
Commun. math. Phys. 4, 261—302 (1967)

Uniqueness and Symmetry Breaking
in S-Matrix Theory

C. LOVELACE
CERN — Geneva

Received October 1, 1966

Abstract. Assuming that the physical world is a solution of the S matrix equa-
tions, nonlinear functional analysis enables its uniqueness to be tested experiment-
ally. As a first step, we develop such tests within the limits of partial wave dispersion
relations, with crossing symmetry included. They are closely related to Levinson's
theorem. We show that they give conditions for the validity of the bootstrap
hypothesis, of the dynamical generation of symmetries, and of Dashen-Frautschi
perturbation theory. They do not appear to be satisfied experimentally.

1. Introduction

Of the various theoretical frameworks for elementary particle
physics, S matrix theory is especially remarkable for its mathematical
inadequacy and its experimental success. In part the former is due to
the incompleteness of its axioms, about which I have nothing to say.
However, even in the case where equations exist and where all the ex-
perimental successes have been obtained, most calculations employ very
crude approximations. There has been considerable doubt as to whether
the deeper predictions of unique sets of self-consistent particles possessing
dynamically determined symmetries, do in fact follow from the S matrix
equations, and are not just self-consistency conditions on the rough
approximations used. In the present work, I want to investigate this
question using nonlinear functional analysis.

The equations of S matrix theory are nonlinear integral equations.
They define nonlinear operators in a Banach space of physically accept-
able scattering amplitudes. The best known results of nonlinear func-
tional analysis are fixed point theorems, which decide whether solutions
of such equations exist. However they involve intricate topological
questions (and would lead to solipsist titles), so at present I will only
consider the easier problem of whether a given solution is unique. Unless
S matrix theory is completely wrong, the observed physical universe
must be a solution of the S matrix equations. Some people hope it is the
only solution. Nonlinear functional analysis lets us test this hope ex-
perimentally. This is done by Banach space implicit function theorems
which tell us, using only experimentally observable quantities, whether
the observed universe is an isolated solution of the 8 matrix equations
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or λvhether it belongs to a continuum of solutions, assuming of course
that it is a solution at all.

This is obviously a matter of considerable philosophic interest. It
turns out to be also an essential one for S matrix perturbation theory,
and indeed for the whole idea of bootstrap generation of symmetries.
These theories require that, even if the original solution is nonunique, it
shall at least be so in a controlled and limited way.

In the present paper, I shall only consider a finite number of partial
wave dispersion relations with unitarity and crossing, the many-particle
contributions being assumed given. Although such a framework is not as
general as might be wished, it nevertheless includes all the bootstrap
models which have been claimed as evidence for dynamical symmetries.
My reason for this limitation is that the proofs then go through rather
easily. This means the techniques are not being used at anything like
full stretch, so there is every hope that extensive generalization will be
possible.

A short summary of this work has been given elsewhere [1] for the
less mathematically minded. In the present paper, I shall assume
knowledge of linear functional analysis. Standard theorems will be quoted
from DUNΪΌKD and SCHWARTZ [2], referred to as DS.

Section 2 defines the appropriate Banach space, and considers uni-
tarity and dispersion relations as operations in it. This Banach space
consists of functions with certain continuity properties in the physical
region. In accord with the general principles of $ matrix theory, the
definition of the Banach space only refers to directly observable quanti-
ties. This is a big difference from potential scattering. Before any appli-
cation of functional analysis, we must verify as in Section 2 that our
problem satisfies the axioms. Even if this Section read by itself seems just
to be giving long names to the physically obvious, the reader must
remember that it is the essential foundation for all that follows.

Section 3 formulates the mathematical problems involved in the
uniqueness of 8 matrix solutions, in spontaneous symmetry breaking,
and in the validity of Dashen-Frautschi perturbation theory [3—27]. A
rigorous formulation of any of them leads to the concept of the Frechet
differential, which is explained here.

Section 4 gives the fundamental uniqueness theorem which relates
properties of the first term of the perturbation expansion to those of
the exact solution. All numerical calculations involve replacing the
integral equations of S matrix theory by finite-dimensional algebraic
ones. Bootstrappers have usually assumed, not only that this can be
done, but also that if the original integral equations were free of arbitrary
constants, then the algebraic equations also will not contain any. All the
unique results claimed from various bootstraps depend on this assump-
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tion. However, the "implicit variable" theorem of Section 4 shows that
it is not necessarily true — the process of reducing the integral equations
to algebraic ones may itself introduce or remove a certain number of
arbitrary parameters. This number is called the index, and can be
calculated.

When higher spin particles are exchanged, a left-hand cutoff is
needed to make the partial wave dispersion relations consistent. Section 5
studies crossing symmetry, supposing such a cutoff to be given. We
show that the index is independent of the left-hand cut contribution.
This is a rather special feature of the present problem, and depends on
the fact that perturbations arising from two-particle channels die out at
infinity. For the strip approximation, the index would almost certainly
depend on the leading term in the asymptotic behaviour.

Having eliminated the left-hand cut, we calculate the index explicitly
in Section 6. It turns out to be very closely related to Levinson's theorem,
and to the conditions for CDD poles. If the index is positive, the Dashen-
Frautschi equation requires subtractions, leading to ambiguities. After
these have been included, the compactness proof of Section 5 justifies
the algebraic approximation. We also discuss the external mass per-
turbations — these can be reduced to a very simple form, but it shows
that first order perturbation theory will not hold near moving thresholds.

Section 7 discusses our solution of the uniqueness problem. Unlike
similar work on the N/D equations [28—-31], crossing has been included,
so that we can apply it to bootstraps. For the reciprocal N — N* boot-
strap the experimental situation is rather clear — the uniqueness condi-
tion is not satisfied. This means that S matrix theory neither sustains
the 8 U (2) symmetry in the absence of an electromagnetic interaction,
nor gives a definite answer for the effects of the latter. Any unique
number obtained for the n — p mass difference must be a consequence
of special dynamical assumptions made, knowingly or unknowingly,
during the calculation and not of 8 matrix theory itself.

In Appendix A, we verify the uniqueness theorem for certain rela-
tivistic soluble models. The result for coupled two-particle channels is
contained in Appendix B, the main body of the paper having been
restricted to the uncoupled case for expositional clarity.

2. S matrix theory in a normed ring

a. Continuity assumptions
To apply functional analysis, one must always start by defining an

appropriate Banach space. The first restriction on our choice is that the
right-hand cut dispersion integral shall represent a bounded operator.
There are many Banach spaces in which this is true. However, the space
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of Holder- continuous functions is particularly suitable, since such
properties can be inferred from unitarity. Before defining it, it is con-
venient to transform the right-hand cut into a finite interval by the
change of variable

where s1 is the threshold of the right-hand cut, and sϋ is some real sub-
traction point between the two cuts (which we assume not to overlap).
For convenience, we shall write δ(u) for δ(s(u)), etc. In this variable u,
the right-hand cut is [0, 1] and the left-hand cut is [1, u%], where u2 is
finite, s = oo becomes u — I, and u — σo corresponds to the subtraction
point s = θ0. We now define the Banach space H (R μ) to be the set of
all real-valued functions which satisfy a Holder condition in u on the
interval [0, 1]. The norm is

— f(u')- Sup \f(u)\ + Sup
(u —

(2.2)

with 0 < μ < 1. We need not completely specify μ. For a proof that this
is a Banach space, see MUSKHELISHVILI [32], p. 132. The reader not
familiar with Holder-continuous functions may also find an account of
their elementary properties in the first chapter of this book. Note that
we only assume Holder continuity in the physical region, and that the
functions in our Banach space need only be defined on the physical region.
This is a rather nice feature of the application of functional analysis to
S matrix theory, in which it differs from potential scattering.

It is essential that the Banach space be defined over the field of real
numbers, in order that unitarity, which involves a modulus, shall be a
differentiable operation. For each partial wave, we must therefore take
two copies of the Banach space H (R μ), one for the real part and one for
the imaginary part. Alternatively, we may use the phase and elasticity
as our basic quantities.

In defining the Banach space to which the physical scattering
amplitudes are to belong, we are making three assumptions about them:

i) they are Holder-continuous in s. This is known to follow from
unitarity plus a minimal amount of analyticity [33]. At two-particle

thresholds μ ̂  -~-, while elsewhere μ < 1

ii) in order that continuity hold in the bounded variable u, we must
assume that the phase and elasticity both achieve limiting values as
s -> + σo, which is physically reasonable. (This is required in particular
by the use of the Arzela-Ascoli theorem in Section 5.)

iii) to get Holder continuity in u at u — 1, we must further assume
that they attain their limiting value like some fractional power. Thus for
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the phase shifts
d(s) = d(oo) + 0(s-"), μ>0. (2.3)

This third assumption is much less justifiable. However, it is probably
unnecessarily restrictive. With some extra work it should, I think, be
possible to generalize everything to

<3(*) = <5(oo) + 0(l/lns) (2.4)
(see also Appendix A).

b. Unitarity

For the present we consider only uncoupled two-particle channels. The
generalization to coupled channels is in Appendix B. We take our basic
quantities to be the real and imaginary parts, xj(u)> yj(u), normalized to
their unitarity limits (i.e., without the kinematic factor). The subscript j
indexes the different partial waves, and we shall omit it when not needed.
Unitarity is then

y(u) = [*(«)]« + [y(u)γ + ~{l- [η(u)]*} , (2.5)

the last term being the contribution of many-particle states.
Now it is known that the product of two Holder-continuous functions

is also Holder-continuous, and in fact satisfies

l / i l ^ I / I g\ (2-6)
where |/| is the norm defined by (2.2). Therefore the Banach space
H(E\ μ) is a commutative normed ring, and the unitarity formula (2.5)
has a meaning in it.

The real and imaginary parts are given in terms of the phase shift
δ (u) and elasticity η (u) by

x(u)=~η(u)sin[2δ(u)], (2.7)

y(u)=~{l~η(u)cos[2δ(u)]} (2.8)

where unitarity requires
0^η(u)^l. (2.9)

By means of power series convergent in the strong topology, we can
define any entire function in the normed ring. Therefore, if δ(u) and
η(u) are in H(R\ μ), (2.7) —(2.8) are nonlinear equations in this normed
ring, and give x(u), y(u) as elements of it.

We shall eventually require ηj(u) Φ 0, thus excluding total absorp-
tion. However, it is instructive to see why (end of Section 6.b.), and there-
fore we suppose at present only that

ηj(s) ~ β-fftf) ~ (1 — u)H<n, with #(?) έ 0 (2.10)

at high energies, and that the phase goes to a well-defined and Holder-
continuous limit. The exclusion of total absorption does not seem to be a
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serious physical limitation, since experimentally

(πp) ~ 0.25

at high energies, showing that the average value of Ύ\$ for partial waves
inside the diffraction region is 0.5.

c. Boundedness of the dispersion integral

To get a quantity satisfying a dispersion relation free of kinematic
singularities, we must divide Xj(s) + i y j ( s ) by a kinematic factor ρy(s).
We shall not include the centrifugal barrier factor &2 ί in this. The specific
form of QJ (s) is, for pion-pion scattering

ρ(s) = [(s- 4^)/4*]V2, (2.11)

s1 = 4 μ2 , μ = pion mass ,
and for pion-nucleon

ρ(β) = k = {[s-(M + μ)2] [s- (Jf — ̂ )a]/4β}Va , (2.12)

Sj, = (M -f μ)2, M — nucleon mass .

All we shall assume about QJ (s) is that it is bounded, nonvanishing and
Holder- continuous for ̂  < s < σo, with

ρ,(s)~ (s — Sτpl*~ v>l* (2.13)
at threshold, and

ρj(s) ~ sβω - (1 — u)-RW , (2.14)

at infinity in such a way that (1 — u)R^ρj(u) belongs to H(R μ).
Unitarity shows that the partial wave dispersion relation will require one
subtraction if E(j] = 0, and no subtraction if E(j] > O1. We shall leave
out the arguments from B(j) and H(j) when only one partial wave is
being considered.

The formulae for transforming the dispersion relation to the variable
u are

/ — -, i
S - «S0 1 - U ^

We therefore get in the case with one subtraction (e.g., pion-pion)

du'gj(u')_

ρj(u')(u' — u) π
0

x(u\-ao (u) + ̂  ί du'^u'ϊ i g^tt> du'xί(u)-ajρj(u)+ π J ρj(u')(u' — u) ^ π J u'

1 That the left-hand cut does not require more will be shown from crossing
symmetry in Section 5 (see especially Lemma 5B).
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where g^ (u) is the imaginary part on the left-hand cut, and for no sub-
traction (e.g., pion-nucleon)

i
Γ

J (1 — u') QJ(U') (u' — u)

° «, (2.18)

ftwy
(1 — u') (uf — u) '

Possible bound state terms will be considered later (Section 2.d.).
The boundedness of the right-hand dispersion integral is based on the

following theorem, which is obtained by putting together various results
proved in MUSKHELISHVILI'S book [32], pp. 46, 53, 75.

Theorem 2 A.

*)y Wf
7 T^pTϊ-
o

for
(2.20)

defines a bounded operator Eβγ in the Banach space H (E μ), for 0 < μ < 1.
Note that there is a difference between a bounded operator in a

normed ring, and an element of it. Multiplication by any element of the
normed ring defines a bounded operator in it, but not conversely. Note
also that μ = 1 is excluded.

By (2.13) and (2.14), the theorem proves that the right-hand dis-
persion integrals in (2.17) or (2.18) are bounded operators in H(R\ μ).
For the unsubtracted case (2.17) we have of course E(j) = 0, while for
the subtracted case (2.18), we consider the factors (1 — u) QJ(U) together,
and remember that j^ (j) > 0 or there would be no subtraction.

Note that in this result we do not need all physical information
available, since for short-range interactions the threshold singularity
of I/QJ(S) will actually be cancelled by y$(s) < (s — ^i)1/2. The fact that
only unitarity limits are assumed means that the results will hold for
electromagnetic interactions, apart from the question of infrared diver-
gences.

In Sections we will show that the left-hand cut term in (2.17) or
(2.18), including the crossing relation which expresses gj(u) as a linear
function of y^u'), is also bounded.

d. Bound-state poles and subtraction constants

We call the rings of Holder- continuous functions, which contain the
real and imaginary parts of the various partial waves, the continuous
rings. The dispersion relation may also contain explicitly various real
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parameters — subtraction constants, bound state positions and residues.
For each of these, we form a one -dimensional ring of real numbers, which
Λve call the discrete rings.

In the case with no subtraction E(j) = 0, so by (2.13) and (2.14)
Qi(u) will be an element of the continuous ring H(E\ μ). The first term
on the right of (2.17) is then a bounded operator from the discrete ring
containing aj to the continuous ring containing xj (u) .

Bound- state poles contribute

to (2.17) or
(1 - u) ρ, (u) Γ> /{(I - UB) (uβ - u)} (2.22)

to (2.18). Provided u^ < 0, these contributions are easily seen to be
Holder- continuous in u. They are therefore bounded operators from the
product of the discrete rings containing Γ^ and u^ to the continuous ring
containing x}(u). In the case of u^, the operator is nonlinear.

We shall also require the real part to vanish at s = + 00, which is
physically reasonable in view of the diffraction picture. However, we
do not include it in the definition of our Banach space, as this would
greatly complicate the boundedness proofs. Instead, we add to our
equations x(u = 1) = 0. By the norm (2.2), the operator x(u) -> x ( l ) is a
bounded linear operator from the ring H (E μ) to the ring of real numbers
(i.e., an element of the adjoint space of H(R; μ)). The same is true of

δ(s = oo) = nπ!2, (2.23)

which is equivalent to the vanishing of the real part, by (2.7). In the
case with a subtraction, this condition cancels the resulting arbitrariness.

e. Sum rules

The centrifugal barrier requires the threshold behaviour

*,(β)/ρ,(β)~(β-βι)I(ί) (2.24)

where l(j) is the orbital angular momentum. If l(j) ^ 1, this leads to
sum rules of the form

for n=l,...,Uj), (2.25)n

which have to be imposed as additional conditions. These can be regarded
as operators from the ring H (R μ) to the ring of real numbers. It is
easy to see that they are closed operators (DS.Π.2.3) because convergence
of a series of functions in the norm (2.2) implies uniform convergence,
which commutes with the Lebesgue integral. However, unlike those we
have dealt with so far, they will not be bounded operators, since the
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integral need not converge for all yj(s) in H(R\ μ). Their domains will
plainly be the set for which it does converge, namely

Λ M ̂  (« - *iYω ~1/2/m2 (* - *ι) (2-2β)
It follows from (2.24) and unitarity (2.5) that

y,(8)~ («-βl)"ω+ι (2.27)

so that physical scattering amplitudes will always be in the domain of
the centrifugal sum rules.

/. Summary of the normed ring structure

We suppose that we have a finite number of partial waves, indexed
by j. For each of them, we take two copies of the normed ring H (R μ) of
real-valued Holder-continuous functions, the norm being given by (2.2).
These are for the real and imaginary parts. Besides these continuous rings,
we also take one copy each of the ring of real numbers for the various
subtraction constants, and bound state masses and residues appearing
in the equations. The complete Banach space is the outer product of all
these normed rings, with addition and multiplication being defined in
each ring separately.

Unitarity is a nonlinear equation in the normed rings containing the
real and imaginary parts. Alternatively it can be considered as a non-
linear equation from similar normed rings containing the phase and
elasticity to those containing the real and imaginary parts. These non-
linear functions are defined on the whole of the normed ring. The right-
hand dispersion integral is a bounded linear operator from the ring con-
taining the imaginary part to that containing the real part. We shall
show later that the left-hand dispersion integral plus crossing is also a
bounded linear operator between these rings (except that in this case it
mixes different partial waves). The bound-state pole terms and sub-
traction constants in the dispersion relation are bounded operators from
the ring of real numbers to the ring of Holder-continuous functions con-
taining the real parts Xj(u). The condition that the real part vanish at
infinity gives a bounded operator from the continuous function real part
ring to one of real numbers. The centrifugal sum rules are unbounded
closed linear operators from the ring of Holder-continuous functions
containing the imaginary parts to a ring of real numbers.

This completes our Banach space foundation for one-variable 8
matrix theory, and we are now ready to start building. Our assumptions
regarding crossing will be given in Section 5, since we want to avoid
writing down the complicated formulae twice. Briefly they are that
either Shirkov equations, or Chew-Mandelstam equations with a left-
hand cutoff vanishing at least like s1 ~ v ~ε for I' ^ 1, are satisfied (Γ being
the exchanged spin).
19 Commun. math. Phys., Vol. 4
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3. Perturbations and Frechet differentials

We can summarize all these equations as a single nonlinear equation
f(x) = 0, where / and x are both Banach space vectors. To investigate
uniqueness we must consider the possibility of perturbed solutions

f ( x + δ x ) = Q (3.1)

and for Dashen-Frautschi perturbation theory, we are also interested in

f(x + δx)^δf (3.2)

where δf is the ''driving term". We thus need the concept of the deriva-
tive of one Banach space vector with respect to another. Consider first
the finite-dimensional case. We then have a set of nonlinear functions
fj (x) depending on a set of variables xif and the derivative is given by the
Jacobian matrix of partial derivatives

ll^ M/^l!
It is a linear operator from the vector space of variables xi to the vector
space of functions fjy which can be used as a local approximation to the
nonlinear operator /:

f,(\ + δx) = /,.(x) + Σ ^f-δx* + °(dx*>

In infinite-dimensional Banach spaces, the derivative of one vector with
respect to another is similarly a linear operator. The main difference is
that this may now be bounded or unbounded. The bounded case is
called the Frechet differential, and the unbounded the Gateaux differen-
tial. Only the former will interest us. To define it, we use the strong
derivative of a vector with respect to a real number

/' (x; δx) = strong lima-1 [f(x + oc δx) — f(x)] . (3.3)
a-*0

If such a derivative is defined for each sufficiently small (but finite)
vector δx, and if it is a linear bounded function of δx} then this is called
the Frechet differential.

An alternative definition uses the concept of a polynomial form. This
is a vector-valued Banach space function satisfying

N N—m

P(xx+βy) = Σ Σ *nβmPn,m(x,y). (3.4)
m = 0 n = 0

Here x, y are Banach-space vectors, P and Pn>m are vector-valued
functions, α, β are arbitrary real numbers, and the point of the definition
is that Pn,m must be independent of oc, β. The polynomial form is homo-
geneous of order N if it only contains terms with n 4- m — N. A homo-
geneous polynomial form of order N is bounded if

\^A\x\N, A<oo, (3.5)
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for all x. It is plain that a bounded homogeneous form of order 1 defines
a bounded linear operator T

Pl(x) = Tx. (3.6)

If we consider a bounded linear operator g(x,y, . . .) from the product
space (X, X, . . .) (N times) to the space F containing /, and then take
its diagonal part g(x,x, . . .), this will give us a bounded homogeneous
polynomial form of order N, and all such can be obtained in this way
[34].

If, for all sufficiently small δx, the given nonlinear operator can be
approximated (in the strong topology) by a series of bounded homo-
geneous polynomials of orders n g N

f(x + δx) = f(x) + Σ Pn(δx) + o(\δx *) , (3.7)
n= 1

then it is jV-times Frechet-differentiable, and the linear polynomial
P1(δx) gives the first Frechet differential. As in (3.6), we may then write

Pl(δx) = f ' ( x ) δ x (3.8)

where /' (x) will be a bounded linear operator, which of course depends on
the point x at which the derivative is taken. Its dependence on x may be
continuous — continuity is defined using the norm topology for the
operator /' (x) and the strong topology for the vector x — in this case
f(x) is said to be continuously Frechet-dίfferentίable. The higher terms in
the polynomial expansion (3.7) define higher Frechet differentials. If
the second Frechet differential exists in some neighbourhood, then the
first will certainly be continuous there.

In the case of strongly convergent power series in a normed ring,
Frechet differentiability to all orders follows immediately and gives the
expected formulae. Thus the Frechet differentials of the real and imag-
inary parts with respect to the phase shift will be, by (2.7) —(2.8),

δx(u)lδδ(u) = η(u) cos[2δ(u)] ,
(3.9)

δy(u)jδδ(u) = η(u) sm[2δ(u)] .

However, though the S matrix case involves a normed ring, the applica-
tions of nonlinear functional analysis to offshell theory do not [35]. It is
therefore important to note that neither the concept of the Frechet
differential, nor that of a polynomial form, nor the implicit function
theorem, in any way assume the Banach space to be a normed ring.
Multiplication of a vector by a real number is all that is needed [see
Eqs. (3.3) and (3.4)].

If we have a function f(x, y) (in the Banach space F), depending on
two Banach space arguments in the spaces X and F, then we can con-
sider it as a function of one vector in the product space (X, Y). If this is
19*
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Frechet-differentiate, then it is easy to see that the partial Frechet
differentials j ' x ( x , y) and j ' y ( x , y), in which one vector is fixed, will also be
bounded linear operators from X to F, and Y to F, respectively.

If we now reread the DASHEN-FRAUTSCHI papers [3—7], we will
recognize 1 — A, where A is their A -matrix, as the Frechet differential of
(3.2). Thus to calculate the effect of a given driving term (to first approxi-
mation), we must invert the Frechet differential, while spontaneous
symmetry breaking will occur if the Frechet differential has zero as an
eigenvalue. The concept of the Frechet differential thus enables us to
eliminate the restriction to algebraic perturbations (coupling shifts and
mass splittings) assumed by D ASHEN and FBATJTSCHI and by all then-
followers. However, it does much more than this. For there exist implicit
function theorems, to be described in the next Section, which relate
qualitative uniqueness properties of the exact perturbed solution to
those of the Frechet differential, and also approximation schemes of
guaranteed convergence under suitable conditions [36] which give the
exact solution itself by successive solutions of the linear approximation.
When spontaneous symmetry breaking occurs, the linear approximation
obviously has a continuum of solutions. It has been suggested [37—38]
(as usual on the basis of finite-dimensional algebraic models) that this
continuum ought to be eliminated when higher order perturbations are
considered, giving just a discrete perturbed solution, slightly removed
from the unperturbed one. As we shall see, this is not necessarily so in the
realistic infinite-dimensional case.

Now let us consider the form of the Frechet differential, and whether
it is in fact bounded. If the many-particle contributions are fixed, then
we have to consider changes in the phase shifts δδj(u), in the sub-
traction constants daj} in the external masses, and in the bound-state
parameters. The last two are finite dimensional and therefore essentially
trivial from the mathematical point of view. We shall forget them for
the time being, so as not to clutter the equations, and put them back in
Sections 6.b, c. Because the right-hand dispersion integral is a bounded
linear operator, we can then insert (3.9) into (2.17) to get

όfj(u) = Ύ\I(u) cos [2 δj(u)] δδj(u) — ρ^(u) δa3 —

i
ρ} (u) C du' ηj (u') sin [2 δj (uf)] δ δ} (u')I

2

&(») /•* du' Σ ί du" δgί(w']I / ™""^ I U> U> r, / / / v
π J u' — u k J δyk(u )

1 0

xηk(u")sm[2δk(u")]δδk(u"),



S-Matrix Theory 273

with a similar equation resulting from (2.18) in the unsubtracted case.
The imaginary part on the left-hand cut g} (u) will depend linearly on the
right-hand imaginary parts yk (u) through crossing, thus giving rise to the
δgj(u')/δyk(u") factor. We shall consider the precise form of this in
Sectionδ. The linear operator which gives the driving term δfj(u) of
(3.10) in terms of the change in the phase shift δ δ j ( u ) is the Frechet
differential, provided we can show it is bounded. However, we know
already that the right-hand dispersion integral is a bounded operator,
while the quantities coa[2δj(u)], sm[2δj(u)] belong to the normed ring,
so that multiplication by them also defines bounded operators. Accepting,
as will be proved in Section 5, that the left-hand dispersion integral plus
crossing is bounded as well, it follows that (3.10) is bounded and is
therefore the Frechet differential. In fact, using the strong convergence
of the power series for eos[2δj(u)] and $iτι[2δj(u)], it is easy to see that
(2,17) is Frechet-diίferentiable to all orders everywhere. Thus in particular
the first differential will be continuous.

We saw in Section 2.e that the centrifugal sum rules in higher partial
waves were unbounded operators. If we differentiate them with respect
to δj(s), we find nevertheless that the first differential is bounded,
because the threshold behaviour (2.27) of the unperturbed solution
cancels out the singular denominator. However, the second differential
becomes unbounded again. Thus they are Frechet-differentiable, but not
continuously so.

For further information on Frechet and Gateaux differentials see
HILLE and PHILLIPS [34]. However, it should be noted that some of their
theorems use complex variable results (e.g., the maximum modulus
principle) in an essential way, and therefore would not hold in a Banach
space over the field of real numbers, such as we require for unitarity.

4. Uniqueness theorems

The way in which the Frechet differential determines the uniqueness
properties of the exact solution is through the Banach space implicit
function theorem. This very closely resemble the implicit function
theorem for two real variables, but with the partial derivatives replaced
by Frechet differentials. It says:

Theorem 4 A (Hildebrandt-Graves theorem). Let X, Y, F be three
Banach spaces. Let f(x, y) be a function from the product space (X, Y) to F,
which is continuously Frechet-differentiable in some open set. Let (XQ) y0) be
a point in this open set satisfying the equation f(xQ, yQ) = 0, and let the
partial differential f'y (#0, y0) have a bounded inverse there. Then there exists
a continuously Frechet-differentiable function y(x), with y(xQ) = yQ, which
is the unique solution of the equation f (x, y) = 0 in a certain neighbourhood
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oj the original solution. This neighbourhood is bounded only by points at
which either f (x, y) ceases to be continuously Frechet-differentiable, or
f'y(x, y) ceases to have a bounded inverse. If f(x, y) is n-times continuously
Frechet-differentiable, then so will be y(x).

Apart from the original paper of HILDEBBANDT and GRAVES [35a], a
proof of most of this theorem may be found in the book of KANTOBOVICII
and AKILOV [36], and what is not there follows easily by similar methods.
It is essentially an application of the contraction mapping principle.

Our present interest in this theorem is mainly as a stepping stone to a
more general one. This concerns cases when the Frechet differential does
not have a bounded inverse, and when the vector x may be only implicit
in the equation. First we must define a class of operators to which the
Frechet differential will belong. It is well known that integral equations
with compact kernels (T = 1 — C, C compact) have a property called the
Fredholm alternative. This says that the number of linearly independent
solutions of the homogeneous equation Tx = 0 is finite and equal to the
number of linearly independent vectors y (driving terms) for which the
inhomogeneous equation Tx = y has no solution. The class of operators
we are interested in have these two numbers finite but unequal.

Definition 4 B. Let T be a linear operator acting from the Banach
space Y to the Banach space F9 with T* the adjoint operator acting from
F* to Y*. The null space of T is the linear manifold in Y of all solutions
of the equation Ty = 0. We define aτ to be its dimension, and βτ to be
the dimension of the nul] space of its adj oint T*. κ? = α^ — β^ is called
the index of T.

Definition 4 C. A linear operator T is called a Φ-operator if it is closed,
has a closed range, and if the two numbers c/.τ, βτ are both finite.

For a Φ-operator, βτ has a simpler interpretation. It is the dimension
of its defect space, i.e., the set of all vectors y which cannot be represented
in the form y = Tx for any x. The index is thus the excess of the number
of solutions of the homogeneous equation, over the number of forbidden
driving terms for the inhomogeneous equation. The Fredholm alternative
corresponds to the index being zero. Φ-operators and the concept of the
index arose in connection with singular integral equations, and a special
case of them will be familiar to readers of MUSKHELISHVILI'S book [32].
A general theory has been given by GOKHBEBG and KBEIN [39], from
which we shall be quoting some results, and to which we refer the reader
for background information.

We now quote an extension of the implicit function theorem to
Φ-operators, due to VAINBEBG and TBENOGIN [40]:

Theorem 4 D ("Implicit variable" theorem). Let f(y) be a (non-
linear) function from the Banach space Y to the Banach space F, with
f(y()) = 0. Let it be n-times continuously Frechet-differentiable in some
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neighbourhood of y0, and let /' (yQ) = T be a Φ-operator. Then there exists
a neighbourhood of y0 within which the Banach space equation f(y) = 0 is
exactly equivalent to β^ nonlinear scalar equations in ocy real variables:

φj(ηι, ,η*f) = 0> 7 = l , . - . , | 8 z . (4.1)

Each of these scalar functions φ3 is n-times continuously differentiate in
all its arguments.

A full proof may be found in the paper of VAINBEBG and TEENOGIN
[40]. However, the idea is quite simple: the restriction of the Frechet
differential acting between the factor space of the null space and the
factor space of the defect space has a bounded inverse, so that Theo-
rem 4. A can be applied to solve it uniquely. Left over are ocτ variables
coming from the null space, and βτ equations in them coming from the
defect space.

Thus, after the nonlinear integral equation has been reduced to
algebraic ones, the index κτ of the Freehet differential gives the excess
of the number of variables over the number of equations available to
determine them (assuming that both matched in the integral equation,
otherwise it gives the increase in this number). In general we can expect
it to be the dimensionality of the manifold of solutions of the equation
jf(ίc) = 0, though there is the possibility of this dimension being reduced
if x0 corresponds to a singular point of the equations (4.1). Essentially
this means that accidental degeneracy may occur. However, in the case
βτ = 0 even this if forbidden and there will then certainly be ocτ solutions.
For further limitation on possible degeneracies see the end of Section 6.

We have called 4.D the "implicit variable" theorem, because it
shows how, even though the original equation appears to contain no
arbitrary parameters, it may still have a continuum of solutions if its
Freehet differential has a positive index. To avoid possible misunder-
standings, we repeat again that this ambiguity refers to solutions of the
exact equation.

We will apply this theorem to (3.10), the next two Sections containing
the proof that the Freehet differential is a Φ-operator and the calculation
of its index. The centrifugal sum rules (2.24) are not continuously Frechet-
diίferentiable, but are only finite dimensional anyway. We can therefore
leave them out of the main argument, and add them to the ^-equations
afterwards. They will only differ from the others in not being necessarily
continuously diίferentiable.

As we shall see, normal stable symmetries correspond to ocτ — 0,
βτ = 0. Spontaneous symmetry breaking will occur if αy = 1, β% = 1.
(4.1) will then give one nonlinear equation for one unknown, so that we
can expect discrete solutions as argued by previous authors [37—38].
The Freehet differential then has a zero eigenvalue, but it still satisfies



276 C. LOVELACE:

the Fredholm alternative. For both these situations, the index is zero.
The possibility of a nonzero index implies new phenomena, not considered
by previous authors because they only worked with finite-dimensional
algebraic models. These will be discussed in Sections 6, 7.

5. Compactness of the crossed term

The index of a Φ-operator has a very important stability property.
Theorem 5 A. Let T be a Φ-operator, and U a compact operator, then

T + U is also a Φ-operator with the same index as T.
For the proof see GOKHBEBG and KBEIN [39].
Our strategy can now be revealed. Having used the implicit variable

theorem to reduce the uniqueness question to properties of the Frechet
differential, we are now going to use the stability theorem to eliminate
the left-hand cut contribution, which we shall prove compact. The right-
hand cut part can then be solved in closed form, and the index calculated
explicitly.

The imaginary part on the left-hand cut is related to that on the right
by a linear integral transform of the general form

fcW = Σ fd*' *«(«» «') ίfctβW) - (5.1)
k BI

This leads to δ g j ( u f ) l δ y j c ( u f ' ) factor in the left-hand term of (3.10).
To analyze its structure, we shall decompose the whole left-hand cut

contribution to (3.10) into a sequence of maps between several different
Banach spaces. The first and last will be H(R\ μ), the space of functions
Holder-continuous in u on the right-hand cut with the norm (2.2) as
before. We also use C(E\ μ) which is the space of functions f(u) for which

/(«)/[!-u" (5.2)

is continuous, but not Holder-continuous, in u on the right-hand cut, the
norm being

\f\C(R..μ)= Sup \f(u)l(I-u)«\. (5.3)
O r g w ^ l

Continuity in u means not only continuity in s, but also the existence of
a limit as s -> -f oo. Thus

lim srf(s) (5.4)
ί->00

must exist for a function to be in C(R; μ). A special case of C(R\ μ) is
C(R\ 0) — the space of continuous functions with the usual norm. For
the imaginary part on the left-hand cut we shall use C(L; μ), which is
the space of functions for which (5.2) is continuous in u on the left-hand
cut, the norm being

\ί\θ(L .μ)= Sup !/(«)/(«-1)*|. (5.5)
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Again, a function will belong to this space only if it is both continuous in
s, and the limit (5.4) exists at s = — oo.

First consider the relation of the spaces H(R\ μ) and C(R\ 0). The
latter is just the space of all continuous functions on 0 ̂  u ̂  1. Ob-
viously, every Holder- continuous function is a fortiori continuous, so
there exists an embedding of H(R] μ) into <7(JR;0), by which each
function / (u) in the former becomes the same function considered as an
element of the latter. This embedding plainly defines a linear operator
from H(E; μ) into C(R\ 0), and it follows immediately from the Arzela-
Ascoli theorem (DS JV.6.7) that it is compact — any bounded set of
H (R μ) becomes a compact set of C (R 0) under the embedding.

The next stage is the multiplication by

ifc(tt)sin[2ό t(tt)]. (5.6)

We now use the additional equation mentioned in Section 2.d, that the
real part x (s) should vanish at s — +00. This implies that the unperturbed
phase shift satisfies

δk(s) = nπj2 + 0(s-r) = nπβ + 0([I — uY),
1 (5.7)

as #->-{- oo, i.e. u->l

[by (2.23) and (2.3)]. So (5.6) must vanish at least like (1 — uY as
u->l. Multiplication by (5.6) is then obviously a bounded linear operator

Now we consider the crossing equation itself, which takes the im-
aginary part on the right-hand cut into that on the left. This may take
different forms according to whether we use the CHEW-MANDELSTAM,
Ref. [41], or SHIBKOV [42] equations. We consider the simpler Shirkov
case first and use the variable s. The crossing relation is then (Λjk being
a numerical crossing matrix)

Λ(*ι + S2 - *) = Σ Λjkyk(s)lρk(s) (5.8)
k

which we decompose into two parts: an obviously bounded map from
C(B;μ)toC(L;μ)

9^1 + s2 — s) = yk(s) (5.9)

and a multiplicative matrix factor

9s (s) - Σ Λjkgk (s)l ρk (Sί + s2~s). (5.10)
k

The denominators in (5.10) will give inverse square root singularities at
the threshold of the left-hand cut. We will therefore consider them as
part of the left-hand dispersion integral (see below).

The case of the Chew-Mandelstam crossing relations is more com-
plicated — for higher partial waves the crossing operator is certainly
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not bounded. However, it is known that the Chew-Mandelstam equations
are not consistent for higher partial waves without a left-hand cutoff, and
it turns out that the minimum modification needed to make them con-
sistent is precisely that which will make (5.1) into a bounded operator.

Consider the typical case of pion-pion scattering (mass =1), and put

We shall decompose the Chew-Mandelstam crossing relations [41] into
three parts

i) an integral transform in the space C (R μ)

TV
(5.12)

X 7TT fdv'Pt(l-2 ^±f ) Pe (l - 2 £) yψ (/)/ρ (v') ,
0

where
Q(V) = [vi(v + i)?ι* . (5.13)

Here /, Γ are the orbital angular momenta in the direct and crossed
channels, T, T' the isospins, Λ-w are numerical coefficients, and
cu^" (^) is the cutoff function

ii) a mapping of the space C (E μ) into the space C (L μ)

$F(-V-l) = y?(V). (5.14)

iii) a multiplicative factor

This cancels the first factor on the right of (5.12).
To determine the boundedness properties of (5.12), we use the

following lemma.
Lemma 5 B. The integral transform

v ' r ( v ' ) f ( v ' ) (5.16)
0

will be a bounded operator in G(E\ μ) if the following conditions are
satisfied2:

(a) [t(v)]~l, r(v) are both continuous for 0 < v < oo,
(b) t(v) ~ rα, r(v) < vx~l, as v -» oo, with α > μ,
(c) t(v) ~ vβ, r(v) < r^"1, as v -> 0, with β φ —μ.
Proof. Boundedness in the norm (5.3) follows easily from the mean

value theorem and a little algebra. However, we also have to prove the

2 Here f(v) <, v* means limv~α/(v) = A exists and is finite, whereas f(v)
means also A =(= 0.
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continuity of
. (5.17)

This is obvious except at the end points v — 0 and v — oo. To shoλv
continuity at v — oo, we apply LΉospitaΓs rule to get

lim v*Xf(v) = (oc — μ)~l lim {[r(v)lv*~l] [v'lf(v)]} (5.18)

where both factors in square brackets are continuous at v = oo by
assumption. The argument at v = 0 is similar.

If we put c(v] — 1 for the cutoff in (5.12), then it is obvious that the
terms containing

vn-ll(v')n, n=l,...,l', (5.19)

arising from the expansion of the second Legendre polynomial will be the
only ones violating the conditions of this lemma. Therefore, the crossing
operator (5.12) will be bounded provided the cutoff is at least as strong
as

c$Ff(v) ~ v1-1'-?, lf ^ 1 (5.20)

(for ΐ — 0, of course no cutoff is needed). If there were no cutoff, the
imaginary part on the left-hand cut would go like (v)1'. Since we have
assumed the existence of a limit on the right-hand cut, it then follows
from the Phragmen-Lindelόf theorem [43] that the real part at v — +00
would diverge, in contradiction to unitarity. For I' = 1, the need for a
cutoff is more subtle [44 ]3 the convergence as v -> oo of the integral in the
term

V

~ d v ' y \ ( v ' ) l [ v ' ρ ( v ' ) ] (5.21)

then imposes additional restrictions on 2/}(-f oo), which turn out to be
incompatible with the equality of the imaginary parts at 4= oo required by
the Phragmen-Lindelόf theorem [43]. This difficulty will be eliminated
if we multiply (5.21) by a cutoff ~ v~μ.

Equation (5.14) is obviously a bounded operator from C(R\μ) to
C(L; μ). We are left then, in both the Shirkov and Chew-Mandelstam
cases, with the left-hand dispersion integral combined with some kine-
matic factors

. f
J

du'g(u')
u)

3 At first sight the inconsistency of vector-meson exchange without a cutoff
seems to be contradicted by various papers on singular N/D equations [45—47].
However, these all approximate the Zwo-particle exchange cut by a o^e-particle
exchange cut, which is a very strong cutoff. No such approximation was made in
[44].
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if the original dispersion relation had one subtraction, and

du'g(u') _
J (U'_ u)(l —
1

if it had none. We want to show that L defined by these equations is
a bounded operator from C (L μ) back into the space H (R μ) containing
the real part in the physical region 0 ̂  u ̂  1. It is important to note
that only the end of this region u = 1 is a singularity of the integral.
Therefore, we use the following lemma:

Lemma 5 C. // f(u) satisfies

\f(u)\ < A\l — u\μ, for 0 5g M 5g 1 , (5.24)

\f (u)\ <B\l — u\μ-\ for Q^u<l, (5.25)

then it belongs to H(R', μ), and the norm (2.2) is bounded by

i/| ^ 2 A + Max [4, μA + B] . (5.26)

Proof. We use a result of MUSKHELISHVILI [32] (bottom of p. 16),
which says that, if φ (u) is a function in H (R μ), and ω (u) is bounded on
[0,1] and its derivative satisfies

\ω'(u)\<C/[l — u], 0^u<I, (5.27)

then [φ(u)— φ ( l ) ] ω(u) is in H(R; μ). We put φ(u) = (l — u)μ. The
bound (5.26) on the norm comes from a detailed inspection of MTJSKHELISH-
VILI'S proof.

To apply the lemma, we omit the ρ (u) from (5.22), differentiate under
the integral sign, which we can certainly do for u < 1, and get

l + ε
d Γ Lg(u)'

du L ρ(u)

(5.28)

where |̂ | is the C(L\ μ} norm defined by (5.5), and we have used the
assumptions (2.13) —(2.14) about the behaviour of the kinematic factor
ρ (ΰ) in the denominator, remembering that R = 0 for the case with one
subtraction. The second term in (5.28) is obviously uniformly bounded,
and the first has a bound like (5.25). To prove (5.24) is even easier. Thus
(5.22) without the ρ(u) factor is a bounded operator from C(L\ μ) to
H(R; μ) by (5.26), and the ρ(u) factor will be an element of H(E\ μ) in
this case, because E = 0 in (2.14).

In the case of (5.23), the absorptive part of the integral will behave
near u = 1 as ~ (uf — \Y+R-l\g\. We therefore instead divide (5.23) by
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the factor (1 — u)R ρ(u), which belongs to H(E\ μ) by (2.14), and obtain
bounds (5.24) and (5.25) for the remaining factors (1 — u)l~R times the
integral. Thus again Lemma 5.C. shows L is bounded.

Putting all the pieces together, we see that the left-hand cut con-
tribution consists of (i) a compact map from H (R μ) to C (R 0) (the
embedding), (ϋ) a bounded map from C (R 0) to C (E μ) [multiplication
by (5.6)], (iii) a bounded map from C(R μ) to C(E μ) [the integral
transform (5.12) with cutoff (5.20)], (iv) a bounded map from C(R\ μ) to
C(L\ μ) [the substitution (5.14)], (v) a bounded map from G(L\ μ) back
into H(R\μ) [the left-hand dispersion integral (5.22) or (5.23)]. The
product of a bounded operator with a compact operator is itself compact
(DS.VL5.4), and therefore the whole sequence defines a compact operator
from H(R\μ)ϊoH(R\μ). QED.

The conclusion is therefore that the index of the Frechet differential,
and the question of whether it is a Φ- operator, will not be affected by the
omission of the left-hand cut contribution from (3.10).

The crucial role played in this proof by the factor (5.6) should be
noted. If it were not present, then we would have to embed H(R\ μ)
directly in C(R', μ), and though this is a bounded operator, it is not a
compact one. Therefore, the left-hand cut term in the original un-
perturbed equation is merely bounded — what makes its contribution
to the Frechet differential compact is that the perturbation has to die
out at s — oo, because of our subsidiary condition δ(oo) = nπ/2, and the
fact that η (s) is not perturbed. However, the left-hand cut contribution
could always be made compact by strengthening the cutoff sufficiently.
The contribution from all singularities which do not touch the physical
region anywhere including oo will necessarily be compact. Thus the proof
is not affected by unequal masses, and the kinematic factors for cases
with spin need only be considered at infinity.

6. Calculation of the index

a. Construction of the D function

We are now left with (3.10) minus its left-hand cut term, and propose
to solve it in closed form. This can be done by the Muskhelishvili-Omnes
method [32], but we must be rather careful about boundary conditions,
especially at infinity.

We define the amplitude (the partial waves are now independent so
we drop j)

± ί
π J

(6.1)u) (u — u) ^ '
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in terms of which, (3.10) without its left-hand cut becomes

cos [2 δ(u)]η (u) δ δ (u)jρ (u) — δf(u)lρ (u)

1 (6 2)
= -̂ - [Φ(u + iε) + Φ(u — iε)] ,

i sin [2 δ(u)]η (u) δ δ (u)/ρ (u) = y [Φ (u + ίε) — Φ(u — i ε)] (6.3)

leading immediately to the Hubert problem

φ(u + iε) = e^δ(^Φ(u — iε) + [e4<*<«) — 1] δf(u)/ρ(u) . (6.4)

According to the Muskhelishvili method [32], we have to start by
constructing one particular solution of the homogeneous Hubert problem,
(6.4) with δf(u) = 0. The Dashen-Frautschi method [3] involves can-
celling out the right-hand cut by multiplying by D2(s), where D(s) is the
denominator function of the N/D decomposition [41], and then writing
a dispersion relation for the result. In the case with no left-hand cut and
no driving term, the Dashen-Frautschi and Muskhelishvili methods are
in fact entirely equivalent, [D(s)]~* being a solution of the homogeneous
Hubert problem. In other cases, the Dashen-Frautschi method is more
special, since it assumes that the inhomogeneous and compact terms
have known analytic properties, but gives a neater answer (see end of
Section 6).

We must therefore start by constructing the D function belonging to
the unperturbed solution. Let us work in the variable u of (2.1). The first
requirement is that D(u) shall have no cut but the right-hand cut
0 ^ u ίg 1, and shall have the phase there

argD(^ + iε) = — δ(u) . (6.5)

As is well known [48—52], one such function is given by

B(u) = e-ΓM (6.6)
where

(6.7)
π — v '

0

and the most general solution of this part of the problem is

D(u) = B(u)D(u) (6.8)

where R(u) is any meromorphic function. Because of the analyticity of
Γ(u), D(u) will be finite and nonvanishing in the u plane, excluding
[0, 1], but including u = oo. As for the cut itself, a result of MUSKHELISH-
VILI [32] (p. 46) and the assumption that the unperturbed δ (u) is in
H(E μ) show that Γ(u) will also be Holder- continuous on (0,1) excluding
the end points. Another result of MUSKHELISHVILI (p. 74) shows that the
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values of Γ(u) near these ends will be

w), as u-*I, (6.9)

) , as u -> 0 , (6.10)

where ό(oo) means the phase shift at s = σo (% = 1). Without loss of
generality, we can define the phase shift to vanish at threshold. Trans-
forming to the variable s, we then see that D(s) will be finite, non-
vanishing and Holder- continuous in the entire s plane with the possible
exception of s = oo, where it behaves like

JD(β)~ sΉ00)/*. (6.11)

A further requirement on D(s) is that it have zeros at the bound-
state energies SB, and nowhere else in the finite s plane. Also, since the
Dashen-Frautschi method involves multiplying by D2(s) and then
writing a dispersion relation, D (s) should have no poles and be of finite
degree at infinity. These conditions determine the meromorphic function
E(s) of (6.8) uniquely (apart from a multiplicative constant, which we
can fix without subsequent loss of generality). The only possible D(s) is

β
and its behaviour at s ~ σo is

D(s)~s*/* (6.13)
where

κ = 2nB + 2<5(oo)/π, (6.14)

nB being the number of bound states.

b. Solution of the right-hand equation

If the original dispersion relation (2.17) had bound-state poles, then
it is easy to see that the change to (3.10) will be such that we must add
to Φ(s) as given by (6.1)

f s r< τ< s „ *»
(6.15)

(6.2) and (6.3) will then hold unchanged. We now return to the variable s
and consider the dispersion relation satisfied by D2(s) Φ(s) with Φ(s)
given by (6.1) plus (6.15). The bound-state poles of (6.15) will be can-
celled by the zeros of (6.12). The only cut is the right-hand cut, and (6.2),
(6.3), (6.5) show that the imaginary part there is given by

Im{D*(s + iε)Φ(s + iε)} = \D(s)\* sin[2ό(θ)] δf(s)lρ(s) . (6.16)

By (6.13), (2.14) and (5.7), this will have asymptotic behaviour

~a«-0-Λ<5/(oo) (6.17)



284 C. LOVELACE:

where κ is given by (6.14). We therefore obtain a dispersion relation with
κ subtractions if κ ̂  0

" l- s V I ί'-' r ds'\D(s')\*sm[2δ(β')]δf(s')
- n — S0) + π J (β,_θβ)xρ(β/)(β,_s)

SV

leading to

δδ(a) = cos[2ό(s)]ό f(8)lη(8) + . ... Σ Aα(β-80)» +
i\ I \ \ n \n=o

(6.19)
v '

(sf — s 0 ) » ρ ( s ' ) ( s
. (* — a0)* Γ ^|D(/)|2sin[2ό(Q]ό/(/)

π J (sf — s0)»ρ(s')(s' — s)

Using Theorem 2. A, it is straightforward to show that the last term of
(6.19), like the first one, gives the asymptotic behaviour

δδ(a)~ SH δf(s), if κ ̂  0 , (6.20)

where H is given by (2.10). (The other terms will be smaller.) We shall
see shortly that it is necessary to assume H = 0, thus excluding pure
absorption. Our supplementary condition on the Banach space — that
the real part shall vanish at infinity — implies that the driving term
δf(s) shall also vanish there. Thus (6.20) with H = 0 makes the change
in the phase vanish at s = oo, again in accord with the supplementary
condition. It is then easy to see that (6.19) is in H(R\ μ).

For κ < 0, there will be no subtraction, but the last term of (6.19)
will then increase like s\κ\ even for H = 0. Thus supplementary conditions
have to be put on the driving term in order that the perturbed phase
shift be bounded. To find them, we write a dispersion relation for
(s — «§0)

lκ| D2(s) Φ(s), which will require no subtractions

=.(.-..>-...

Now s0 is just the subtraction point, and by (6.1) Φ(s) should not have
any poles there. So δf(s) must satisfy

ds'(s> - ββ)« \D(s')\*Bm[2δ(s>)] δf(s')lρ(s') = 0 ,

» = o,ι ..... M — i .
Provided these supplementary conditions on the driving term are satisfied
[the integrals in them will always converge by (6.13)], then the perturbed
shift is given by

δδ(s) = cos [2 δ (s)] δf(s)lη(s) +

(6.23)

«1?W \D(».
S(

r Γds'\D(S'^Bm[2δ(s')]δf(s')
\* J (tf — tύreW (*' — «) ' Iorκ<υ'
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and will have the asymptotic behaviour δδ(s) ~ sπ δf(s). If H = 0 (6.23)
is easily seen to lie in H(R\ μ).

The subtraction terms in (6.19) with the coefficients An will be solu-
tions of the homogeneous equation with δf(s) = 0. It follows from the
construction that they are the only ones in H(E; μ). Thus the dimension
of the null space is α = Max(κ, 0). If κ ^ 0, the inhomogeneous equation
will have a solution in H(E\ μ} for any driving term δf(s) in H(E', μ),
according to (6.19), while for κ < 0, this requires —κ supplementary
conditions (6.22) on the driving term. Thus the dimension of the defect
space is β — Max(—κ, 0). The index is therefore α— β = κ, as given by
(6.14).

Putting all the partial waves together, and using the compactness
theorem of Section 5, we find that the index of the Frechet differential
(3.10) is

κ = Σ"ϋ) = Σ &nί + H(oo)/π]. (6.24)
3 1

This result is independent of whether or not (3.10) is subtracted (as can
be seen by examining the previous argument), and includes the supple-
mentary condition that the real part shall vanish at infinity. It does not
yet include the centrifugal sum rules (2.24) however.

To show that the Frechet differential is a Φ-operator (Definition 4.C),
we must therefore prove it to be closed and have a closed range. By
Theorem 5.A it is sufficient to show this with the left-hand cut omitted.
However, it follows from Theorem 2.A that the right-hand part of (3.10)
is bounded and therefore a fortiori closed. The range consists of the set of
all possible driving terms, which will be the whole space for κ ̂  0, and
the subspace satisfying the conditions (6.22) for κ < 0. It is easy to see
from Theorem 2.A that the inverse, as defined by (6.19) or (6.23), will
be a bounded (but not necessarily single-valued) operator mapping
δf(s) into δ δ ( s ) for all δf(s) in the range. Therefore, by DS.VI.9.15 (ϋ),
the range will be closed.

Finally, we give the reason why complete absorption H > 0 has to be
excluded for the proof to work. For in this case, (6.20) shows that we
must assume δf(s) = o(s~H) to get any solution in the Banach space
H(R') μ). Also, in order that η(s) as given by (2.10) shall belong to the
Banach space H(R\ μ) (as assumed at numerous places in the proof),
we must have H 2> μ. However, the functional

0 = lim (1 — u)Ή δf(u) (6.25)
w-»l

which defines the defect space, is unbounded for H > μ by (2.2), so that
it does not correspond to a projection, and by DS.VL3.1 the range will
not be closed. Therefore, if total absorption occurs, the Frechet differen-
tial will not be a Φ-operator (Definition 4.C), except in the special case
20 Commun. math. Phys., Vol. 4
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H = μ. This could presumably be overcome by suitable redefinition of the
Banach space.

c. External mass perturbations

Besides the perturbations of phase shifts and bound state pole para-
meters already discussed, the Dashen-Frautschi perturbation theory,
[3—27], also considers changes in the external masses which define the
kinematics, e.g., M and μ in (2.12). In terms of the amplitude which
satisfies a dispersion relation

A,(8) = [xt(8) + yi(8)1lei(8) (6.26)
these give

δAj(s) = *$$- δδi(8)_-4M**!fiLdm . (6.27)ί v ' o δ j ( s ) J V ' ρ^s) dm v '

Now the kinematic factor always has the general form

Qi («) = [(« - '.) (β -rb).. .1(8 - r.) (s - r,) . . .fl* (6.28)

where rα, r b, . . . , re, rf, . . . are the thresholds of various cuts (physical or
kinematic). Examples are (2.11) and (2.12). Therefore it will satisfy a
differential equation

where the cn are certain known constants depending only on the un-
perturbed masses. From the dispersion relation satisfied by the unper-
turbed solution can be derived, by algebraic manipulation,

oo

, cn'ReAj(rn) ,C da'ImAjtf)

J (?*—*')(*' —

(we have omitted subtractions and bound- state poles for convenience of
writing). The perturbed amplitude must also satisfy a dispersion relation

By substituting (6.29) and (6.30), the contribution of the dm term in
(6.27) to the right-hand cut cancels and we get

δj(s')-Σ^fLdm^2)
n n

Thus the only effect of the external mass perturbations is to add pole
terms at the thresholds of the various cuts. Their residues will be pro-
portional to the external mass perturbation dm, and the constant of
proportionality depends only on the unperturbed solution. They are not
cancelled by anything in D2(s) and will therefore appear also in the
Dashen-Frautschi equation.
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These poles in δAj(s) will lead to terms in the perturbed phase shift

d d j ( s ) ~ (s — sJ-V* (6.33)

which do not belong to the Banach space H(E; μ). Thus the equations
of S matrix theory are not Frechet-differentiable with respect to the
external masses. That this is a real difficulty, and not just due to the
way we have formulated the problem, may be seen by considering the
behaviour of an S wave phase shift when the threshold is changed by
variation of the external mass. We will get, say

όW^cφ-^va,

δ (s) + A δ (s) ^ [a + Δ a] (s — Sl — A stf/* , ( ό >

which are both physically permissible, but differentiation with respect to
A sl will give an inverse square root. Thus the equation

can never be true near threshold, no matter how small the perturbation.
This shows that first order perturbation theory will not be valid for
changes in the external masses, whenever scattering lengths or other
quantities close to threshold are being calculated.

Nevertheless, the external masses will only be finite in number. If we
generalize the definition of the index to be the excess of variables over
equations available to determine them, as in Theorem 4.D, then this will
have a meaning even in the absence of Frechet differentiability with
respect to a finite number of the variables, for we can simply introduce
them as new variables into the ^-equations of Theorem 4.D. In the case
of the external masses, either the change in them will be given, as in the
rho bootstrap, or it will be determined by a relation between the external
mass and a bound-state pole position, as in the N — N* reciprocal boot-
strap. In either case there will be as many extra equations as extra
parameters, and the "index" will be unchanged.

d. Total number of implicit variables

So far the centrifugal sum rules (2.25) have not been included, since
their Frechet differentials are not continuous. However, there are only
a finite number of them. Therefore, we may add them to the 9? -equations
of Theorem 4.D, without affecting the essential structure of the latter.
Using our generalized notion of the index as the excess of variables over
equations, it will be reduced by — Σ^(J) ky ^he centrifugal sum rules.

Changes in the original subtraction constants, δa^ of (3.10), are
already included in the index. By (6.1), their value is got by evaluating
(6.18) at s = s0 corresponding to u = oo, in the absence of a left-hand cut,
and in a similar way from the subtracted Dashen-Frautschi equation
when the left-hand cut is included.
20*
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The bound- state terms are also compact, and could therefore have
been dropped without changing the index. Tho asymptotic behaviour of
D(s) [(6.13) — (6.14)] will then improve, thus at first sight decreasing the
index, but the bound- state parameters will be left hanging undetermined
in the air, thus increasing it again. This answers a question which may
have puzzled some people in connection with the static model where
there are poles in the crossed term — - the reason bound-state poles
contribute to Levinson's theorem is not that they are poles, but that they
have independent variable parameters associated with them.

Putting this all together, the final value of the index is

(6.36)

This assumes that the left-hand cutoffs are given. Some bootstrap
calculations adjust these to get better agreement with experiment — in
such cases the value of the index must be increased. The corresponding
index formula for N$ coupled channels is (B.30) of Appendix B.

We have shown that the index is not affected by the left-hand cut
contributions, nor by the external mass terms. However, these are just
the two places where group-theoretical factors enter the Dashen-
Frautschi equations [5]. Therefore, the index must be the same for all
types of symmetry breaking, since they are all coupled by unitarity to
the same unperturbed state. There is no question of getting dynamical
symmetries, such as octet dominance, from changes in the index. In fact
all previous papers on dynamical symmetries have implicitly assumed
that the index was zero.

There is an easy and enlightening way in which this formula for the
index can be checked. If the left-hand cut contribution to the perturbed
dispersion relation is omitted, then the problem is identical to that for
a fixed left-hand cut. As is well known, this can be solved by the NjD
method [41], which has been extensively investigated by FRYE and
WAENOCK [28]. Their work shows that CDD poles [53] may occur, and
will change Levinsons' theorem to [54—55]

δ(oo) — δ K) - (nc — nB) π (6.37)

where nc is the number of CDD poles. Each CDD pole contributes two
parameters — its position and residues, so that the index κ as given by
(6.24) is simply the number of CDD parameters. What we have shown
beyond the NjD results is (a) that these CDD parameters are not deter-
mined by crossing symmetry, but lead to ambiguities in the exact
solution (this was known previously in some soluble models, but never
generally), and (b) that when symmetry breaking occurs, there will be
different arbitrary CDD parameters for each mode of symmetry break-
ing, if the unperturbed solution had CDD poles. The ambiguity is to
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some extent reduced by the centrifugal sum rules in higher partial
waves, again in agreement with the N/D work [28—31].

The stability Theorem 5.A only applies to the index κ = α— β. The
values of α and β (the dimensions of the null and defect spaces) may
individually be affected by the left-hand cut, and thus by the group-
theoretical factors. Indeed this is the way in which spontaneous sym-
metry breaking (in the usual sense) occurs. However, the possibilities of
this are limited by the following theorem, proved in GOKHBERG and
RREIN [39].

Theorem 6 A. Let T (λ) be an operator-valued analytic function of the
complex variable λ, whose values are Φ-operators for λina certain domain D.
Then the index κT($ is constant throughout D, and ocT(^, βτ(λ) are a^s°
constant with the possible exception of some isolated points at which their
values are larger than elsewhere.

To apply this theorem, we embed the real Banach space H(E\ μ) in a
complex one, in which both the "real part" and "imaginary part" of the
scattering amplitude may become complex. We then consider the
elements of the crossing matrix [e.g., Λττ> of (5.12)] as complex variables.
The Frechet differential is linear in them and therefore obviously analyt-
ic. When the crossing matrix is zero, there is no crossed term, and α, β
are then known from Section 6.b to be

α = Max (κ, 0), β = Max (— κ, 0) (6.38)

and in practice we always have

oc = 2nc, |8 = 0, (6.39)

nc being the number of CDD poles. As we vary a particular element of
the crossing matrix, Theorem 6.A tells us that (6.39) will remain true
except at some isolated points, where α and β may both increase by the
same number. At these isolated values, the Frechet differential will have
another zero eigenvector, and spontaneous symmetry breaking will
occur. However, any additional ambiguity thus created, though it will
appear to be continuous in the linear approximation, can only be discrete
in the exact solution by Theorem 4.D. This corresponds to the sort of
spontaneous symmetry breaking discussed in algebraic models by
previous authors [37—38]. By contrast, the ambiguities due to CDD
poles go through into the exact solution.

Theorem 6.A also has some bearing on the possibility of the CDD
ambiguities being reduced by accidental degeneracies, i.e., singular
points of the φ-equations of Theorem 4.D. According to Theorem 4.D,
there are no ^-equations unless β > 0, and according to Theorem 6.A
and (6.39) this only occurs for isolated values of any single element of the
crossing matrix. Thus for accidental degeneracies to stabilize symmetries,
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we must (a) be at one of these isolated crossing matrices, (b) the φ-
equations must just happen to have a singular point at the unperturbed
solution there, (c) this double coincidence must occur for every possible
mode of symmetry breaking. This seems beyond belief. However, the
centrifugal sum rules and the equations determining the external mass
variations are more difficult to analyze since they are not continuously
differentiable, and accidental degeneracies in them are perhaps slightly
more plausible.

We have shown that the left-hand cut contribution to the Frechet
differential is compact, while the right-hand cut part can be inverted in
closed form. It is then possible to reduce the inversion of the complete
Frechet differential to that of an operator 1 — C with C compact, which

can then be solved by standard methods. Several such reduction tech-
niques are given in MUSKHELISHVILI [32]. However, for the case when

the inhomogeneous term and the compact part of the kernel have known
analytic properties, the Dashen-Frautschi method [3, 5] is neater than
any of them. In order to prove that it gives a compact kernel, we note

that from the results of Section 6.a

(s — s0)~"D*(s) (6.40)

and its inverse, will both belong to the normed ring H(R\ μ). We there-
fore write a dispersion relation for the perturbed amplitude multiplied
by this quantity, and as argued by DASHEN and FRAUTSCHT it will have
no right-hand cut. The results of Section 5, together with these properties
of (6.40), then show that the left-hand cut contribution is compact. If
κ φ 0 we will get either arbitrary subtraction constants in the equation
(κ > 0), or subsidiary conditions to be added to it (κ < 0), just as in
Section 6.b.

There exists a method for finding the exact perturbed solution by
iterative solution of the linear approximation. It is shown in Chapter 18
of KANTOBOVICH and AKILOV [36] that this will converge under certain
conditions on the second Frechet differential. It would be interesting
to try to verify them, but this would lead us too far out of our path.

7. Discussion

We have shown that a quantity κ called the index determines the
uniqueness of a given S matrix. Max (κ, 0) is the number of arbitrary
parameters on which it depends, κ has been calculated for partial wave
dispersion relations (see (6.36) for the one-channel answer, and (B.30) of
Appendix B for many channels), and is independent of the left-hand cut
contribution, and of all group-theoretical factors. Normal dynamical
symmetries, and also spontaneous symmetry breaking if it is to be well
defined, both require the index to be zero. A positive index means that
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the symmetry is nondynamical — the 8 matrix equations by themselves
allow symmetry breaking to occur in all directions without restriction,
even with no driving term. This is like the situation in Lagrangian field
theory, where $17(3) violating Lagrangians are not excluded or restricted
by any general principle. A negative index, on the other hand, would
give a super-stable symmetry, highly resistent to any perturbation, and
imposing constraints on the weak interactions.

There is no known example of a model with a negative index, but
positive indices can occur if there are ODD poles. In this case the Dashen-
Frautschi perturbation theory [3—37] will break down, due to their
equation acquiring arbitrary subtraction constants different for each
mode of symmetry breaking. (A statement in one of the Dashen-
Frautschi papers [77] that ODD poles would not affect their argument is
wrong.)

The failure of unique dynamical generation of symmetries has been
demonstrated by a number of authors in static models [56—63], and
HUANG and Low have suggested that Levinson's theorem (without CDD
poles) should be added to $ matrix theory as a formulation of the boot-
strap hypothesis. Our work confirms this, in so far as we show that quite
dreadful things will happen to bootstraps if Levinson's theorem is not
satisfied. However another question ought to be asked: is Levinson's
theorem true in nature ?

The best place to look is obviously the pion-nucleon P33 state. This is
known experimentally up to 1311 MeV [64—73], with good agreement
between all the phase-shift analyses4. It is elastic up to 700 MeV. The
dynamics is believed to be well understood, and does not depend on
inelasticity [74]. If Levinson's theorem is valid at all, then it is hard to
imagine a more favourable opportunity for verifying it. Unfortunately,
all the analyses show ό(P33) going to 180° at high energies, which means
that Levinson's theorem is not satisfied, and a, CDD pole must be present.
Of course, the experiments do not extend to infinity. However, in the
Chew-Low model where Levinson's theorem is valid, the phase levels oft7

quickly after the resonance [75], and precisely this feature of the model
causes drastic disagreement with experiment above 200 MeV. In fact it
has been suggested before [76] that this could be due to a CDD pole.

The situation in the πNPn state is similar, though here the in-
elasticity is large. According to Levinson's theorem, the phase should go
to — 180°, because of the nucleon bound state, and all bootstrap models
show it going strongly negative. However, again it is just this prediction

4 The agreement is even better than might appear from the published papers,
because (a) P33 was accidentally misdrawn in the earliest Chilton paper, (b) the
Livermore P33 has changed since their last publication, due to new polarization
experiments. In both cases the changers are towards 180°.
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of the models which disagrees with experiment. The Pn phase un-
questionably goes positive above 200 MeV, and while there is some
dispute between the different analyses about whether it ends up at 0° or
180t, none give any indication that it goes to —180°. The Z>13 resonance
appears to behave like the P33.

If we then consider the uniqueness of the N — IV* coupled bootstrap
using the experimental phase shifts, the ODD poles will give four para-
meters, two of which are used up in imposing the P wave centrifugal
barriers. Thus, even assuming that the left-hand cutoff is fixed, the
final index is + 2, indicating breakdown of the bootstrap hypothesis, and
invalidity of Dashen-Frautschi perturbation theory. On S matrix theory
alone, there is nothing stopping the isospin symmetry from spontaneous
and complete disintegration. The long-range nature of electromagnetism
should, if anything, make things worse by removing the centrifugal
barrier. We may, if we wish, declare an interest only in those perturba-
tions which die out at high energies fast enough to allow the Dashen-
Frautschi equation to converge without subtractions, meaning δδ(s)
— o(s~2) in the N — N* case, but this is very arbitrary and would give
the super-stable index —2. To get the normal zero index situation, we
would have to assume just one subtraction (instead of the two allowed by
the unitarity limit), which is more arbitrary still.

The experimental evidence for CDD poles has been noticed in-
dependently by ATKINSON and HALPEBN [77], who suggest they could be
due to the coupled channels required by $ £7(6), though their arguments
are obviously inconclusive. If so, then Dashen-Frautschi perturbation
theory would be applicable to $£7(6) breaking, but not to $£7(2)
breaking. In any ease, the index has a definite form for coupled channels
(see Appendix B), and it should be possible to test this experimentally
before very long. If tempted to assume the answer, let us recall that not
so long ago people were confidently declaring all CDD poles to be
theologically impossible.

Levinson's theorem is closely related to the requirement that Regge
trajectories return to the left-half plane at high energies [78]. The ex-
perimental situation is similar: whereas in potential scattering the
trajectories turn back rather quickly, the physical ones just seem to go
up and up. It is obviously tempting to link the two phenomena. This is an
argument against the coupled channel explanation, since it would not
prevent Regge trajectories turning back.

The next possibility that will be noted by convinced bootstrappers is
that the index might be changed by the Mandelstam representation, or
the inclusion of many-particle states. Indeed, if we were to include a
sufficient number of high angular states without CDD poles (assuming
we can find a sufficient number experimentally, which is not certain in
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view of what has just been said about Regge trajectories) then the
centrifugal barrier restrictions would counterbalance the CDD ambi-
guities. The simple answer is that this is not the way in which bootstrap
calculations have always been done. To get through this loophole we
must jettison all existing bootstrap models, and all the evidence for
dynamical symmetries along with them.

Nevertheless, the extension to the Mandelstam representation and
many-particle states should certainly be tried. The present work probably
only scratches the surface of what can be done with these techniques. In
particular, the fact that the compactness proof of Section 5 did not
require any detailed knowledge of the location of the unphysical sin-
gularities seems very promising for many-particle states. Only their
behaviour at points where they touch the physical region, and in par-
ticular the point at infinity, is required.

The present approach is based on the direct dispersion relations, and
not on the NjD method used in almost all previous analyses. The former
have the obvious advantage of automatically excluding ghost states, and
also of giving crossing symmetry a simple form. The N/D equations are
linear, so that classical techniques can be used, but are nevertheless a
dead end, since there is no hope of ever including crossing. The really
interesting questions of bootstraps and dynamical generation of sym-
metries are thus permanently closed to it. By contrast, the nonlinearity
of the direct equations requires unfamiliar analysis, but once this has
been learned, the way is open.

Appendix A

Some soluble examples

To check that nothing has been overlooked in the mathematical
proofs, the reader would no doubt like to see some soluble models in
which the theorem gives the right answer. There is a very large literature
on static models for meson-baryon scattering. However, the static limit
leads to divergences at high energies not present in relativistic theories, to
cancel which a right-hand cutoff is introduced. This causes the kinematic
factor ρ(s) of Section 2.b to vanish strongly at high energies, so that the
condition (2.14) needed for the right-hand integral to be a bounded
operator is not satisfied. This means that the formulation in which the
real and imaginary parts normalized to their unitarity limits are taken as
the fundamental Holder-continuous quantities, is not suited to static
models. No doubt this could be overcome by suitable reformulation, and
the general techniques applied to such cases. However, since this feature
of the static model is clearly unphysical and due merely to the use of
nonrelativistic kinematics at high energies, we have not thought such
changes worth while. Instead, we shall consider some relativistic models.
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We note however that the CDD ambiguity and its relation to Levinson's
theorem are well verified in static models, so that the additive constant
in the index formula is the only point at issue.

The first model we consider is the scattering of two neutral pions,
according to the Shirkov equations. EFREMOV et al. [79] showed that this
is exactly soluble by the Castillejo-Dalitz-Dyson technique of generalized

R functions [53]. The general solution is I with v —~τ—

i , i ι/IΣΓlrι [J^H^ΞΞLl , lι/ZΞΓln Γ^Γ+^ΓΊ
-l + ̂ V v + 1 ^Ll^-^TΓj^ π V v ln[y^+T-yv\>

where

Λ ^ O , c ^ O , -#n^0, ω Λ > l , (A.2)

but are otherwise arbitrary. The uniqueness theorem says that any
solution satisfying

δ(v) = δ(<χ>) + 0(v-μ), μ>0, as v -> -f oo (A.3)

should belong to a continuum of dimension

2nB + 2[<5(oo) — <5(0) ]/π. (A.4)

First consider (A.I) when all Ew = 0. cotδ(v) must then be finite in
between threshold and infinity, so that δ (oo) — δ (0) will be either 0 or
±τr. To find which, we must examine whether Gθtδ(v) goes to + oo or

— oo, at v = 0 and v = oo. At the symmetry point v = —-̂  , (A.I) will be

positive by (A.2). By making λ sufficiently small we can certainly ensure
that there will be no bound state, so that it will still be positive at
v = 0. It will go to — oo as v -> oo unless c vanishes. This implies δ (oo) — n,
so by (A.4) we should have a two-parameter family of solutions, which
we do — the parameters being λ and c. For the case with bound states,
it is easily seen, by studying what happens to (A.I) as a bound state
crosses threshold, that (A.4) is unchanged. As for the solutions with
Rn Φ 0, each will give a pole in cotδ(v) with negative residue, implying
that δ(v) must increase through a multiple of π. Thus each CDD pole
adds -f 2 to the index (A.4), and two parameters Rn and ωn to the mani-
fold of solutions. These different families of solutions cannot perturb into
each other, because they correspond to different values of <5(oo), and will
therefore never approach each other in the Banach space norm (2.2).

Thus we have shown that this model satisfies the uniqueness theorem,
except in the special cases c = 0 and λ = 0. For c = 0 the asymptotic
behaviour of the unperturbed solution is

d(v) = δ(oo) + 0(l/lnv), (A.5)
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so that the assumption (2.3) is not satisfied. In fact, it is known that this
case corresponds to a one-parameter family of solutions satisfying
Levinson's theorem. No doubt, with a bit of extra work, the theorem
could be extended to these weaker asymptotic behaviours. In particular,
we would have to prove Theorem 2. A in a Banach space for which the
imaginary part merely satisfied

y(s) = y(°o) + 0(ln-»ί) (A.6)

instead of the Holder condition at infinity, and also take logarithmic
factors into account in calculating the asymptotic behaviour of Γ(s) in
Section 6. a.

The case λ — 0 is exceptional because the unperturbed solution
vanishes identically. Therefore the Frechet differential (3.10) reduces to
multiplication by η(v) ~ 1 and has index zero. The zero solution is thus
isolated, in accord with the fact that there is a discontinuous change in
the high-energy behaviour as the interaction is switched off. Thus the
boundaries c = 0 and λ = 0 of the manifolds of solutions, required by
(A.2), correspond to the solution moving out of the Banach space, and
the equation ceasing to be continuously Frechet - differ entiable, respective-
ly. This checks with Theorem 4. A.

In the case of pions with isotopic spin 1 , the Shirkov equations have
two 8 waves and one P wave. They cannot then be solved exactly, but
have been extensively investigated numerically [80] and the dimen-
sionality of some of the manifolds of solutions are known with reasonable
certainty. The P wave contributes an extra — 1 to the index, because of
the centrifugal barrier, so it is

*= Σ{n%+ [δτ(oo) ~ δτ(Q)]lπ} - I . (A.7)
τ = o

The subtraction constants will be determined by the requirement that the
real part vanish at infinity. This will relate them to integrals over the
imaginary parts, and will therefore ensure that the symmetry relation at
the subtraction point

0 (A.8)

is automatically satisfied. There are known to be three asymptotic be-
haviours [81]

As in the neutral case, our theorem does not apply to the first, because it
violates (2.3). In the absence oίCDD poles, this one is known to lead to
the one-parameter 8 dominant solutions. SEEEBEYAKOV and SHIEKOV
[80] have obtained numerically a set of solutions with the second asym-
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ptotic behaviour, giving resonances in A$ and A\ but none in A\ (in
qualitative agreement with experiment). The resonant phase shifts go
to 180° at infinity, so we should expect them to depend on three para-
meters, according to (A. 7), which indeed is the case. These solutions have
CDD poles at infinity.

Appendix B

Coupled channels

We now consider the case of N coupled two-particle channels. The
unperturbed 8 matrix is then an N x N matrix related to the quantities
Aaβ(s) satisfying a dispersion relation by

SΛβ(8) = δxβ + 2 i [ ρ Λ ( 8 ) ] V * AΛβ(s) [Sβ(8)]W . (B.I)

Here ρx(s) is a kinematic factor with square-root behaviour at the
appropriate threshold, and asymptotic behaviour ~ SR. It follows from
time -reversal in variance that A and 8 are symmetric matrices, and there-
fore, because of the dispersion relation, each element satisfies

[Aap(a)r = Afβ(8*) (B.2)

(* when applied to elements of a matrix means complex conjugate only,
but Hermitian adjoint when there are no subscripts). Our Banach space
will consists of normed rings of matrices whose elements are real-valued
functions Holder- continuous in the variable u. To avoid difficulty with
thresholds, we take

x(s) = (s — SQ)R E,eA (s)
(B.3)

y(s) = (s — s0)

as our basic Banach-space vectors this time, where ~ SR is the common
asymptotic behaviour of all ρα(s). We are thus assuming short-range
interaction threshold behaviour. We also exclude total absorption by
imposing the condition.

det [£(<$)] Φ O , s1^s^oo. (B.4)

We do not exclude many-particle contributions, but suppose they are not
perturbed, so that

δS(s) S(s*) + S(s) δS(s*) = 0 . (B.5)

The right-hand cut as used in the definition of u [see Eq. (2.1)] is taken
down to the lowest threshold sv We assume that the right and left-hand
cuts do not overlap, though this could probably be relaxed by doing
more work on the Holder continuity of the left-hand imaginary part.
The proofs that the right-hand dispersion integral is a bounded operator,
and that the left-hand term of the unperturbed equation is bounded, then
go through with only trivial modifications. However, to show the compact-
ness of the perturbed left-hand term, we require a convergence factor
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analogous to (5.6), and this needs a little consideration. Equations (B.3)
and (B.I) imply

'ReSs) = —2(s — 8Q)-RρL/2δy(s)ρl/2

9

) = 2(s — s0)-Rρl/*δx(s)ρ1/*,

while from (B.5) we get

{δ Re/S(s), Re/8(5)} + {δ ImS(s), ϊm(Ss)} - 0 . (B.7)

The supplementary condition that the real parts x(s) shall vanish at
infinity implies by (B.I) that Im/8(oo) = 0, and hence by (2.2), ImS(s) ~
~ s~fj. Equation (B.4) then shows that the Re$(oo) φ 0. Therefore, the
consistency of (B.7), together with (B.6), implies a bound

(s) ~ s-fA\δx(s)\ί as <s->oo, (B.8)

which can be used to get the requisite convergence factor in the compact-
ness proof.

The main difficulty of course comes in the solution of the unitarity
equation, required in the index calculation of Section 6. For this we
proceed as follows.

Corresponding to (6.1), we define a matrix

o

(taking the case E = 0 for simplicity), and the analogue of (6.2) — (6.3) is

where δf(u) is a matrix of driving terms. Like S(u), Φ(u) will be a
symmetric matrix, so that each element will satisfy

ΦΛβ(u)* = Φ^u*) (B.ll)
and we have

—- -ρ1/* δS(u*) ρl/2-δf(u*) .

Therefore, by (B.5) and (B.4), we get

- S(u) {ρ-
(B.13)

df(u) ρ-V2 4. S(u) ρ~1/* δf(u*)

We thus find ourselves with a matrix Hubert problem of the form

X(u) = A (u) X(u*) B(u) , (B.14)

and the corresponding inhomogeneous problem. (Here u has a small
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positive imaginary part.) Consider first the vector Hubert problems

δ

It is shown in Chapter 18 of MUSKHELISHVILI'S book [32] that each of
these will possess N independent fundamental solutions £7| (u) and
V%(u), respectively, satisfying the conditions [e.g., for U$(u)~\

det || ΌI (u) || Φ 0 , in the whole finite u plane, (B . 1 7 )

0 < d e t t t - * e Z 7 w ) <°o, as u-*oo. B.18)

Here κQ — κQ(A) are integers, known as the partial indices of the Hubert
problem (B.I 5), and satisfy

It is obvious that
Σ(u)=U«(u)Va

β(u) (B.20)

will give a particular solution of the homogeneous matrix Hubert problem
(B.14). The trick now is to write the N x N matrix X(u) as a vector with
N2 components. Equation (B.14) is then a vector Hubert problem of
the same type as (B.16), but in N2 dimensions. Its matrix is an outer
product of two A7"- dimensional matrices A and Bϊ?. Using the formula for
the determinant of the outer product of two matrices

det (4 Θ B) = (άeϊA άetB)N , (B.21)

we see that .ZV2 x N2 matrix with components (B.20), where α, β label
the row and ρ, a label the column, satisfy equations like (B.I 7) and (B.I 8)
and are therefore a matrix of fundamental solutions of the N2 dimensional
Hubert problem (B.14). According to MUSKHELISHVILI'S results there
can only be N2 fundamental solutions for a vector Hubert problem of
dimension N2, and all solutions of the homogeneous equation (B.14) are
given by linear combinations of them with polynomial coefficients. The
partial indices will be, by (B.21) and (B.I 8),

κβa = N[κs(A) + κa(B)] (B.22)
and the total index

#| Σ *Q(A) + Σ *σ(B)] = N[3XgάetA(u) + ttgdQϊB(u)]»-l. (B.23)
Lρ- l σ = l J

In our particular case, the vector Hubert problems corresponding to
(B.15) and (B.16) will be

UΛ(u)=ΣSΛγ(u)Uy(u*)
(B.24)

-
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Using the symmetry of the 8 matrix, and (B.4), and conjugating, it is
easily seen that any solution of the one will also determine a solution of
the other. Therefore, we can identify

Vί(u) = [Ui(u*)]* = Uί(u) (B.25)

by analytic continuation to u < 0, First let us consider the solution of
(B.I 3) with the same boundary conditions as Muskhelishvili — that is
ρ-ι/2φ(^)ρ-y2 finite everywhere in the u plane, Holder- continuous on
the cut, and vanishing at u = oo. The general solution of the homo-
geneous Hubert problem is then

ρ-1/2 Φxβ (U) ρ^z = Σ ϋ< (u) Peσ (u) U°β (u) (B.26)
Q,a — 1

where PQσ (u) is an arbitrary polynomial in u of order g κρ + κσ, if this is
^ 0. If κρ -f κσ < 0, then this term is absent from the homogeneous
solution, and instead we get — κρ — κΰ conditions on the driving term,
in order that the inhomogeneous solution shall vanish at u — oo. It would
appear therefore that the index in the sense of Definition 4.B is given by
(B.23). However, we have forgotten that Φ0ίβ(u') must be a symmetric
matrix, in order that the perturbed 8 matrix given by (B.10) be sym-
metric. This means that the polynomials PQσ(u) of (B.26) must be sym-
metric in ρ and a. Also the conditions on the driving terms when the
partial index is negative will be partly dependent on each other, since
δfaβ (u) will be symmetric. It is easily seen that the effect of this symmetry
on the index is to replace it by

~ Σ &Q + Kθ\ + Σ [*ρ + *fe]
ρφσ ρ

-(N+VΣ*, (B.27)
8=1

Our boundary conditions differ from MUSKHELISHVILI' s in the following
respect: (a) the solution must vanish at u = 1 corresponding to s — oo,
(b) the solution must go to a constant at u = oo, corresponding to the
subtraction point s = sQ9 but need not vanish there, (c) the solution for
the perturbed 8 matrix may have a double pole at each of the n^ bound-
state positions [compare (6.15)]. These bound-state poles will occur in
each element of the 8 matrix, (a) and (b) are easily seen to cancel in the
index, since multiplication of a Muskhelishvili type solution by (u — 1)
will always satisfy (a) without violating (b). The bound states mean that
each of the fundamental solutions (B.20) can be multiplied by
IΊ(UB — u)~2. This will decrease by u~2nB the behaviour at u = oo, and
B
therefore allow each of the polynomials of (B.26) to have order higher
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by 2nΰ. The index will then be, instead of (B.27)

J Σ \*Q + *o + 2^1 + Σ IX? + *<> + 2^]
(B.28)

[arg

This has a simple physical interpretation, for

nc = »B + [arg det ||̂  (β) | ]~ (B.29)

will be the number of CDD poles, and vanishes for the many- channel
form of Levinson's theorem [82—88]. Each CDD pole corresponds to an
elementary particle, and therefore has N + 1 arbitrary parameters,
namely its mass, and its coupling to each of the N channels.

To determine the number of centrifugal sum rules without undue
complication, we assume the orbital parities to be equal in all coupled
channels. When these are included, and the independent partial waves
put together, the index becomes finally

[ Nj ι 1

ΣΎIΛ) (B.30)
«=1 J

Zα (j) being the orbital angular momentum of the octh channel of the jth

partial wave.
The reader will notice that we have not assumed any commutation

properties among the matrices S, S*9 68 and δS*.
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