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Abstract. It is shown how rigged Hubert spaces may be constructed in quantum
mechanics, and the properties of the resulting spaces are derived. The theory is
applied to non-relativistic quantum systems of n interacting particles. The spectral
theory in rigged Hubert spaces is developed and the results necessary for the appli-
cation to the Dirac formalism are derived.

I. Introduction

It has been shown in a previous paper [1] how the concept of a rigged
Hubert space provides a natural framework for introducing the Dirac bra
and ket spaces into quantum mechanics. It was further shown how the
introduction of extra structure into the Hubert space by labelling certain
of the observables not only provided a description of the differences
between different physical systems, but also allowed a natural construc-
tion of a rigged Hubert space associated with that quantum system. It
is the purpose of this paper to go into the details of this construction and
to deduce certain general topological properties of the spaces constructed
in this way. To this end the actual interpretation in terms of labelled
observables is irrelevant, and it is sufficient to have a suitable set of
distinguished operators on Hubert space, which are to be made continuous.
This abstract theory is applied to the non-relativistic theory of n inter-
acting particles to derive necessary and sufficient conditions on the
potential, so that a rigged Hubert space may be constructed by applying
the canonical method.

As the descriptions of the spectral theory in rigged Hubert spaces are
rather scattered throughout the mathematical literature and no one
source gives a description which is reasonably elementary and of suf-
ficient generality, it seemed worthwhile devoting the second part of this
paper to a brief exposition of this theory. The theory is presented in the
context of a spectral theory for semiinner product spaces as this makes
for little additional complication and would in any case be necessary for
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applications to quantum field theory. The result of this work is to
associate integral eigendecompositions with continuous observables, thus
providing the necessary results for applications to the Dirac formalism.

II. Initial topologies

Definition 1. Let E be a set and τ± and r2 two topologies on E\ then
we say that τx is finer than r2 (or τ2 is coarser than TJ) and write TJ ^ τ2,
if each subset of E which is open with respect to τ2 is also open with
respect to τr

In a finer topology we have more open sets, more closed sets, more
neighbourhoods of a given point and more continuous functions. The
relation ^ introduced above is a partial ordering and allows us to give a
meaning to the terms lower bound and upper bound, when referring to
topologies. It is a feature of the set of topologies on a given set that it
forms a complete lattice with respect to this partial ordering. In other
words, every subset of topologies on a given set has a greatest lower bound
and a least upper bound. This allows the following construction.

Definition 2. Let Tκ : E -> Ex (α ζA) be mappings of E into topo-
logical spaces E^ then the coarsest topology on E making the mappings
Tα(α ζ A ) continuous is called the initial topology with respect to the
mappings Tα.

The nomenclature followed here is that of BOTJBBAKI [2] other terms
are Kerntopologie [3] and projective topology [4]. The initial topology
may be characterized explicitly as follows: if Bκ(oc ζ A ) are bases for the
topologies on EΛ9 then the set of finite intersections of sets of the form
T~l(Ux) (C7α ζ Bx, α ζ A ) forms a basis for the initial topology on E.
This topology has the following fundamental property.

Proposition 1. Let E have the initial topology with respect to the
mappings Tx : E -> Ex (α ζ A) and let S : F -> E be a mapping from a
topological space F into E, then 8 is continuous if and only \ίTxS:F->Ea

is continuous for all α ζ A.
This is a standard result in general topology [2] from which we

immediately deduce
Proposition 2. (Transitivity of the initial topology.) Let Tx : E -> Ex

(α ζ A) be mappings between sets E and Ex, and Tβ(χ : Ex -> EβΛ (βa ζ Ba)
be mappings into topological spaces Eβa. Then the initial topology on E
with respect to the mappings Tβ(χ Tκ : E -> Eβ(χ_ is the same as the initial
topology with respect to Tx : E -> EΛ, if each Ex is given its initial
topology with respect to the mappings Tβ^ : Ex -> EβΛ.

Analogous results hold when the sets E, Ex have additional structure
and the maps Tx are structure preserving. We shall need these results
when E and Ea are some sort of topological vector space, and the key to
obtaining them is contained in the following proposition.
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Proposition 3. Let TΛ : E -> Ex (α £ A) be linear maps of a linear space
E into topological vector spaces Ex then

a) The initial topology on E makes E a topological vector space.
b) If Ex is locally convex (α £ A) so is E [5].
c) If Ex is a Schwartz space (oc ζA) sois E [4].
d) If J57α is a nuclear space (α £ ^4) so is $ [6], [7].

It must be remarked here, that in no case do we take the definitions of
these classes of topological vector spaces to imply that they are Haus-
dorff. We need only notice that the trivial topology on E, in which the
only open sets are the empty set and the whole space, makes E a nuclear
space, and we have deduced

Proposition 4. The set of nuclear, Schwartz, locally convex or topo-
logical vector space topologies on a linear space E each forms a complete
sublattice of the complete lattice of all topologies on E in which the
greatest lower bound coincides with the topological one.

Proposition 5. Let Ex be Hausdorff topological vector spaces; then
the initial topology on E with respect to linear mappings Tα : E -> Ex is
Hausdorff if and only if, for each x ζ E, there exists an α £ A such that
EΛx φ 0.

If the initial topology does satisfy the conditions of the above pro-
position, we shall write E = KT~l (Eκ).

α

Proposition 6. If E = KT~l(E(X)) E is isomorphic to a subspace of

ΠEX.
α

Proof. Define a mapping T:E^ ΠEK by setting Tx=(TΛx), T is
α

1 — 1. By proposition 2, E has the coarsest topology making T con-
tinuous, and E is thus isomorphic to the subspace T(E) of ΠE^.

X

So far, we have just given a sketch of the standard theory of initial
topologies, but for applications to quantum mechanics the theory needs
certain modifications and refinements. In the first place, E already has a
topology, which must be taken into account, so that we are led to give
E the coarsest topology finer than the original topology and making
the mappings Tx : E -> Ex continuous. This situation may be reduced to
the previous case simply by including the identity mapping /: E -> E
in the set {Tα}α£^. Secondly, the operators we shall eventually be dealing
with will be defined on dense domains and will be derived from closed
operators.

Definition 3. Let T be a mapping between topological spaces E and
F with domain of definition D(T], then T is said to be a closed mapping
if the set {(α?, Tx) \ x ζD(T)}9 the graph of T, is a closed subset of E x F.
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This concept must be generalized.

Definition 4. We call a set of mappings {T0^<X^A between E and EΛ,
defined on a common subspace D C E and containing the identity
/ : E -> E restricted to D, a closed set if {(T xx) \ x ζ D} is closed in IJEX.

<x

If {Ta}κζA does not contain I\D, we call it closed if the set obtained by
adjoining this mapping is closed.

This definition includes the previous one as a special case.

Proposition 7. Suppose Tx has domain DXCE and is closed ( o c ζ A ) ,
and let D = Π Dα, ία = Tα | D then {ίVUej. is a closed set of mappings.

X

Proof. As T is closed, {(x, Txx)\x ζD} is closed in E x Ex. Thus
{(#, Txx)\x 6Dα} x 77^ is closed in E x ΠEβ. It follows that

/ 9 φ α 0£Λ.
{(#, (Tαα:)) \x ζD, α ζ ^4} is closed in E x ΠEX, as it is the intersection

«€4
of the above closed sets. Hence {Toc}κζA is indeed closed.

Working with closed sets of operators leads to many regularity
properties of the resulting topologies, the most important of which are
listed in the following proposition.

Proposition 8. Let{Tα}α£^ be a closed set of operators with identity,
and let F = K T~l (Eκ) then

α

a) If EX is complete (α £ A)> F is also complete.
b) If Eκ is semireflexive (α ζ A), F is also semireflexive.
If A is countable, we have further
c) If Ex is metrizable (oc ζA), F is also metrizable.
d) If Ex is reflexive (α £ A), F is also reflexive.
e) If Ea is Frechet (α ζ .4), .F is also Frechet.
Proof. These results all follow immediately from the fact that F is

isomorphic to a closed subspace of ΠEκ [3].
α

Finally, we are really interested in the case in which the image space
is the same as the domain space, and we want to have continuity even
when we change the topologies in both spaces at once. This is achieved
in the following proposition.

Proposition 9. Let {T0ί}(XζA be a semigroup of operators on a topo-
logical space E. If F denotes the space E with the initial topology with
respect to the mappings TΛ:E-^E ( o c ζ A ) , then each Tx induces a
continuous mapping Tx: F -> F.

Proof. By Proposition 1, a mapping Tβ : F -> F is continuous if and
only if TxTβ:F->E is continuous, for all α ζA. However, TΛTβζ

so the condition is fulfilled.
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For the sake of completeness we remark that many of the function
spaces used in functional analysis may be regarded as having been con-

structed by making a closed set of mappings continuous [8]. The duals
of these spaces include many distribution spaces, which may thus be
regarded as having been constructed in this manner. Alternatively we

may construct these spaces of distributions using the dual method of
final topologies [2], which involves changing the topology on the image
rather than the domain space.

III. Applications to Hubert space

We suppose given a Hubert space 3F and a set Φ of closed operators
on 3? with the property that if A £ (9, A* ζ 0.

Proposition 10. If φ has a dense invariant domain, then Φ generates a
*-algebra of closed operators with identity, «aO 0, where

(i) Scalar multiplication is the usual scalar multiplication of opera-
tors.

(ii) Addition is the strong sum [9], the closure of the usual sum of
operators.

(iϋ) Multiplication is the strong product, the closure of the usual
product of operators.

The maximal invariant domain for 0 is given by D = Π D(A], and

j/° = s01D is just the algebra with unit generated by 0° = Φ\D.
Proof. It suffices to note that the existence of a dense invariant

domain always guarantees the existence of ad joints. The fact that φ is
*- closed shows that these ad joints leave the invariant domain invariant.
The closure of an operator A is A**.

We want to make 0° into a set of continuous operators on D by
giving D a suitable topology. For the purposes of discussion we shall say
that a topology τ on D is allowed if Φ® is continuous 0° : Dτ -> Dτ and if
τ ^ τ>>, where τ^ is the topology on D induced by the Hubert space Jtf*.
Let Ti denote the initial topology with respect to the mappings
^ : D -> $e.

Proposition 11. τi is the coarsest allowed topology.
Proof. J3/0 : DT{ -> ffl is continuous by definition. ̂ /° is an algebra and

hence, a priori, a semigroup, so that by Proposition 9 j/° : Dτ. ->- Dτ. is
continuous. Further I \ D £ j2/° so that τ4 g τ> and τt is allowed. If τ
is allowed then ΦQ : Dτ -> Dτ is continuous and thus j/° : Dτ -> Dτ is
continuous. Hence a priori j/°: Dτ -> ffl is continuous, for r ^ τ^. It
follows that τ ^ Ti so that T^ is indeed the coarsest allowed topology.

We shall take r, as our topology for D and denote the resulting
topological vector space by Φ. The completion of Φ with respect to the
inner product topology is 3?, as we have assumed D to be dense in &\
Let T denote the canonical embedding T : Φ -> 3£\ Its adjoint Tx is a
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continuous linear mapping Tx : 34? x -> Φ£ defined by (Tφ,x)
= {(̂ , Tx x) (φ £ Φ, # ζ3?} Here Φ^ denotes the space of continuous
antilinear functionals on Φ with the strong topology of the dual system
<Φ,ΦX>[4].

Proposition 12. Tx is 1 — 1 and Tx ( ^ f x ) is dense in Φx with respect
to any topology on Φx compatible with the dual system {Φ, Φx).

Proof. T is 1 — 1 and maps onto a dense subspace of 34? . The result
follows from the well-known properties of adjoint mappings [4].

There is a natural isomorphism J>^ ̂  ̂ x and after identifying these
spaces we get a canonical triplet of spaces Φ C $? C Φ^ associated with
each space Φ generated in this way.

Proposition 13. Let Φ be a space constructed as above, then
a) The topology on Φ is given by the seminorms φ -> ||-4° |̂| where AQ

runs through <&°.
b) Φ is complete and semireflexive.
c) If φ is a countable set of operators, then Φ is a reflexive Frechet

space.
Proof. As A° is continuous and φ -> ||^|| is a continuous seminorm on

Φ, φ -> \\AQ φ\\ must also be a continuous seminorm on Φ. On the other
hand, if Φ has the topology given by these seminorms, AQ : Φ -> Φ is
indeed continuous. This proves a). Now ja/° = j t f \ D 9 so j/° is closed by
Proposition 7, and b) and c) follow if we apply Proposition 8 noting
that 3? is a reflexive Frechet space.

We note in passing that as we have shown that Φ is semireflexive, it
follows from Proposition 12 that Tx T(Φ) is dense in Φ^.

GEL' F AND and SILOV [10] introduce the concept of compatibility of
norms, and work mainly with spaces whose topologies can be given by a
sequence of pairwise compatible norms. If we construct topologies by
making a set of operators with identity on Hubert space continuous,
then the resulting space has a topology given by a set of pairwise com-
patible norms if and only if the operators have closed extensions [8].
If we take in particular a countable set of closed operators, then we just
get a countably Hubert space in the sense of GEL'FAND and VILENKIN [11].

IV. Rigged Hubert spaces

We shall make frequent use of the following notation due to GBOTHEN-
DIECK [4].

Definition 5. Let A be an absolutely convex set in a linear space E,
then Λ(A) will denote the vector subspace generated by A. Putting
N = {x\ λx ζA (λ ζ C)}, we shall denote by EA the quotient space

s**^

Λ(A)/N equipped with the norm \\x\\A = inf Ul, and by EA the Banach
xζλA

space formed by completing EA.
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Definition 6. Let T : E -> F be a linear mapping of two locally convex
spaces, then T is compact if it maps arbitrary neighbourhoods of the
origin into relatively compact sets. T is nuclear [6], [7] if it may be
expressed in the following form.

where x'k ^E'A, yk ζFB and where A is an equicontinuous, absolutely
convex, weakly closed subset of jδ7', B a bounded absolutely convex

00

subset of F such that FB is complete, and Σ \\xk\\A \\yk\\B < °°
k = l

A nuclear mapping is necessarily compact and a compact mapping is
necessarily continuous. For the case of mappings between Hubert spaces,
the compact mappings are the completely continuous mappings and the
nuclear mappings are the mappings of trace class.

Proposition 14. A mapping T : ffl^ -> 3?^ between two (separable)
Hubert spaces is compact if and only if it can be expressed in the form

where (xk) and (yk) are complete orthonormal sequences in ffl 1 and Stf 2
respectively, λk ^ 0 and λk -> 0 as k -> oo. Further T is nuclear if and

only if Σλk < oo [11].
k = l

Definition 7. A locally convex space is a nuclear space (Schwartz
space) if, given any absolutely convex neighbourhood of the origin F,
there exists another such U C F, such that the canonical mapping

Ejj -> Ev is nuclear (compact).
These definitions differ from those given by GBOTHENDIECK [6], [4]

only in that we allow spaces which are not HausdorίF. However a locally
convex space is nuclear (Schwartz) if and only if its associated Haus-
dorff space [5] is nuclear (Schwartz).

We now wish to decide when the space Φ constructed in the last
section from the pair (ffl , Φ) is nuclear or Schwartz. We consider first
the case where 0 is the set consisting of the single self -adjoint operator A.
Now, by the spectral theorem [11], there is a spectral resolution over the
real line R1 associated with A

The domain of A, D1 say, consists of those measurable vector fields
φ( ), for which

( φ , φ ) = f.(φ(λ)9φ(λ))λdμ(λ)«χ>9

and
), φ(λ)}λ dμ(λ) < oo .
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We now define Dn to consist of those vector fields φ ( ), for which

(Amφ,Amφ) <oo (m = 0, 1,2, . . .,n) .

.D, the maximal invariant domain for the algebra generated by A, is just
Π Dn and is thus always dense in 3? , for D contains all those vector

fields φ ( ) ζ 3? > which have compact support, and these fields are them-
selves dense in 3? . Each Dn has a natural topology as a Hubert space
with the scalar product

(φ, ψ)n = / [1 + λ« + + I2

and Φ is then the topological projective limit [3] of the Dn and its
topology is given by the set of norms

Proposition 15. Let Φc«^CΦ x be the canonical triplet constructed
from (^,{^4}), then Φ is a nuclear (Schwartz) space if and only if for
some n (I -f A2 + + ^42n)~1/2 is a nuclear (compact) mapping
3̂ > . 36?

t76 — T e^& .

Proof. Suppose Φ is nuclear, then for some n the canonical mapping
Tn : Dn -> 3? must be nuclear. Let T% denote the adjoint of Tn.
T% : $e -> Dn and is defined by

(φ,ψ) = (TZφ,ψ)n(φ£^,ψ£Dn).
Hence

[Γ* φ] (λ) = [1 + λ2 + + A2"]-1 ^(λ) .
Thus also

[Γ* Tnφ] (λ) = [1 + A2 + + A2-]-1 φ(λ)

and so (T* Tn)
1/2 = (1 + A2 + + ^2n)~1/2. But Tn is nuclear if and

only if (T£ Tn)
1/2 is nuclear (see Proposition 14). Conversely suppose

that, for some n, [I -f A* -f + ^2n-j-ι/2 js nuclear, then the canonical
mapping Dn -> 3? is nuclear, as is the canonical mapping Dn+m -> Dn

(m = 1, 2 . . .). But the sets of the form N(n, ε) = {^|||^||« < ε}, ε > 0,
w = 1, 2, . . . form a base of neighbourhoods of the origin, so that Φ is
nuclear.

The proof for the case of Schwartz spaces may be obtained by sub-
stituting 'compact mapping' for 'nuclear mapping' everywhere. The
result implies in particular that, if Φ is to be Schwartz, then A must
have a purely discrete spectrum of finite multiplicity. If the eigenvalues
of A are At , i= 1,2. . ., allowing for multiplicity, then λi -> oo, as
ί -> oo. The condition for Φ to be nuclear is that for some n,

Σ (1 + M)-« < ,
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For the general case, we take Φ to be a *- closed set of closed operators,
generating a * -algebra with unit j/, such that D — Π D(A) is dense

in JT.

Theorem 1. Let ΦC<^CΦ X be the canonical triplet constructed
from (<3ίf, Φ), then Φ is a nuclear (Schwartz) space if and only if there
exists an A° ζ j/° having a self -adjoint extension in Jf , whose inverse is a
nuclear (compact) mapping.

Proof. Necessity: if Φ is nuclear (Schwartz), then for some absolutely
X"s

convex neighbourhood of the origin F, the canonical mapping Dv -> Jti?
must be nuclear (compact). Now by Proposition 13, Φ has the topology
given by the seminorms ψ -> ||-4°^|| as A runs through j/. Hence we may
choose V to be of the form

{φζD\Sup\\Ai<f>\\<l(i=l,2,...,n)}
ί = l

where Ai ζs/ (ί = 1,2, . . . , n), for such sets form a base of neighbour-

hoods of the origin in Φ. Set B = Σ AfAi + -Λ tnen B £ «< (B the

i = \

closure of B) and BQ = Σ A*QAi + IQ

(Bφ, Bφ) = (φ, φ) + ΣAfA^ΣAfAtφ +2Σ(AiΦ,Λiφ] (Φ
\ΐ = l i = l / i=l

Then, taking C7 = {̂  ζ D \ (Bφ, Bφ) < 1}, U C F, so that Du-^^f is
X^X

nuclear (compact). Now (jδ°^, 5°^) ̂  (φ, φ) (φ £ D), so Dj/ is algebrai-
_ X^X

cally isomorphic to Z) (B°). Let T be the canonical map T : DJJ-> 3^ then
X^S

its adjoint Tx : 3ί? -> Du satisfies

(φ, ψ) = (Tx φ, Ψ)
Hence

(φ,φ) = (B»TT*
Thus

B~»TTxφζD(B<>*) and B»*B~QTTX φ = φ

and so
TTX = ~

Now 21 is nuclear (compact) if and only if (T Tx )V2 is nuclear (compact),
so that (jδ0*!?0)-1/2 is nuclear (compact). Now setting A = BQ* BQ, A is
self -adjoint and A"1!* is nuclear (compact), hence A~l is also nuclear
(compact). Further A° = B*°B° ξ <$/° as required.
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Sufficiency: the topology on D giving Φ is the coarsest making the
mappings AQ : D -> 34? continuous (AQ ξ <β/°), and it thus depends only
on the AQ and not on their extensions. Suppose J3° ζ «β/° has a self-

oo

adjoint extension B such that B~l is nuclear (compact). Let E — Π D (Bn),

then jED£>. Also (Bn)Q = (BQ)n. If we give D the initial topology with
respect to the mappings A° : D -> E, A° ζ j/°, and E the initial topology
with respect to the mappings Bn : E -> ^f, n = 0, 1, 2, . . ., then by
Proposition 2, D has just its topology as the space Φ. However (/ -f J52)-1/2

is nuclear (compact) so E is nuclear (Schwartz) by Proposition 15. Hence,
by Proposition 3, Φ is also nuclear (Schwartz).

In the non-relativistic theory of n interacting particles Φ will be
nuclear as will be shown in the next section. This will enable us to
develop a satisfactory spectral theory.

Definition 8. If Φ is nuclear, then the triplet Φc^CΦ x will be
called a rigged Hilbert space.

V. Non-relativistic quantum mechanics

For a non-relativistic quantum system of n interacting particles,
where each particle has a finite number of independent internal states,
there is no difficulty in showing that Φ is nuclear if we choose Φ to be a
set of observables having a common invariant dense domain, provided
we include the position and momentum observables of all the particles [1 ].
However if we wish to interpret Θ as the labelled observables of the
system, we would naturally wish to include the Hamiltonian. As will
now be shown, this can only be done if the potential energy is almost
everywhere infinitely differentiable. The question at issue is the existence
of a dense invariant domain D. If we suppress the internal degrees of
freedom and suppose for convenience that the particles are distinguish-
able, then we may represent the Hilbert space 3? as L2(Wn), the space
of square iritegrable functions on R3w with respect to Lebesgue measure.
If Φ includes the position and momentum variables of all the particles,
then Z>C^(β3n) [1], where ^(Wn) is the usual Schwartz space of
C °° -functions vanishing at infinity faster than any inverse power of the
distance [12]. Suppose that for those vectors, which are both in the
domain of the Hamiltonian and in ^(Wn) c£2(R<3w), the Hamiltonian
has the form

3n

H = Σ (Pf/2wj + V(xl9 *a, . . ., xsn)
i=l

We need a few simple lemmas.

Lemma 1. Let Ω be an open set in Wn, and let 2(Ω) denote the set
of all C°° -functions with compact support in Ω. Then Sf(Ω) is dense in
8 Comπrnn. math. Phys., Vol. 3
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L2(It?n) if and only if 8 — R3w ~ Ω, the complement of Ω, has zero
Lebesgue measure.

Proof. ^(R3w) is certainly dense in L2(Έ?n). Suppose 8 is closed and
has Lebesgue measure zero. Then given ε, there exists an open set G^> 8
with μ (G) < ε. G and Ω form an open covering of R3n. Let αj (x), α2 (x) be
a partition of unity subordinate to the given covering [12], with
suppαi(#)£$> and suppα2(#)cΏ. Given /ξ^(R3 n), α2/ζS(β) and
||αι/||2 ^ M2ε, where M is an upper bound for / on R3n. Hence &(Ω) is
dense in X2(R3n) in the sense of the lAnorm. Conversely if 8 has non-
zero Lebesgue measure, we can find a C°° -function with support in 8,
which gives a non-zero element of £?. Such a function is orthogonal to
2(Ω), which cannot thus be dense in L2(R3n).

Lemma 2. Let x ζB/1, if f(x) and f(x) g(x) are both differentiable at
x = XQ, but <7(#) is not differentiable at x = x0, then f(x0) — 0.

This is an elementary exercise in analysis, which leads to
Lemma 3. Take x ζ R3w, and let d(x) be the degree of differentiability

of V(x) at the point x. Put 8 = {x\d(x) < 00}, then if /(x) ζ ^(R3w),
and F(α) /(a?) £ ^(R3w), /(x) = 0 (x ζ 8).

Proof. Repeated application of Lemma 2 to the various partial
derivatives of / (x) and V (x) f (x) gives / (x) = 0 for x ζ 8.

Theorem 2 [1]. A necessary and sufficient condition for the labelled
Hubert space of the quantum system of n interacting particles to generate
a rigged Hubert space is that the potential energy should be C°° on some
open set Ω whose complement has zero Lebesgue measure.

Proof. The largest possible Ω is the complement of 8 defined in
Lemma 3. £&(Ω) is an invariant domain for the labelled observables and,
if 8 has zero Lebesgue measure, it is dense in ffl by Lemma 1. By
Lemma 3, if / ζ D, f(x) = 0 (x ζ 8). Hence as in Lemma 1, if 8 has non-
zero Lebesgue measure D cannot be dense in ffl.

Ύl. Topological semiinner product spaces

Let Φ be a topological vector space on which a positive Hermitian
form (φ,ψ) has been defined.

Definition 9. Φ is a topological semiinner product space if the mapping
Φ -> C defined by φ -> (φ, φ) is continuous. If further (φ, φ) = 0 if and
only if φ — 0, Φ is called a topological inner product space.

The natural domain for the kind of spectral theory we shall be
presenting is the set of topological inner product spaces, but the theory
may easily be adapted to semiinner product spaces. Since semiinner
product spaces arise naturally in axiomatic field theory, it seems worth-
while presenting the theory so as to include this case. The Hubert space
formed by completion with respect to the inner product topology, after
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passage to the quotient space if necessary, will be denoted by & \ The
canonical mapping T : Φ -> ffi need now no longer be 1 — 1. A topo-
logical semϋnner product space may also be written as a triplet
φ _> & _> φx 9 and Tx : je -> Φx will still be 1 — 1. Tx T will always
be denoted by χ.

Definition 10. Let Φ be a topological semϋnner product space and let
N be the null space of T, then ΦjN with the quotient space topology has
a natural structure as a topological inner product space, and will be
called the associated topological inner product space to Φ.

Note that N = {φ £ Φ\ (φ, φ) = 0} = {φ £ Φ| (φ, γ) = Q(ψ £ Φ)}. We
shall show that the spectral theory of a semϋnner product space can be
reduced to that of the associated inner product space.

We shall always work with locally convex spaces, and we need to
endow Φx with some notion of continuity. The exact notion does seem
crucial provided that the continuity of S : Φ -> Ψ implies that of
Sx : Ψx -> Φx for all locally convex space Φ and ϊ7, and also that
ffl ^ jή?x . For example, we could give each Φx the Mackey topology of
the dual system or indeed its natural pseudotopology as a polynorm
space [13]. We shall always suppose that the dual spaces have been
given some suitable notion of continuity.

Definition 11. Let A ζ J^(Φ) be the set of continuous linear operators
on Φ, then A will be said to have a conjugate Ac if there exists an
Ac ζ JS?(Φ), such that (Ac φ, ψ) = (φ, Aip) (φ, ψ ζ Φ). The set of operators
with conjugates will be denoted by «Jδ?c(Φ). If A is a conjugate of itself,
it is said to be real.

Note that conjugates are unique if and only if we are dealing with
inner product spaces.

Proposition 16. Let Φ be a semiinner product space, Φ/N the asso-
ciated inner product space, and K the canonical projection K : Φ -> Φ/N
then ίίAζ &C(Φ), there exists an A ζ ^C(Φ/N) such that

Proof.

(A°φ,<ψ) = (

This implies that A and Ac leave N invariant. Hence they define opera-

tors A and Ac on Φ/N, satisfying AK = KA and ACK = KAC. These
must be continuous as ΦjN has the finest locally convex topology

making K continuous. Finally Ac = Άc, so A ζ &G(ΦIN).
Proposition 17. If A ζ &C(Φ], then χA = AcX χ.
The proof is straightforward. If Φ is an inner product space, it may be

identified with a subspace of Φ x, so that Ac x is a continuous extension
o f ^ 4 t o Φ x .
8*
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Definition 12. If γ ζ j£?(Φ, Φ x), then we say γ is self-adjoint if

(φ, γψy = (y, γφy (φ, γ ζ Φ) .

We say that y is positive if (< ,̂ γφy ^ 0 (φ ζ Φ).

Proposition 18. y ζ=£?(Φ, Φ x ) is self-adjoint if and only if {̂ ,

is real (0 ζΦ).

Proof. We have the identity:

— i \ω -f- $ w, γ φ -\- i '

Note that # is positive and hence self-adjoint.

ΊϊAζ <&C(Φ] then TAT-1 defines an operator on 3?. This operator
is densely defined and has an adjoint (TAT*1)* D TAcT~τ which is also
densely defined. Hence TAT~l has a closure, which we shall call the
closure of A in Jtf*, and denote by J.. We shall consider a spectral theory
for A, which is closely related to the spectral theory of A in ffi. In view
of the interpretation of the Dirac formalism in terms of rigged Hubert
spaces [1], we shall call the elements of Φ bra vectors and the elements of
Φx Icet vectors.

Definition 13.
a) An eigenbra of A is an eigenvector of A.
b) An eigenket of A is an eigenvector of Ac x.
c) An eigenoperator γ of A, corresponding to the operator eigenvalue

λ, is a positive non-zero element of S£ (Φ, Φ x) such that

AcX γ = γA = λγ .

If γ is an eigenoperator of A corresponding to the operator eigen-
value λ and if γ φ Φ 0, then γ φ is an eigenket of A and Ac, corresponding
to the eigenvalues λ and λ respectively. If / £ Φx is an eigenket of A and
Ac with eigenvalues λ and λ respectively, then / <g> / is an eigenoperator
of A with eigenvalue λ. A ket eigenvalue of a real operator is an operator
eigenvalue if and only if it is real.

VII. Integral decompositions

Definition 14. An integral decomposition [14] of Φ is a triplet {y (z), Z, μ}
such that:

1) y(z) ζ °^(Φj Φ x ) is a positive operator (z ζ Z ) .
2) μ is a positive regular Borel measure on a locally compact Haus-

dorff space Z.

3) z -> {̂ , γ(z)ψy is μ-integrable (<^, ψ ι
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Definition 15. Let Φ be a topological semiinner product space then
a sandwich space for Φ is a pair (S, Ψ) such that Ψ is a topological semi-
inner product space, and 8 a continuous inner product preserving
mapping, 8 : Φ -> Ψ onto a dense subspace of Ψ.

We now have a canonical quintuplet of spaces

φ^ψ^jjf^ψx _^φx .

If Φ/N is the associated inner product space of Φ, K the canonical
mapping K : Φ -> Φ/N then (J5Γ, Φ/2V) is a sandwich space for Φ.

Proposition 19. Let (S, Ψ) be a sandwich space for Φ and {y (z), Z, μ}
an integral decomposition of Ψ, then {Sx γ(z)89Z,μ} is an integral
decomposition of Φ.

The proof of this proposition is immediate and, together with Pro-
position 16, it allows the spectral theory of semiinner product spaces to
be reduced to the corresponding theory for the associated inner product
spaces.

Proposition 20. Let {γ(z),Z, μ} be an integral decomposition of Φ,
then there is a unique operator- valued measure m on Z with values in
Jδ?(Φ, Φ x ) and countably additive with respect to σ(^(Φ, Φx), Φ Θ Φ)
satisfying

{φ, m (S) y>} = / {φ, γ (z) ψ}dμ (z)
δ

for all Borel sets δ of Z and all φ, ip ζ Φ.

Proof.

Let
m(δ,φ,ψ) = f (φ, γ

δ

then \m(δ, φ, ψ)\* ^ m(δ, φ, φ) m(δ, ψ, γ), the Cauchy-Schwarz in-
equality. Hence m(δ, φ, ψ)\ ^ \\φ\\ \\ψ\\. Thus, for fixed ψ and δ, m is a
continuous antilinear functional on Φ and defines an element m(δ, ψ) of
Φ x. For fixed δ, m(δ, ψ) is a continuous linear map Φ -> Φx and defines
an element m(<5) of J^(Φ, Φx).

Now <(( ,̂ m((5)^) = / {̂ , 7(2)^} dμ(z}. The countable additivity

of m with respect to σ (J^(Φ, Φ x), Φ (g) Φ) follows trivially.
We have in fact proved considerably more than was set out in the

proposition, for we have shown the continuity of m(<5) with respect to
the topology defined on ££ (Φ, Φx ) by the scalar product on Φ. This may
be best expressed by introducing the notion of a semispectral measure
[15], [19]. A semispectral measure is an operator- valued measure δ -> B (δ),
whose values are bounded Hermitian operators on a Hubert space, and
satisfying 0 ̂  B(δ) g 1, JB(0) = 0 and B(Z) = l. A theorem due to
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NEUMARK [15] asserts that any semispectral measure δ -» B(δ) may be
extended to a spectral measure d -> E (δ) in an extension space ξ) ^ tff .
Let P denote the orthogonal projection onto the subspace ffl of ί) then
E(δ) is an extension of B(δ) in the sense that B(δ)ζPE(δ). If we
require that {E(δ) x\x ξ f̂ , δ a Borel set of Z} is dense in §, then the
extension is determined to within an isomorphism. We now have

Proposition 21. Given an integral decomposition of a locally convex
semiinner product space Φ, { γ ( z ) , Z, μ}, there is a unique semispectral
measure, δ-*B(δ), defined on ffl and satisfying (Tφ,B(δ)Tψ)

= <f m(ό) V> = f (Φ, γ(*)ψy d μ ( z ) (φ, ψ ζ Φ).
δ

Proof. The uniqueness of B(δ) follows because it is defined on the
dense subspace T (Φ) of 3? by the relation

Clearly 0 ̂  B(δ) g 1, JB(0) = 0 and J5(Z) = 1, so we do have a semi-
spectral measure.

Definition 16. If ^4 ζ j£?c(Φ), then Φ has an integral A-eigendecom-
position, if it has an integral decomposition with γ (z) either 0 or an eigen-
operator of A(z ξ.Z). It has a real integral J.-eigendecomposition, if it
has an integral decomposition {γ(λ), H, μ}, such that

A *γ(λ) = γ(λ)A = λγ(λ) ( A ζ R ) .

Proposition 22. If A £ £?C(Φ) and Φ has an integral ^4-eigendecom-
position, then .̂ , the closure of A in ffl , is subnormal and formally normal.

Proo/. Suppose that AcX γ(z) = γ(z) A = f(z) γ ( z ) , and let B be the
semispectral measure defined above. Consider the operator C on 3tf
defined by:

D(C) - { x £ 3 f ? \ f I/I 2 d(x, Bx) < 00}

Cx=ffdBx (xζD(CΪ).

C is closed since δ-> B(δ) is a semispectral measure, and there is an
extension of B to a spectral measure in an extension space ξ)^) 3^ [15].
The corresponding extension of C is normal, so that C is subnormal. Now

(Aφ,Aφ) = f |/(z)|2 <f y(^> dμ(z) < oo ,

so that Tφ£D(C) (ψ£Φ).

(Tφ, CTψ) = ffd(Tφ, BTψ) = //(z) < ,̂ 7(2)^)^^(2) .

Hence (Tφ, CTψ) = (φ, Ay) (φ.ψζφ), which implies that C is an
extension of A to J f . But C is closed, hence C^> A, and J. is subnormal as
required. It remains to show that A is formally normal, we recall that a
closed operator A on Jtf* is formally normal if D(A)cD(A*) and if
\\Ax\\ = \
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Now

(Aφ,Aγ) = f (Aφ, γ(z)Aψ)dμ(z) ,

(Aφ,AV) = //(*) (Aφ, γ(z)yydμ(z)

Similarly
(A°φ,A<Ψ) = f |/(2)|2 (φ^γ

Hence(Aφ,A<ψ) = (A*φ9 Ac<ψ), andso|| ATφ\\ = \\A*Tφ\\,(φJiΦ).rΐhfm
by taking closures \\Ax\\ = \\A*x\\ (x£D(A))9 and D(A) C^(^*),so that
A is indeed formally normal.

Proposition 23. If A £ £?c (Φ) has a real integral eigendecomposition
in Φ, then A is real.

Proof. We proceed as before, noting that A now has a self-adjoint
extension, so that A is real.

VIII. Spectral theory

This last section is devoted to showing that, in a rigged Hubert space,
the converse of the last two propositions is also valid. In fact the results
hold a little more generally, being valid if the canonical mapping
T : Φ -> 3(? is nuclear. The basic lemma of the theory, which is due to
GAB-DING [16], is the following:

Lemma 4. Let Φ be a locally convex space, and let T be a nuclear
mapping into a direct integral of Hubert spaces,

θ
T:Φ-*3F = f 3 f ( z ) d μ ( z )

then there exist nuclear mappings T (z) : Φ -> ffl (z) ( z £ Z ) , satisfying
Tφ = fT(z)φdμ(z).(φζΦ).

The following pair of lemmas is designed simply to cope with the case
in which Φ is not separable. For convenience, we shall give the theory in
a form, which applies only to inner product spaces.

Lemma 5. Let E be a locally convex space, T a nuclear mapping of E
into a Hubert space 2ff . Then there exists a separable Banach space F
and mappings T^-.E-^F, T2 : F -+ $? such that T^ is continuous, T2 is
nuclear and T - T2TV

Proof. As T is nuclear, it has the form (see definition 6)

where (xk) is bounded in E'A, (yk) is bounded in 30* 9 and where Σ \^k\ < °°
& = ι

We may in fact suppose further that x'k -> 0 in E'A [6]. Let c0 denote
the usual Banach space of sequences of complex numbers tending to zero,
then ({#, xr

ky) ζ c0 (x ζE). Define a linear mapping 2\ : E -> CQ by setting
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Ttx = ((x, x'k)). ^ is continuous since A is equicontinuous. Define a
oo

mapping T2:c0-+^ by setting ^(α*) = Σ ^kVk ((«*) £co) T2 is

nuclear and T2 T± = T. cϋ is separable so we may take F = c0.
Note that if T is 1 — 1, 2\ must also be 1 — 1.
Lemma 6. Let E have a locally convex topology r and suppose that

T : E -> ffl is 1 — 1 and nuclear and that Aί : E -> E are continuous
linear mappings (i = 1,2, . . . , ft). Then there exist topologies τx and T2

such that
a) E is a separable metric space under TJ or τ2.
b) r ^ T! ̂  τ2 ^ τ^ (r^ the Hubert space topology on E).
c) $Tjs -> ̂  is nuclear.
d) Ai : Eτι -> EΪ2 is continuous (ί = 1,2, . . . , n).
Proof. Take JP as in Lemma 5, then T± identifies E with a subspace of

F. Let τ2 be the induced topology. Put AQ = I : E -> E, and let τx be
the initial topology on E with respect to the mappings ^ : E -> .Z£T2

(i = 0, 1, 2, . . . , ft). By Proposition 6, J£TI is isomorphic to a subspace of
n

IJ ETz and is thus a separable metric space. The other conditions may
ί = 0

be verified without difficulty.
Theorem 3. Let Φ be a locally convex inner product space with a

nuclear canonical mapping T, and let A ζ £?c (Φ) have a closure A which
is subnormal and formally normal. Then Φ has an integral J.-eigen-
decomposition.

Proof. There exists a Hubert space Jfl5 a projection P and a normal
operator A^ such that $F = P ^fl and A = PAV Take a direct integral
decomposition of Jf\ diagonalizing Ar

θ
&ι = f 3#Ί(

Apply Lemma 4 with Φ considered as embedded in $F^ and T : Φ -> ^f7!.
Define y (2) : Φ -> Φx by γ (z) = T(z)x T(z), where T(z) is defined as in
Lemma 4, T(z) : E -> Jf5!^). Then

and

so that y (2) is positive. Further

(Φ, Ψ) = f (\Tφ-\ (z), [Tψ] («)). cί^(2) = / (T(z) φ, T(z)rp\ dμ(z) .

Hence
, γ(z)ψ}dμ(z) (φ,ψ£Φ).

1 The symbol — ° is used to denote equality μ-almost everywhere.
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Now

thus
T(z) [Aφ] =° [A,Tφ] (z) =°z[Tφ] (z) =°zT(z)φ.

The exceptional set depends, in the first instance, on the φ chosen, but
applying Lemma 6 to the case of a single operator A, let {̂  }, * = 1, 2, . . . ,
be a countable dense set in the τx topology on Φ. Now T(z) [Aφ^
= zT(z)φi (ί = 1, 2, . . .) unless z lies in some μ-null set N. Further, by
c) of Lemma 6, we may suppose that T(z) is continuous when Φ has the
T2 topology. Given φ ζ Φ, there exists (φ^) such that φin -> φ in the τx

topology as n -> oo. Proceeding to the limit, we have

Now since A^ is normal D (Af) ^ D (A^ D Φ. Hence

(Tφ, TAcψ) = (TAφ, 2» = (A^Tφ, 2»

so that Af Tip — TAcψ £ Φ-1. But, since A is formally normal, \\Af Tψ\\
= \\A±Ty\\ = \\TAψ\\ = \\TAeψ\\. Hence TAcφ = AfTφ, so that
T(z)Acφ =° [Af Tφ] (z) =°zT(z)φ (φ £Φ), where, as above, we may
show that the null set may be chosen to be independent of φ. We now
put T (z) = 0 in the exceptional sets, so that we may suppose that T (z)A
= z T ( z ) and T(z)Ac = z T ( z ) (z £Z). It follows at once that AcX γ(z)
= zγ(z) — γ(z)A, completing the proof of the theorem.

Corollary. Under the conditions of the theorem, an operator A £ 5£ (Φ)
has a real integral ^L-eigendecomposition if and only if A is real.

Proof. If A is real, A is symmetric and hence has a self -adjoint
extension. The converse is contained in Proposition 23.

The next result relates to the uniqueness of integral eigendecom-
positions. We cannot expect true uniqueness even for eigendecom-
positions {γ(z), C, μ} where AcX γ(z) = γ (z) A — z γ (z) (z ζ C). However,
we shall say that two such eigendecompositions {yι(z),C, μ ̂  and
{γ2 (z), C, μ2} are equivalent [14], if there exists a regular positive Borel
measure μ and measurable functions /j and /2 such that μ± = faμ,

fa — /2^ an(i /i 7ι(z) = /2 7z(z) except on a set of μ-measure zero.
Proposition 24. Let Φ be a locally convex inner product space with a

nuclear embedding; then a real operator A ζ £?(Φ) has a real ^.-eigen-
decomposition, unique to within equivalence, if and only if A is maximal
Hermitian.

Proof. By Proposition 21, integral decompositions determine unique
semispectral measures. Clearly two integral eigendecompositions are
equivalent if and only if they determine the same semispectral measure
over C. Hence Φ has a real ^4-eigendecomposition, unique to within
equivalence, if and only if A has a unique attached generalized spectral
resolution, i.e. if and only if A is maximal Hermitian.
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For the case of a continuous observable [1] in quantum mechanics,
where we know we have a self -adjoint extension, this condition reduces
to the observable's being essentially self-adjoint on Φ. This raises the
question of whether the usual observables are essentially self -adjoint on
bra space. Here we content ourselves with the remark that the Hamil-
tonian is essentially self -adjoint on bra space if and only if the potential is
everywhere infinitely diίferentiable [8]. The change from an integral
eigende composition to an equivalent one corresponds to a change in
weight function of the representation.

As the Gar ding lemma, Lemma 4, depends only on the existence of a
direct integral decomposition of Hubert spaces, it is clear how to proceed
to try and extend Theorem 3 to the case where we have a set of operators
with commuting spectra. A weakened form of this theorem is always
valid.

Definition 17. If ^C^C(Φ), then an integral decomposition
{γ (2), Z, μ} is an Λ* -almost eigendecomposition if

γ(z)φ =° γ ( z ) A φ = * f ( z ) γ(z)φ (A ^JT , φ ζ Φ) .

In this definition the null set is allowed to depend on φ and A. For
the remainder of this paper we shall suppose that Φ is a locally convex
inner product space with a nuclear embedding.

Theorem 4. Let ι/Γc^c(Φ), then Φ has an .yΓ-almost eigendecom-
position, if and only if N is formally normal, and has an extension *Jt
consisting of normal operators with commuting spectral resolutions in
some extension space. In particular if ̂  is set of self -ad joint operators,
then Φ has an Jf- almost eigendecomposition if and only if Λ* is Abelian.

Proof. The procedure followed in Proposition 22 applies equally well
to any ./f- almost eigendecomposition. For the converse, we take a direct
integral decomposition of the extension space, which decomposes *Jt [17],
and apply Lemma 4. We may now proceed as in Theorem 3, but do not
need to attempt to eliminate the dependence of the null set on A and φ.

If we want true ^-eigendecompositions, then we seem to need some
countability conditions on N and Φ.

Lemma 7. Let Φ be a rigged Hubert space constructed as in Pro-
position 11, and let Ai ξ j£?c(Φ) (ί = 1, 2, . . .), then Φ has a coarser
topology as a separable rigged Hubert space such that Aίζ^'c(Φ)

Proof. By Theorem 1, there exists a real A ξ J^(Φ), which guarantees
the nuclearity of Φ. Now take the semigroup with unit generated by
{A, Ai9 A\, i = 1, 2, . . .} and give Φ the initial topology with respect
to this semigroup of mappings Φ -> 2? . The resulting topology is nuclear
by Theorem 1 and is metrizable. Hence Φ is separable. (Its completion
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is a Frechet Montel space and is thus separable [3].) Further Ai ξ j£?c(Φ)
in this new topology by Proposition 9.

Theorem 5. Let e/f C <&c (Φ) and suppose either
a) N is a finite set of operators.
b) ,/f is a countable set and Φ is separable.
c) N is a countable set and Φ is a nuclear space constructed as in

Proposition 11.
Then the conclusions of Theorem 4 hold without the restriction to

almost eigendecompositions.

Proof. The point at issue is the dependence of the null set in Theo-
rem 4 on φ and A. N is at most a countable set, so the dependence on
A may be eliminated. In case a) we can eliminate the dependence on φ \yy
using Lemma 6 and arguing as in Theorem 3. In case b) we can proceed
directly without using Lemma 6. Case c) may be reduced to case b) by
using Lemma 7.

Proposition 25. If ̂  is a set of self-adjoint operators, then N" the
W*-algebra generated by Λ~, is maximal Abelian [18] if and only if Φ
has an ^-almost eigendecomposition {γ(z),Z,μ} where the non-zero
γ (z) have rank 1.

Proof. If jF" is maximal abelian, then we can decompose $F as a
θ

direct integral ffl = / 2tf (z) d μ (z) in such a way that *Λ^" is the set of
bounded diagonalizable operators and dim^f7^) =° 1. Defining the
T(z) as in Lemma 4, and putting T(z) = 0 if dim^f (z) Φ 1, we have
γ(z) = T ( z ) x T(z) with rank 1 if it is non-zero, in which case it is also
an Jf-almost eigenoperator. Conversely, given γ(z), let J^(z) = γ(z)Φ

θ
with an inner product (φ (z), ψ (z))z = {φ, γ (z) ̂ ), then Jtf* = f Jtf* (z) d μ (z)

and */?" corresponds to the bounded diagonalizable operators. Hence
<Λ?" is indeed maximal Abelian.

This result applied to the case where Λ^ is a finite complete set of
commuting observables is sufficient to give the Dirac type of representa-
tion as a function space over the range of the simultaneous eigenvalues [1 ].

There are many different possible approaches to proving the existence
of some form of generalized eigenvector expansions which have been
given in the literature. We conclude by comparing the results we have
obtained with those obtained by others in the hope that this may be of
some assistance to the reader in finding his way through the literature.
However we make no pretence of completeness in citing the sources.

The approach to spectral theory using topological semiinner product
spaces is the author's own, but we have followed FOIAS [14] in using
integral decompositions and eigenoperators. However we have followed
MAUEIN [16] in using Lemma 4 and direct integrals of Hubert spaces,
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rather than use the integral representations of vector-valued measures of
bounded variation favoured by FOIAS [19]. In the work of MAUTNER [20]
with his eigenfunction expansions and GABDING [22], [23] with his
Carleman kernels, we only have generalized eigenvectors in a sense akin
to our almost eigendecompositions, Definition 17. GEL'FAND and
KOSTYUOENKO [24] were the first to demonstrate the existence of ex-
pansions using generalized eigenvectors in the sense of our eigenkets, but
they use the notion of differentiation of vector-valued functions. We,
like FOIAS, have preferred to avoid this notion, so as to allow integral
eigendecompositions over general locally compact spaces Z. Again
following FOIAS, we have presented the theory in a way which takes full
advantage of the Neumark extension of semispectral measures to
spectral measures [15]. Using Lemmas 5 and 6, we have however
succeeded in avoiding the separability hypothesis on Φ made by FOIAS
[14] and by GEL'FAND and VILENKIN [11], although we are still forced
to introduce some countability hypotheses in Theorem 6.
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