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Abstract. First, a general property of Lie groups is used in the case of the
Poincare group in order to define the one particle phase space. It is eight-dimensional
in the general case and six-dimensional for a spinless or massless particle.

Embedding the Poincare group into the similitude group of space-time permits
us to interpret the dilatation operator as a dynamical variable. The connection
between the similitude group and field equations is discussed.

LTJR^AT'S ideas on a possible dynamical role of spin and mass-spin spectra of
particles (Regge trajectories) are discussed under the point of view of the degrees
of freedom.

I. Introduction

When one compares the usual description of a free particle in classical
and quantum mechanical cases, one is faced with two very different
approaches: on the one hand, one starts from position and velocity
variables and all observables are functions of these variables; on the
other hand, the aspect is group theoretical since a particle is associated
with an irreducible projective representation of the space time group G
(Galileo or Poincare group). Spin is ignored in the first case but naturally
involved in the second one by group theoretical arguments. Several
models1 have been built for the description of a classical spinning particle
generally in increasing the number of degrees of freedom, attributing in
this way to the particle an internal structure. In our opinion, it is essential
to limit the number of new parameters in order that the particle posseses
all the characteristics of an elementary particle. The usual definition of
the particle concept in quantum mechanics suggests that we search for a
group theoretical definition of the classical (spinning) particle based on

* This work constitutes a completed version of a preprint entitled "Classical
Hamiltonian Formalism for Spin", Argonne, September, 1966.

** On leave from Universite de Marseille, France. Work supported in part by
the National Science Foundation.

1 A very large number of articles have been devoted to this subject and it seems
not necessary to give here a complete list of references. Nevertheless, we will
mention the THOMAS model [1, 2, 7] in which no "internal structure" is involved.
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the properties of the Poincare group. Such a definition is given in sec-
tion II. Co variance requirements and field equations are shown to need
an enlarged phase space. Possible new degrees of freedom are obtained
in section III in embedding the Poincare group into larger groups. Some
consequences are investigated in connection with LuRgAT's ideas on a
possible dynamical role of spin and fields describing sets of particles on
Regge trajectories. Finally, in an appendix, we give the way of defining
phase spaces from any Lie group.

II. The One Particle Phase Space

Invariance under the group G is a characteristic of every free system
and it is known that in a Lagrangian formulation, this invariance
property furnishes — through the Noether theorem — conservation laws,
one law for each one parameter subgroup of G. This is true in both
mechanics. For instance, a free relativistic spinless particle of mass m is
usually described by the classical Lagrangian

se =
where x describes the four coordinates of a point on the wordline followed
by the particle and the dot means a derivation with respect to an
arbitrary time parameter. The invariance of ££ under the Poincare group
implies the conservation of the energy-momentum vector

and that of the generalized angular momentum

M = x l\p . (II.3)

One could hope to find a Lagrangian for a spinning particle which
would furnish the equation s = 0 where s is the spin vector. Because we
required the elementary character of the particle, it is necessary that
the only Lagrange equations would be p = 0 and s = 0. It seems im-
possible to find a Lagrangian satisfying those conditions. In the
same way, the Lagrangian (II. 1) is obviously unable to describe the
motion of a massless particle. These two difficulties lead us to discard any
Lagrangian formalism and start from the following postulate:

Postulate 1. To each generator Aa of the Poincare group is associated
in a one-to-one correspondence a conserved quantity: it is a self-adjoint
operator j / α on the Hiϊbert space in quantum mechanics and a real para-
meter ax in classical mechanics.

The role of this postulate consists in replacing the effects of the
Noether theorem on a Lagrangian formalism. It associates to every free
system a set of ten conserved quantities without distinguishing between
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composite and elementary systems (see postulate 2). To each quantum
mechanical observable built in terms of the J3fα's corresponds a classical
observable as it is required by the Bohr correspondence principle but
this mapping is not one to one.

Since we are interested in problems involving one particle, we must
restrict the operators j / α to the Hubert subspace associated with the
given particle. Two of the observables, namely the mass m and the spin s
are fixed (i.e., they are multiples of the identity operator). This remark
induces the following definition of the concept of a classical elementary
particle.

Postulate 2. The classical observables of a free particle are functions on
the manifold <Jί defined in the ten-dimensional space of the a^s by the two
following equations

m2(aoc) = m2 (constant) (Π.4)

S2(^α) = s2 (constant) . (Π.5)

The manifold Jί is the phase space associated to the particle of mass m and
spin s.

The manifold ^ is obviously eight-dimensional in the general case
where m2 > 0 and s2 > 0. It becomes six-dimensional when s2 becomes
zero. More precisely, if the ten variables αα are written in the form
p0, p, j , k (respectively associated with the time translation, space
translation, rotation and pure Lorentz transformation generators), the
mass m and the spin s are defined by the well-known relations2'3

™2 = ή ~ P2 (Π.6)

^ s - ^ o j + p x k - J'+Po P (Π.7)

In the case of massless particles, the spin must be replaced by the
helicity s defined as the ratio of the classical Thomas-Pauli-Lubanski
polarization vector w and the energy momentum

wμ = spμ . (II.8)

It is easy to prove in this last case that the phase space is also six-
dimensional.

2 The vector s and the classical counterpart of the Pauli-Lubanski vector w
have been first mentioned by L. H. THOMAS [1, 2]. See for instance H. BACRY
P, 8]

3 Note that Eq. (II.7) expressing s in terms of p0, p, j and k is the same as that
which expresses the transformation property of the magnetic field (j and — k are
respectively replaced by the magnetic and the electric fields at rest, s by the
magnetic field relative to an observer with speed p/po) The analogy with the quan-
tum mechanical case is given in Ref. [9—10].
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The fact that all these manifolds can be interpreted as phase spaces
is known in group theory (see appendix). In order to make it evident, we
must give a set of canonical coordinates on it. If we define the vector

m x = k - -i£J r—r—T P (Π.9)
m + p0 Po(m + p0)

 F v '
the eight variables

x- = (x, y9 z, φ) (Π.10)
P* = (Px> Py> Pz> *z) (Π.ll)

where

φ = arc cos ΐ / Ί Γ ^ - (Π.12)

provide a set of conjugate variables for the eight dimensional phase space.
To prove it, one defines the Poisson bracket of two observables / and g as
follows

To each observable / can be associated a differential operator /
acting on the space of observables in the following way

,1
{/. 9} •

In particular, one has the properties
}=δΛβ

} = 0 (11.15)

} = Q

I t is easy to verify that the Hamiltonian4

H = |/p2 + m¥ (11.16)

leads us to the usual equations of motion and to the conservation of p, j ,
k and s.

The cases of a spinless (resp. massless) particle is readily obtained by
dropping the variables sz and φ (resp. sz, φ, and m).

With our definition of phase space, the problem of quantizing the free
elementary particle consists only in replacing the variables ax by Hermitian
operators; consequently we are led to the search for a Hermitian irreducible
representation of the Lie algebra of the Poincare group5.

4 Note that for a non-relativistic spinning particle in an external field (A, F),
the motion is described by the Hamiltonian

where B = rot A (see Kramers, Ref. [3]).
5 These phase spaces have been recently quantized by SOUBIAU (see Ref. [11]).
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III. Going Farther

Can we enlarge the phase space in order to include mass or spin or
both as dynamical variables ? Such a question is suggested on one hand
by the covariance requirement (the four components of the energy-
momentum vector must play analogous roles as they do in the Lagran-
gian formalism (II. 1): the constancy of p2 is a consequence of the
Lagrange equations) and on the other hand by the possibility of inter-
actions where particles are "off mass shell". It could be also useful,
following LuϊtgAT's ideas [13,14] to attribute a dynamical role to the spin
variable s, permitting it to go "off spin shell" when interactions are
involved.

A natural way for enlarging the phase space consists in embedding
the Poincare group in a larger group, for instance in considering the
similitude group of space time S instead of the Poincare group. In this
particular case, the spin is still an invariant of the group and there is no
other invariant. The group 8 has eleven generators, those of the Poincare
group and the dilatation generator D. The commutation relations in-
volving D are6

^ P l = ί P (ΠLl)
[Z>,J] = 0

ID, K] = 0 .

Following the way followed in the above section, one defines the ten
dimensional manifold — the enlarged phase space — generated by the
eleven parameters pQ, p, j , k and d (observable associated with D)
restricted by the condition s2 = constant. The even dimensionality
property is, of course, essential to interpret the manifold as a phase
space. We must find a set of canonical variables. Such a set is given by

,d) ( I Π 2 )

πμ = (Jt = p/ra, sz, logm)

as it can be easily verified using generalized Poisson brackets. In fact,
according to the preceding footnote6, one verifies that {d, ξ} = {d, jt} = 0.
Because φ and sz are dimensionless, {d, φ} = {d, sz} = 0. On the other
hand, one has

{d, m} = m
and

We must choose the function f(m) in such a way that mf (m) — 1. We
are readily led to the solution f(m) — logm.

6 If J/ is an observable with the dimension of length n, one has [D, s/] = —in J/.
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Eq. (11.16) becomes in terms of the new variables

H = e l o g m j Λ i ^ + Ύ (III.5)

and the Hamilton equations
d logm dH

3 J V/

dt d (logm)

are easily integrated. They give us

[m = constant

ft ^ U ( I Π 6 )

( Π L 7 )

and provide us a relation between the action and the dilatation generator.
It is interesting to mention that, for the spinless particle phase space,

one can find a covariant set of canonical coordinates, namely the pμ's,
the four components of the energy-momentum vector and their four
conjugate variables xμ defined as follows

χμ=M^±^_t ( Π L g )

(It is easy to check the well-known relations {xμ, xv} = 0, {pμ, pv} = 0 and
{^, pv) = - δμ.)

The interest of the above remark is its relation with the Klein-
Gordon equation relative to a spinless particle. In the field equation one
uses functions on a four dimensional space (four degrees of freedom) but
the equation selects an irreducible spinless representation of the Poincare
group. In other words

4 degrees of freedom — 1 equation

= 3 degrees of freedom (spinless particle) (III.9)

One can try to make a new step in embedding the group 8 into a
larger group for which the spin is no longer an invariant. The lowest
step consists in adding one degree of freedom, providing us a 12-dimen-
sional phase space. One of the possibilities is the phase space associated
to the conformal group on space time, a 15 dimensional Lie group; the
most general phase space is 12 dimensional since this group has three
fundamental invariants (15 — 3 = 12). By associating a field equation
to this group, we may write a relation analogous to (III.9), namely

6 degrees of freedom — 1 equation = 5 degrees of freedom . (III. 10)

Therefore, such a model describes a spectrum of particles, that is to say
a set of particles with a relation between mass and spin. Such models
have already been proposed by physicists [15—21].

As another example, one can choose a 12 dimensional phase space
associated to the direct product 8' x 8L(2, C) where 8' is a group iso-
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morphic to 8 and describes the orbital part of motion. The phase sub-
space associated to S' is therefore eight dimensional. That of SL(2, C) is
four dimensional since SL(2,C) has six generators and two invariants.
A field equation which corresponds to Sr x SL(2,C) is the generalized
Dirac equation

+ mo)ψ = O (III.ll)

where the yμ's are not subjected to any condition. Such a field equation
describes also a mass-spin spectrum of particles [15—21] and all opera-
tors are in fact built with the 12 operators xμ, pμ, γμl. The connection
between phase space and quantum mechanics is certainly less evident in
that case since the field has discrete components but our arithmetic
proves that it would be possible to write equations for fields which are
functions on a 6-dimensional manifold, the direct product of the Min-
kowski space, on which acts as usual the group S', and of the complex
line (a two dimensional real space) on which acts the group SL(2,C) in
the following way.

LetΛ.=
a b

c d

defines

be a matrix of 8L(2, C) and z a complex number. One

An analogous model has been recently discussed in Ref. [22]. One
of the consequences of the above discussion is that LUK^AT'S hypothesis
of a dynamical role of spin implies the following properties (mass and spin
are supposed to be different from zero for the sake of simplicity).

1. The homogeneous space on which the fields are defined is at least
six dimensional.

2. In the case of a six-dimensional homogeneous space, a field
associated with one irreducible representation of the Poincare group
obeys two equations corresponding to the two invariants of the group.
If only one equation is required, the field under consideration describes a
mass-spin spectrum of particles.

3. For a larger homogeneous space, as that investigated by Lung AT
[13 —14], it is necessary to interpret the new degrees of freedom which are
not required by a dynamical role of spin alone.

Apart from this problem, it would be interesting to examine in our
scheme the role of the dynamical groups in connection with the number
of degrees of freedom. We hope to come back to this question in the
future.

7 The usual Dirac equation describes only one spin because the γ^s are satis-
fying the relation yVyv + γvγiχ = 2gf*v.
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Appendix

In this appendix, we give the general proof of the possibility of
defining, in a canonical way, phase spaces from any Lie group. I am
grateful to Professors B. KOSTANT and J. M. SOURIATJ for imparting to
me that proof.

Let A be a Lie algebra of a Lie group 0 and A* the dual vector space
of A. We will denote the action of an element / of the dual on an element
x of A by

</, x) . (A.I)

The adjoint representation is defined as follows

x,yζA, x->&d(x) aά{x)y=[x,y]. (A.2)

The co-adjoint representation (the contragredient representation of
the adjoint representation) is given by

x, yζA, f ζ A*, #->coad(x)

<coad (x) f, y) = </, [y, x]) = - </, ad (x) y} . (A.3)

Let / be an element of A* and Af the subalgebra of A which leaves /
invariant (Af is the isotropy subalgebra of the element /). The elements
of A\A1 generate the tangent space of the orbit Of at the point /. Eq. (A.3)
induces on this tangent space a symplectic structure described by

X, Yζ A\Af (X, Γ), = - (F, X), = </, [X, Γ]> . (A.4)

The antisymmetric bilinear form (A.4) is defined everywhere on the
orbit Of and provides it with a symplectic structure. This property
induces the definition of Poisson brackets on Of and permitted us to
interpret all orbits in A* as phase spaces for classical mechanics. [In the
case of the Poincare group, each orbit is characterized by the value of
mass and spin and the tangent vector space A\Af is eight-dimensional
in the general case, six-dimensional for spinless or physical massless
cases.]

Remarks. 1. Quantization methods can be used in order to find
irreducible representations of the Poincare group. More generally,
KOSTANT [23] proposed to use these methods in order to find all unitary
irreducible representations of Lie groups.

2. All symplectic spaces are even dimensional. It would be interesting
to understand the connection between this property and the following
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( O b s ) = ( d i m ) + ( i n v ) (A.5)
Δ

where (dim) is the dimensionality of the Lie algebra, (inv) the number of

its fundamental invariants and (obs) the number of generators of a maxi-

mal abelian subalgebra of the enveloping Lie algebra. This theorem was

implicitly proved by RACAH [24] for all semi-simple groups, but it seems

that the proof could be generalized to a larger class of Lie groups. In

fact, the Galileo, the Poincare, the similitude groups and the inhomo-

geneous 8L(n, G) groups [25] satisfy all this property.
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