu(x) by ΓP(X).
The same procedure as in § 4 shows the continuity of the p-ύelά in T.
Starting with a differentiable vectorfield vQ(x) in a suitable neighbor-
hood U (x0) we see as in § 4 that each Pk (x) of the above sequence depends
differentiable on x ζ U. The sequence is equiconvergent on T and there-
fore pa (x) is differentiable in T.

We define the spin quantity (see (3.4)) by:

rx

and the total angular momentum quantity Jab with respect to xB ζ Γv (x)
(see (3.3)):

Jab(x, xB) = Sah(x) - x^PV{x) .

Then by a purely algebraic calculation we get:
Lemma 5.2. The condition Jah(x, xB) pb(x) = 0 is equivalent to

* i = (PA*) I Trs dxs)-1 pb(x) f ξ*T*°dxc (5.1)
rx rx

such defining a map £f B : x-> xB.
Replacing (4.14) by (5.1) we follow step by step the arguments given

in § 4. So we get:
9 Commun. math. Phys., Vol. 5
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Theorem 5.1. Theorem 4.1 is also true, if we replace the word "center•-
of-mass" by "center-of-motion".

Here the "center-of-motion" line is denned as the ίixpoint of the
map £fB extended to a map Z' (T) ->Z'(T). The terminology is chosen
because this line originates from the momentum quantity and usually
one associates momentum with motion in physics.

6. Various Consequences. Concluding Remarks

The statements in this paragraph are formulated as theorems,
although they have more the character of corollaries to §§ 4, 5.

Because of the uniqueness property we are able to speak of the total
spin $5f (<$), ^ n e total momentum P% (s) and the total mass MM(s) with
respect to XM(S) of the matter distribution Tab(x) at (eigen)time s;
namely:

S%ii%) Ξ / ξ[aT^cdxΰ (6.1)

= / Ta»dxb (6.2)
ΓXM{S)

M(s)^ua(xM(s))P%I(s). (6.3)

They constitute continuous tensorfields on XM(S)- I n strict analogy we
get S%b{s), PB{s) and MB(s) replacing XM(S) by XB(S) a n ( ^ U<1 by pa.

Theorem 6.1. We have in general u^aPb^(s) Φ 0.
This is seen by a variation of uaP%[ with respect to ua resulting in

α / fc")^dx Φ 0
K(δu)

where K(δu) is the wedge "between" Γu, Γu + su But we see in flat space-
time and in fields of high symmetry ua and P%[ are parallel to each other.
Rather trivial is the following

Theorem 6.2. ua8
a^ = 0.

An obvious, but very important consequence of the preceeding
theorems is

Theorem 6.3. In general XM{S) and XB(S) do not coincide.
This is different to flat spacetime. Physically it means that an ob-

server moving parallel to the total 4-momentum (PM or PB) does not
measure minimal total mass. To see, that the same is true for an observer
sitting on the particle, we assume for the rest of this paragraph that
XM(S) i s differentiable with tangent vector t%\ (similar for xB{s), t%).
Then (4.19) shows

Theorem 6.4. wΓ-atb^(s) Φ 0 in general.
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Theorem 6.5. In a matter distribution of spherical symmetry (e.g.
Schwarzschild fluid-ball) the center-of-mass line coincides with the center-
of-motion line and u^atb^(s) — 0. XM(S) is identical to the central line defined
by the symmetry of the problem; as a consequence XM(S) is a timelike
geodesic.

Tacitely we assumed that no exterior sources are present the proof is
straight forward.

We use this result to get an information on the mass concept (6.3).
For simplicity we restrict the following to the static case. Using the
metric ds2 = -eυ( r> dt2 - ew<r> dr2 - r2dΩ2 and setting t Ξ= χQ we get:

M = ev (°) J T% exp / — (u + v) (r)\ r2 sin# d&dφdr . (6.4)
t = const

In case of timedepending gah the expression becomes more complicated
but even in the simple case (6.4) we see, that the mass introduced
in (6.3) is different from the mass used by S. A. EDDIΊSΓGTON, 1924,
(= f T°oe

u/2 r2 sinfy dΰ dφ dr) and different from the mass used by
H. BONDI, 1964 (= / Tl 4πr 2 dftdφdr)23.

A detailed inspection of the proofs given in §§4, 5 and appendix A
shows, that we can weaken assumption (2.7). As long as the "weak
field" assumptions remain valid we may interpret the metric gab as
solution of Gab = Tab + τab, where τab describes any exterior sources τ
(== support of τα δ) fulfilling T r\τ = 0 or τα δ | ) & = 0. Just in theorem
(6.5) we have still to exclude exterior sources except they have very
high symmetry; otherwise they would split xM and xB.

Using the wider interpretation of the field gab{x) we define a test-
particle Tab{x) by the condition that \Γξe(ξ)\ ^ 0, ξ £ T, where Γ%c is
calculated in the Riemannian coordinate frame adapted to ua(s) (resp.
pa(s)) at xM{s) (resp. xB{s)). Then we get:

Theorem 6.6. A test particle moves along a geodesic line in the total
field generated by Tab -\- rab; XM(S) and XB(S) coincide.

fi£ubΊ = 0 follows from (4.19); the rest is a mere consequence of
(A.9) —(A.ll) and the proof to theorem (6.1).

Obviously this results of an approximation method assuming that
the field is almost constant all over the particle. We have not to split
eigenfield and backgroundfield as it would be necessary if speaking of
theorem 6.5. as an approximative solution to the motion of bodies of
spherical symmetry. The advantage in our test-particle-approach is,
that it is absolutely consistent (and covariantly defined) in EINSTEIISΓS
theory; especially it is free of the logical inconsistency discussed in § 1.
First it solves exactly (a) and then — if the test particle condition is

23 They have a somewhat different physical meaning: total rest-mass, total
baryon-number, total effective mass.
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satisfied to high accuracy — answers (b). Nothing is assumed on the
shape or the inner structure of the particle such we get geodesic motion
as "leading term" in the motion of particles built by human technique,
which affirms the heuristic ansatz in EINSTEINS, 1916 -paper in the frame-
work of the final theory.

It is almost obvious how to fit the A. PAPAPETROU-approximation
method (1951) into the center-of-mass concept; (here it seems more
appropriate to use xB(s)\). It has been elaborated for the quadrupol-
particle elsewhere (W. BEIGLBOCK, Dissertation Hamburg 1965). Just
to enlighten somewhat more the meaning of our total mass concept (6.3),
we cite the result24:

where the "quadrupol moment" Qffi ^ucf ξaξh Tcd dxd and ύa = '
Γ XM(S)

It states mass conservation in flat spacetime and shows, that the spin
(6.1) does not contribute to the emmission of gravitons. The result differs
from this one given by A. H. TAUB, 1964, in Florence, where he used a
center-of-mass concept (and therefore a mass) bearing the difficulties
discussed in § 1 his formula shows change of total restmass even in the
special relativistic limit.

By theorem 4.1 (resp. 5.1) XM(S) (resp. %B(S)) ^ e m ^ n e geodesic-
convex hull of T (Ξ= h(T)); our methods demand, that Γυ(x) ΓΛ h(T) is
covered by the Riemannian normal coordinate system adapted to v'(x),
where v, v' are timelike unitvectors in the neighborhood of u{x) for all
x ζh(T). Using this as assumption we already weaken (2.6) considerably.
But often we can do more. It might happen, that the demanded co-
ordinate condition is not fulfilled for points "near the surface oih(T)",
but works in the tube J ^ C M ^ 7 ) 2 5 - Then our definitions make sense for
all x ζh(T) but u(x) need not to be continuous outside Tv But if
^nQι(T))-> Tx (resp. SfB) (n <oo may depend on x\), then we can apply
our method restricting Z'(T) to Z'(2\). This makes our method appli-
cable even to rather strong fields, if — for instance — the matter distri-
bution is "almost a ball" in Γu(x).

Using parallel propagation in the definition of the integrals seems at
the first sight somewhat superfluous. But it has the advantage of being
absolutely covariant so we can calculate all quantities in any coordinate
frame and avoid to introduce Riemannian coordinate frames explicitely,
which is a laborous task in most practical cases.

24 Reported by the author at the Physikertagung 1965, Frankfurt-Main.
25 Tx
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Appendix A

In the following we are dealing with a purely gravitation ally inter-
acting system Tab.

1st statement:
dPa

ds
P σ | , where 0 < α < 1.

Here Pa(s) is the "total momentum quantity" with respect to x(s)
defined by

Pa(s)^ f Tardir. (A.I)

It is a four-vector at x(s) and because of Lemma 4.3 it is differentiable
with respect to s whenever s-> x(s) is a differentiable curve. We start
with a sandwich B(σ) defined as the section "between" Γx(s) and Γx(s+σ)
because of (2.6) it is guaranteed that B(σ) r\ T is covered by the Rie-
mannian normal-coordinate-system in x(s) (=ΞΞ&(S)-system).

For any η ζ B(σ) we assume the geodesic triangle26

(x{s), η,x{s + σ)) ^Aη

to be triangulated by small local lassos at ξ ζΔη. The usual definition of
Ra

1)c d by parallel transport leads for the finite Δη by summation over all
lassos to the formula (see (4.1))

f (δ\ + Γϊc(s)ds*)χ
*(*) (A.2)

{b *X {cob

x{s)(η) + ω*i8)(η) f R*d8t(ξ)
Δ

*
Δn

where the product integral [17] / (δa

h + Γξc{s) dsc) is the operator of

parallel propagation along g(x(s), x(s + σ)). The integral at the right

hand side means: transport Rb

dst(ξ) dxst to x(s) along g(ξ, x{s)) and
multiply the tensor so obtained by ω^^iη), finally sum up over all
ξ ζ Δη. For abbreviation we call this integral (i^ω)^(S)(τy).

We proceed with our arguments in the ^(s)-system adapted to
u(x(s)), i.e. tιa(x(s)) = δa

Q. The definition of the product integral leads

26 It makes no difference in the following to replace g{x{s), x(s -f σ)) by the
section of x(s) between the two points in consideration.
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immediately to the formula

3L y

f (<5g + Γge dsc) = δa

b + f Γge(s) ds* +
X X / Λ 9\27

y y ^A'0)

+ γff Γfe(8)Γίd{8')d8°d8'*+ - .
x x

Using the matrix notation: Γ%c(s) dsc = Γ(s) ds and substituting

ΓSe(8) = 8'dΓSe(8)+^-ddΓge{8) + '"9 w h e r e dΓgc(s) ^ Γζe{dl*, ta

beeing the tangent vector to x(s), we get:

x(s + σ)

f (1 + Γd8) = l + dΓ(s)4-+ddΓ(s)-£Γ + o(σ4) . (A.4)
J Δ ό\

With the aid of (A.2), (4.2) and theorem of GauB we get easily:

(A.5)
ωb

xW{η) + f (Rω)b

x(s) (η)dη}+

To proof the inequality of our I s * statement we start with an estimate of:

,X(S)

Δ \ξ

We set Γ(ξ) = sup \Γ(s)\ and use (A.3) to get:

S W iη)\ < H(S)(η) I (e'»<*.«<•»'*<*>)? Λ / β i ( f ) dp* (ee )') 6 .

We use -Kα

fecd rfίc<ί = i2(f) d 2 ^ and introduce \g\η = sup \g(ξ, x(s))\,

* Δ

w ^ Λ|, e 2 ^ l Γ \ / d*ξ . (A.6)

Assumptions (2.5), (2.10) guarantee that the right hand side is finite, so
(A.2) was reasonable.

(4.2) gives:
x(s)

fdω*(8)(η) = -2fdx f(δ% + ΓScd8
B(α) B(α) η

27 This is valid for any path x -> y in F*.
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Analogous to the procedure scetched above, we get:

127

B(σ)
a\ f

B(σ)

where \g\σ = sup \g(rj,%(s))\, \\Γ\\σ = sup \Γ\η. Using the &-map defined

in § 4.3 and (2.8) we replace / Tst dx by the integral / dzη f ds Tst(s, η)
B(o) Γs 0

= J dzησ{η) Tst(η), where the / ds is meant along the &-lines and
rt o

m

Tst(η) stems from the application of the mean value theorem on the
path-integral. Obviously lim σ(η) = 1 and

of (2.1). Finally our considerations result in

1 Γ

ί Tstdsη
r8

< 4 | P α | because

(A.7)

B(σ)

where \β%\ < 8||Γ||
result in

g D because of (2.5)!). (A.5), (A.6), (A.7)

dP* lim P — Pa(s)
ds

1 Γ

where \R\ = sup \R\η and because of lim — / d2ξ ^ D as is easily seen.
r)£Γs tf-^0 σJ

So we proved our first statement with an upper bound α0 for α. The
formula (A.8) shows that α = 0 in flat space-time in agreement with the
result in § 3.

In appendix B we give the order of magnitude of α0 by numerical
calculation.

< &', where 0 ^ α' << 1.2nd statement :

In the @t(s)-system we have Γξc(x(s)) = 0 and therefore we get

—T— — -~-τ- tb where ta is the tangent vector to x(s). We use the formula
ds ox

dua

derived in § 4.1 for the partial derivatives -̂ — -̂and we get:

d u a ,h %

(A.9)
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Simultaneously for all a = 1, 2, 3, 0 we estimate (va = v):
x(s)

dPr

dv
K{σ)

where K(σ) is the wedge "between" Γu(s) and Γm

tions analogous to the above ones lead to (see (2.12)):

dPr

dv

pr
dva dvb

It is very simple to see that:

where \\g\\ = sup \gab(ξ)\.

Considera-

(A.10)

Using 2λgasυ
s = gas ίPs-\-uk-^Ps\ for fixed a, we find by (A.10)

\Pa\ <L 2λ ^ (1 -f- γ) \Pa\ as an estimate for the Lagrangian multiplier
introduced in (4.11). Observing that the leading term in (Dv)ah is gab we
find easily see ((A.8)):

wW rx / i . ~ i o / / II TΓΎII . \ / / * -I -I \

where oco is an upper bound for ex!. Again <x'o = 0 in flat space-time as it
should be. Numerical estimate of oco is given in appendix B.

I t will turn out that for practical purpose 4 || JΓ|| is the leading term in

the second braket of α0. It stems from the estimate of-~— gah and if

necessary we can diminish it by assuming, that the field (resp. Tab) does
not vary very much in time i.e. one may replace 4 ||.Γ|| -> 4ρ ||JΓ|| where

3rd statement: α r / \Pa\, where 0 < <x" < 1.

This is an immediate consequence of the I s* and 2nd statement. An
upper bound for α" is OCQ = α0 + <xϊ0.

Finally we remark that the inequality <̂  1 in all of our three state-
ments is valid under one of the two assumptions:

1° (8 [|Γ|| + D \\R\\) e2D^ < 1 .

2° a) The field varies slowly with time i.e. \βa

b\ ̂  8ρ'

(A.12)

and
ds

w h e r e O ^ ρ, ρ' < 1 (Δ.13)

b)



Center-of-Mass 129

In the appendix B we give a numerical estimate that makes clear that
sometimes it will be wise to use assumption 2°. This gives the precise
formulation of (2.13).

Appendix B

To get an impression of the order of magnitudes of the quantities we
are dealing with, we give some numerical data in a simplified model. We
assume the Schwarzschild-perfect-fhiid and assume, that the field

has the surf ace-value all over the ball of radius R, where R = "3 . Ί Q5 r^mi

For the field quantities we take: ||i?|| ~ p3 , \\Γ\\ ~ Sπ-^ . The

crucial quantities will be a = 2R\\Γ\\, b ^ 2R\\R\\; with their aid we
calculate the following table:

Artificial
satellite

Earth
Sun
Dwarf

(Sirius B)
Giant

m
Ύ

10-2*

6.7-10-6
2.1-10-6
10-*

lO-7

B

lO-9

2-10-2
2.33
5 10-2

103

a

10-23

1.7-10-8

5.5-10-5
2.5-10-3

2.5-10-6

b

10-1*

9-10-7

2.3-10-5
5 10-2

2.5-lO-9

α 0

5 10-i*

4.5-10-5
1.2-10-*
2.5-10-1

1.3-10-8

1.4-10-13

1.3-10-5
2.7-10-*
7-10-1

3.5-10-8

2-10-22

2.4-10-6
1.6-10-2
9-10-2

9.4-10-5

We hint at the fact that the leading terms in αoresp. oc'o are 5 b resp.
14 b both stemming from calculations concerning the time variations of
field quantities. Taking into account that our Schwarzschild-field is
static, then we get α0, oc'o of the order of magnitude of ~ b2, which means
that OL'Q <̂  1 as demanded. But we see from the above table that the intro-
duction of the additional assumption "the field should vary in time
slowly" is superfluous in most practical cases.
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