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Abstract. The decomposition of the regular representation of the Poincaré group
into irreducible representations is given.

I

We denote by (a, A) any element of the Poincaré group &, where o is

a 4-Translation and / an element of the Lorentz group G. In the following,

we shall not distinguish between ' and its universal covering SL (2, C).
The multiplication law in £ is given by:

(ay, Ay) (g, Ay) = (ay + Ay a5, 4y 4) . 1

We consider the Hilbert space 52, the elements of which are functions

with square modulus integrable with respect to Haar measure. The

mapping
fa, 4) <2 [ (a + Ay, A4)) @)
defines a unitary representation of 2, the so-called right regular represen-

tation. In this work, we shall explicitly decompose this representation
into irreducible components.

We set:
— [ fla, 4) et e dg 3)
where a - b is the Lorentzian scalar product. Now:
1 {4 id-ta-d g4
f(a,/l)=—(g7ff(a,/l) ¢4t g @
f[f(a Apdadd = —— (Qﬂ f@ A)pddda. )

Therefore, equation (3) defines an isometric mapping of J# into #,
Hilbert space, the elements of which are functions with square modulus
integrable with respect to measure dd d.

Transformation (2) induces in Ve

f(d, 4) £ dord f(A72a, AAy) . (6)
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Let, generally, £,, be the hyperboloid:
d-d=m?
and, if m2 > 0, let Q;;, .Q; be superior and inferior sheets of Q,,.
We set: ) )
fue(@, A) = f(d, A) for 4€RQ,, m*<0 ]{
fEi(a, A) = f(d,A) for d€QE m2>0.
Now, taking into account equation (6), we have:
Fus (@, A) S22, giavd f (A6, AA,)
£.(d, A) Lo gavafE, (4714, AA0>}

and, obviously:

Jite

+ [ V@, D) doy (@) aA] +? f -

A)EdddA f o[ [1fi @, A) o @) a4 +
0 9)

(G, A)2 do, (@) dA

where do;t (d),do,,; (4),do,, (4) are invariant measures for 2+, 2~ and Q,,
respectlvely This shows that the representation of & defined by (6) is
a direct integral of representations defined by (8). Our problem will now
be resolved if we reduce these simpler representations.

I

First, we study, the representation corresponding to f;: (d, A),
denoted now, in short, by ¢(d, 4). These functions are defined on
0+ x G and have square modulus integrable with respect to invariant
measure do,’ (4) dA.

We can associate to each d €' the matrix ‘gf - 1‘, A>0, the
element in SL(2, C) which transforms the apex @, of .Q+ ([17) into d.
Now, if 4 = | ﬁ‘ we have:

-1 —1

o A0 A 0 u v
y /; = gi i =5 @ y 4 >0, [up+ =1 (10)
and we write:
~ A ~ U v
Fy o (A, 0,0) =@, A), 4= 1__5 al (11)
Taking (8) into account, we deduce:
FJIZI;(Z C’ )(llo P x,Cl(Z' C’ ~ ~/) (12)
where A’, {’, @' are defined by:
A0 |lae Bl | W || 0
A B AN 3)
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On the other side, one etablish easily, if do,} (d) = djd :

[ 9@ AP do} @ da=me [ 2552 [ By, (o0 0

where dl(d{;) denotes the surface element in the complex plane of
£(¢y), and d4 is the invariant measure on SU (2). From this result, we
deduce that the representation of &, defined by (8) is a direct integral of
the representations defined by (12).

Since F; . (4,(, @) is of square modulus integrable on SU(2) for
almost all A;, {;, 4, {, we shall write ([2]):

dlldé‘l cu dC

di  (14)

+s8 +s

FroCay=2 Y 2 F5 1.4 8) D (@) (15)

8§ j=—8j=—s
where s runs over all integers or half-integers and where Df; (#) denotes
the customary matrix element of the SU (2) representation Ds. From
(12), we associate to each (ag, A,) the transformation:

B3 ¢ vi(A, £) Lo giavd > 94 (@) FS i (X, 0)  (16)

E=—s
which is one possible form for the unitary irreducible representation of

& with mass m and spin s ([1]). Taking into account orthogonality
relations for the Df; (i), we have: '

did did
f Cfd IFMC ZC’ 12_. 28+12f C 11,('177}'&.'2 17)

8,9

and this finishes the reduction into irreducible components for the
representation of (8) corresponding to f,k (4, 4).

Obviously, we can proceed in the same way for the representation (8)
corresponding to fr: (4, A). Therefore, we have studied the case m? > 0
in its entirety.

III

Now, we consider the case m? < 0. First, we must notice that for

almost all elements A = }; g , we can write:

s 0=F a L o [f 3 ler—tpr=1, e=0.1 250 q8)
which is true for |6|2— |f]? & 0, or:
« fBl_|A O 0 1t o b
y 8 ¢ &Y |—1 0 | & (19)

which is true for |a|2— |B|% + 0 ([6]).
If @, € Q,, has coordinates (0, 0, 0, m) we can associate to each point
4 €0,,, the new coordinates (g, A, {) which, from (18), label a right coset
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of SL(2, (") with respect to SU (1, 1). Writing now:

o O|=1] 0 1-&aja b

B A ~0,1 (20

HCA— ‘—10 e Al =10 e (20)
we shall define F(, ; ., (e, 4, {, @) by

F(e;,ll,il) (8’ A: C’ d) = (p(d> A): A = Zi g (21)

where @ is the matrix g ; in the right member of (20) and where (¢, 4, {)

corresponds to d. To simplify, we omit the index m2.
Transformation (8) gives:

ey n ey (6 A 0, ) 25 b By o (e, 1,8, @) (22)
where ¢, A, {’, @ are defined by:
A0 0 ety fo| o ¥ 0 1A 0
CoAY =1 0 ly, 6 B @ |—1 0\ ¢ At J
o
On the other hand, one established immediately with do,, (4) = |dT'
0
dA dl
(@, 4)2do,, (d)dA = m2 Sk )
[l (é) P ) B
dld .
lFs,,ll,Cl(S’ z’a 55 !2 C d

where dd is Haar measure for SU (1, 1). Therefore, the representation of
2 defined by (8) is a direct integral of the representations defined by (22).

Now, from (23), F, ; ¢, (&, A, C, @) has square modulus integrable on
SU(1,1) for almost all 2, ¢, 4;, {;. We can thus write (cf. Appendix for
the notations):

+oo ,
Py (6 40,0) = 2 f do Fm: (e, 2,55 0,m) X

n= 01nm—~oo

X Donl@s o+ ¥ 5 3 F (}?ﬁ)(e,l,i;%)Dim(d;%>

+,— §= 2 m,n=0
and from (2.2) obtain the transformations-

Fme, (61,8 0,) 2 ot X D5 0, 1) X
' ,,,__w (24)
XF(')'")CI( X5 0,m)
(@, Ay -4 ~r roar s, S
FE (o205 ) B 0d 3 D (3 5 P (e 1075 g) 09

Taking account of equation (A.6) in the Appendix, it is obvious that
our study of the case m? < 0 is complete, because, in (24) and (25), we
recognize one possible form for the unitary irreducible representation of
Z with imaginary mass, induced by the representation D(d, g, ) and

D+ (a, ) of the little group SU (1, 1).
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v

In the following f(a, A) is an infinitely often differentiable function
with compact support. If T+¢.m) (a, A) denotes the operators of the
unitary irreducible representation of # with mass m, spin s, corresponding
to QF, we consider the operator:

[dadA T+6m™ (a, A)~1f(a, A) . (26)

The T+©™ (a, A) acts on Hilbert space of functions 4;(d), 4 €2},
—s < ¢ < s, such that:

2 [ (@) doy (d) <o
i
As transformation law, we have:
hy(@) <422 68 3 Dy o () B (@)
where 4’ and 4’ are defined by:

Agdy=a'Ag .
Here, A, denotes the matrix 2 2-1 which transforms @, into ¢. We have
now:
[dadd f(a, A) T+6m (a0, )=t h;(4)
= [dadA f(a, A) e 47 d):' 5o (ui ) by (dy) 27
with
Ag A=t = a4, .

If we choose as a new variable in the right member of (27):

Ayg=AA71 = A3 0,

and notice that:
1 A ~
dAO = e do‘,'n" (Cbl) dul
we can write

[ dadd j(a, 4) T+em (@, A) by(d)
A ~ 1 A —_— ~ ~ A
-z [doita| [ da st 452 4, Dy @)] x by @) (28)
=3 [ doj (@) Kf 9@, dys m, 5) by (8
-

From orthogonality relations between the Df; (%) and taking into
account equations (11), (15), we conclude immediately:

11,5177 (]’ C) m2(23+ )K+(j7’)(d a15m9 8)

and it is easy to prove that Kj ¥7) (4, d,, m, s) is the kernel for a Hilbert-
Schmidt operator.
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It is obvious that we can treat in the same way unitary irreducible
representations corresponding to £2;,. We denote by K7 %1(d, d;; m, s)
the corresponding kernel. For the representations with imaginary mass
induced by representations D (@; g, n) and D+ (d; —;) of the little group,
we can apply a similar procedure with the modifications implied by the
particular parametrization of 2,, and the Plancherel measure on S U (1, 1).
One can repeat word by word the preceding reasoning, as one will easily
see if one takes, as point of departure, a form of representations similar to

(24) and (25). We always obtain thus kernels for Hilbert-Schmidt
operators.

This being said, we wish now to express f(a, A) in terms of its com-
ponents. First of all, we have:

fla,A) = 3 (2ﬂ)4 fdm
[f;nh(d, Ay 4wt dg (@) + [ fr(d,A)é 4708 do, (d)] +(29)

1
Ty

[ fuetd, A) 44, (@)

We give detailed calculations for the first term in the right member;
the other terms can be treated in the same way. We can write:

[ (@, Ay é47 00 dar (@) = [ dos (@) 15 (6, Azta Ad) a7 Aa)ad
= [dof (@) (@, Azt ady) €% (30)
by the definition of the A’s. Then:
[ dojf (@) fif (4, A) 474 = 37 (25 + 1) X

s

X 2 m? [ doy, (4) K 410, dy; m, s) D (i) €'
i’
and A, @, A4 are such that

Ag-A=d-4;.
Now, let us consider:
T+6m (@, A) [da' dA' f(a', A") T+Em (o', A')-L.
We have:
T+6m (@, A) [ da’ dA f(a', A) T+Em (o, A1 by (4)
= T+6m (g, A)Ef o, (4y) K01 (@, dy; m, s) by (dy)

— g dZ D )f daif; (6,) KF ®3(&, 4,3 m, 8) by (dy)

~I Al

where @', 4’ are deﬁned by:

Agd = Ay .
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From this follows:
;'fdo';; (@) K 99(d, dy; m, s) D (i) €%
=7;17‘r T+6m (o, A) [ da' dA' f(o', A') T+Em (0, A')-1
=Tr [ da' dA’ f4,4 (@', A") T+E™ (@, A)1
where f(,, 4 (@', A’) is the right-translated by (a, A) of f(a’, A'):
faan@, ') =f@ +A'a, 4'4).
If we denote by 7'+ ¢ ™ (f) the quantity:
Tr [ f(a', A') T+E&™ (a', A') da’ dA
we can write finally, taking into account the unitary properties:
[ dog (@) ffa(d, A) 478 = mZZ 2s+ 1) THE&™ (fiq, ) -

With similar calculations for the other terms in the right member of
(30), we obtain (cf. Appendix):

Ha, 4) = %(2_25‘?2 (2s+1) f mPdm? (T+ €™ (g, ) + T~ O™ (fa, ) +

0
1 1
s | " dmzfdggth 28 e 0 (i, )

—

31)
1 -
2 (2n)4 f |m?| dm? f doo cth 5= ToL i (f, ) +

— 00

+

1 1 TE&m) (7, )
typa £ 20D flmzldszi(“’” (o, )

with obvious notations.
In particular, fora = 0, A = e:

10,0 =g e £ @3+ 1) X [ medme(Tm )+

o

oo

0
1

+ 27)* f[ml2dm2fdgg th_2_Tg,(),1m(f) n
0

o] =

” (32)
1

T35 B

|m2| dmzfdgg cth%gTQ’l’im(f) +

\o

o] =

— 00

Y 6—1 Py f 2| dm (T= G ()

s=1

|.a

+

2n)4
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Finally, denoting by K;" (s, m), K (s, m), K; (0, 1, im) and K7 ( zm)

the operator corresponding to kernels connected to representations
appearing in (31), (32), we obtain, applying the same calculations to (5)
and (9):

[ lit@, A2 dada (33)

oo

(s, m) K (5, m)* +

+%7r‘.fmﬁmﬁfdehwh~4hKA@0HMKAQOMM*

1
+5 (2n)4 f[mzl dmzfdggcth TrK;(o,1,im) K (g, 1, em)* +

0
o 2 L (s—1) f| n dm? TrKi ( ,zm)Kf ( zm)
+,—s=1 %

As the infinitely often differentiable functions with compact support
are dense in the Hilbert space of functions with square modulus integrable
on 2, (33) is still true for all such functions. So, (31) and (33) contain the
essential results concerning the Fourier transform on &, this last being
understood as in Guelfand’s work ([7]).

Appendix
On unitary representation in principal series of SU (1, 1) and Plancherel
formula

a) Continuous representations in the principal series. Let S be the
Hilbert space the elements of which are functions f(¢) such that:

27
Of f(@)Fdg <o

Let us associate to each element @ = ‘% 2 of SU(1,1) the trans-

formation
_n

(@)~ beiv+ay$+3=4 Geivta)$ =34 f(¢) = D(@;0.m) f(9) (A1)
where o > 0, 7 =0 or 1 and ¢’ is given by:
ad® + b
be? +a "

(A.1) defines a unitary irreducible representation of SU(1,1) for
which Casimir’s operator has the value:

1o

1 o?
1=3*t¢
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If =0, one obtains representations, isomorphic to representation
. 5 . . 1

C9 in Bargmann’s work and, if 7 = 1, to representations C}/2 (g > Z) .
We take as a norm in J#, Bargmann’s value:

I = (zi f lf(qo)lwsv)?
0

b) Discrete representation in the principal series. Let 3, be the
Hilbert space the elements of which are functions f(£), analytic in the
disk |¢] < 1, and such that:

flf ORA—CPF-2dl <o s=2.

Let us assocmte to each element G = , 6> of SU(1,1) the trans-
formation _
10> 07 +ay (5rog) = D (a:5) 1) (A2)
or the transformation:
10> B+ ay | (5me) = D~ (1:5) 1©). (4.3)

We define thus unitary irreducible representations isomorphic to
representations D3, in Bargmann’s work.
We take as a norm in 57, Bargmann’s value:
) +1/2

== [ a—igpe-ryepa
[Zl<1

The discrepancies between our formulas and those of BArcMANN

come from the dissimilar action of the group on homogeneous spaces

(unit circle, unit disk): in our representation the group acts from the
right.

¢) Plancherel formula and regular representation ([4], [5]). Let

Dy, m(@; 0, n) be matrix elements of D(d; , ) in the orthonormal basis

enfy —co < m < 4o and let DE, (a, 2) be matrix elements of
D= (d ;—2—) in the orthonormal basis (Wn—_l(_s:——_l—l)')l/ iron=0,1,.... It
result from Bargmann’s work that this set of function is a complete
system in the Hilbert space whose elements are functions with square

modulus integrable on SU (1, 1). Let ¢ (a@) be such a function; for almost
all @, we can write

s@)=x fd@sﬁnme,n)Dnm(a e+

1=0,1 m,m=—co0 § (A.4)
2

£ 2 2t (3) Dt (a:3)

+,— s=2
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According to orthogonality relations between matrix elements we
have:

G (0:0) = 0 th 7 [ 43 $(@) Dy (3 0, 0)

dum (0 —gcbh—fdagﬁ(a D, m(@: 0, 1) (A.5)
AT )
[1g@paa=

=w:§w[fdggth 2 | (0, O)[2 + fdggeth— 62,m (0, 1 lz}
(b (D). wo

If we replace ¢(a@) by its translated ¢(@d,), the coefficients in A.5
become, taking into account unitarity and invariance of dd:

EDm,g(%;em) bn,n(0> 1) ZDM(%, )¢n, ( )

P=—00

Further

+£@—12(

n,m=0

So, for n fixed, vector functions ¢, .(0,7), ¢, (2) transform

according to irreducible representations of SU (1, 1) and this with A.6,

resolves the problem of decomposing the right regular representation of
SU(,1).
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