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Abstraet. Given a weakly continuous one-parameter group of automorphisms of
a C*-algebra U of operators on a Hilbert space we show that it is implementable by
a .strongly continuous one-parameter group of unitary operators belonging to the
weak closure of Y, provided that a certain condition — akin to the boundedness
from below of the spectrum of the generators — is satisfied.

In recent years, some results have been obtained on special one-
parameter groups of automorphisms of a set of observables.

Consider, in particular, the case in which the observables are re-
presented in a Hilbert space 5# by the weak closure %~ of the union of
algebras associated with bounded space-time regions. Let the group of
translations in the direction a, be induced by a strongly continuous one-
parameter group of unitary operators on #, with generator Ta”. In this

framework, ArAXI [1] has shown that if Ta” has spectrum bounded

below and if the lowest point in the spectrum corresponds to at least one
eigenvector & ¢ #, then Ta” is affiliated to A~ (in the sense that each
projection of 7', belongs to A-).

When the ge;erator T is bounded, the infinitesimal form of a group
of automorphisms is a derivation of A~ induced by 7.

Recently, Kapison [2] has proved the following remarkable theorem :

Theorem o. Let 2 be a C*-algebra? of operators on a Hilbert space 5
and let 6: A— 8(4) be a derivation of . Then there exists a bounded
operator 7' in Y~ (the weak closure of ) such that d(4) = [4, T'] for
all 4 ¢.

An immediate consequence is

* On leave from the Istituto di Fisica Teorica, Universitd di Napoli.

1 A derivation of an algebra 2 is a linear map J from 2 to U such that (4 B)
=6(4)- B+ A - 6(B)forall 4, B ¢ . If A is an algebra of operators on a Hilbert
space 5 and T is a bounded operator, and if [4, 7'] € YU for all 4 € U, then the
map 6, defined by 6,(4) = [4, T'] is a derivation of U, which is said to be induced
by T.

2 For definitions and some results on C*-algebras, see e.g., DIXMIER, les C*-
algebres et leur representations, Gauthier-Villars, Paris, 1964.
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Corollary a. Let 7; be a norm-continuous group of automorphisms of
A, with bounded infinitesimal generator 7'3. Then 7' can be chosen to
belong to 2A-.

The purpose of this note is to extend Corollary « to certain weakly
continuous groups of automorphisms of the algebra . We shall not make
explicit assumptions about the algebra — (e.g. whether it has or not a
“local” structure) but will introduce two assumptions on the automor-
phisms. One of them is akin to the spectrum condition. The other
guarantees that each automorphism in the group can be extended to the
weak closure.

Let A be a C*-algebra of operators on a Hilbert space 5. Let 7, be
a one-parameter family of automorphisms of U, weakly continuous in
the sense that*

{p, 7:(4) )
is a continuous function of ¢ for every ¢, p € # and 4 €2L.

Consider in U the left ideal 3 [3] generated by elements B € A of the
form

B=[A@)f(#)dt, AcU, A@t)=1,(4), { €Ly’

suppfn{p:p>—M}=0,
for some fixed M > 08.

Let " be the set of vectors ¢ € # such that 3o = 0. This set is
linear, and closed in the Hilbert space topology since it is the inter-
section of linear closed spaces, the null spaces of the elements of 3.
There exists therefore a projection s such that 4" = 7 5#, and we have
Fz = 0. Our first assumption is

Postulate «.? 7 is not the null operator and its central support is 1.8

We shall note, for future use, that 7(3) = 3.

3 T is of course only defined modulo addition of elements in 2, the commutant
of A.

¢ We use the notation (@, y) for the scalar product in #; (@, y) is taken
linear in y and anti-linear in ¢.

5 L, is the set of functions of such that [ |f(t)] dt < oo.

¢ The choice of M is irrelevant, insofar as M > 0. It will be evident in what
follows that Postulates « and § will be satisfied for all M > 0 if they are satisfied for
some M, > 0. If, however, Postulate « is satisfied with M = 0, then Postulate § is
unnecessary and Theorem 1 and Propositions 1 to 5 are trivial. In this case there
exists at least one eigenstate of H (as defined in Theorem 2) to the eigenvalue zero.

7 If the automorphisms 7, were induced by a strongly continuous one-parameter
group of unitary operators on s with generator H, Postulate « would be satisfied if
H were bounded below (in each superselection sector, if there are more than one).
For this reason we shall refer to Postulate « as “spectrum condition”.

8 Postulate o is independent in the sense that one can construct examples in
which every other condition (and also 7z == 0) is met but the continuous group of
unitary operators inducing 7, cannot be chosen in -.
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If BeQ, then ¢ =0, ¢ € # implies B = BJ ¢ = 0, therefore
7 B = Bn. Taking adjoints with B self-adjoint (if B €¢ A, B + B* and
2(B — B*) both belong to A’') #Bsw = .B. Therefore B =z B, i.e.
7 eA-.

Consider now the set 2, % #x. This set is not an algebra in
general, since it is not closed under multiplication (but is an algebra if
9l is weakly closed). For each 7, on 2 we would like to define an auto-
morphism 7; on some C*-algebra B satisfying A, CcBCA,;. If A is
weakly closed, this is done by choosing for %, the restriction of 7, to 2,.
If A is not weakly closed, we have not succeeded in proving that this can
always be done except if one can choose M = 0 in the definition of the
ideal 3. See footnote (9). To go further, we shall introduce, therefore,

Postulate 3.1° Each automorphism 7, of U can be “‘extended” to an
automorphism %, of A, such that 2,(mwAdn) = nr,(4)7 for all 4 €. 7,
need not be a priori weakly continuous in ¢.

A detailed analysis of Postulate § and necessary and sufficient con-
ditions for its validity have been given in [4] (Remark 2.2.3) in terms of
permanent null sets. We shall only recall’® that, in the notations used so
far, the isomorphic map 7, extends to a weakly continuous isomorphism
7; of A~ if and only if for each & € 5# the state g of 2 defined by

0:(A4) = <&, 7:(4) &) @)
is weakly continuous on the unit sphere in U at 0, and has therefore a
weakly continuous extension to the unit sphere in -1t
In other words, the mapping 7' on the states of 2 defined by

T-eo(4)=e(x(4) @)
must map vector states into normal states, and in fact the normal states
onto themselves. In particular, if 2 acts irreducibly on 5#, T' must map
the vector states onto themselves. In this case it is known!? that 7 is
implemented by a unitary transformation.

We shall now proceed in our analysis.
Notice first that for each £, £, (%) = z. In fact, from 7(J) = 3, one has

0= 9% = 1,(87) = 3% (m) . 3

7 is uniquely characterized by 3z = 0; therefore %;(n) = 7. q.e.d. We
can therefore define, for each ¢, a mapping 77 of 2, 3 onto itself as the

® Tf A is not weakly closed and the spectrum condition is not satisfied, we can
give examples in which the conditions of Postulate § are not satisfied.
10 Ref. [4], Remark 2.2.3 and Coroll. 2.3.

"1 A normal state of a (concrete) C*-algebra U is a state which is weakly con-
tinuous on the unit sphere of . A state g is called vector if there exists a vector
& € o such that o(4) = (&, AE&) for all 4 € 2.

12 Ref. [4], Lemma 4.1.6.
18 Since 7 € A~, (Un)~ = U, = aA™ 7. See e.g. Ref. [6], p. 18, Prop. 1.
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restriction of £, to ;. Notice also that ¥ (ndn) = nt,(4)n for all
A € A~. We shall now prove
Theorem 1. Let U, 7, 7, be defined as above. Then there exists a
C*-algebra B C U, such that the mapping J defined by
42 s-lim Al —4
i—0 t

is a derivation in B.

We notice first that, for every pair ¢, y € 5, (not necessarily nor-
malized), and 4 €2, the function f(f) = (¢, 4 ())y) is entire of ex-
ponential type M4 In fact, f(t) is bounded (by [|4] [ @] |v|), continuous
and, by the definition of 5#,, such that

[1@) g di=0 )
for any g € &, such that suppjn{p: —M < p = M} =0.

Therefore f(p) has support in {p: —M < p < M} and, by the Paley-
Wiener theorem [5], its Fourier transform ; (¢) = f(2) is entire of exponen-
tial type M.

To simplify the discussion, let us introduce the set IN defined as
follows:

ML (4: AU, [AW) = 4] V1, {p, 4 (B)p)
entire of exponential type M for all ¢, p € #,} .

We want to prove

Proposition 1. The linear set M is closed under multiplication and under
the operation of taking uniform limits and adjoints. In other words, I
is a (concrete) C*-algebra of operators.

That M is closed under the operation of taking adjoints can be verified
trivially.

a) Let 4, B ¢R. Then, for every pair ¢,y € #,, the function
{p, A () B(f)y) is entire of exponential type 2.M.

We shall prove in Appendix 1, for every ¢,y € #,, there exist a
sequence 4, 4,, ..., 4, €MV n, such that

{9, An ()9 755 {9, (AB) () )

when ¢ € I, where I, is some denumerably infinite set of points which we
choose dense in the real ¢-axis.

Since all the functions involved are entire of finite exponential type,
this implies convergence on the whole ¢-axis.

But then (Appendix2) (¢, (4 B) (t)p) is entire of exponential
type M.

Also,

|4 B()| = n]ir%o |4, &) = 4 B(ty)] forany #,t,€1,.

14 This is a short-hand notation for: f(z) is the restriction to the real axis of a
function f(2) entire and of exponential type .
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A continuous function of ¢, constant on a dense set I,, is constant
everywhere. Therefore 4 B ¢ 9. q.e.d.

b) Let 4, (t) —> A (¢) (uniform convergence), 4, EM, n=1,2,....
7n—>» 00
Using the fact that |4, (f) — 4,,(¢)] is independet of ¢, we obtain

Ko, (A(E+ ) — A@E)p) = [Kp, (A + 8)— Au(t+ 8) | +
+ Kp(A (=4, ()N + Kp(dat+s)—4u () p)l = (5)
=1/3+1383+13=1
if ¢ is small enough.

Therefore for any ¢, p € 3, {p, A(t)p) is a continuous function and
moreover, there exists an integer n, such that

Ko, A@®)p) — (@, 4, () p)| <1 if n > ny, independently of t. (6)

From the results of Appendix 2, (g, 4 (f)p) is entire of exponential
type M : since in addition

4@ = lim |4,@)] = Lim [|4,] = ]4]

one has finally 4 ¢ M. q.e.d. -
The next step is to prove i
Proposition 2. The relation A (f) —— s limit A+ 040 = 4
8§—

defines a map from M to M. .
~ Notice first that, since A, is strongly closed, if 4’ (f) exists, it belongs
to A, for all ¢.

To prove the existence of A’ (t) we shall show first that, for every real
A(s +1)—A()
8
space norm when s — 0. To simplify notations, let us consider explicitly

the case { = 0. We must prove

t and @ € 5#,, the sequence @ converges in the Hilbert-

s’ltil_t)loh(s, 5y=0 )
where
h(s, t)<1;4<¢’ (A(t)t-—-A _ A(a)a——A)* (A(t)t—-A _ A<8)3—A)¢>

Without loss of generality we shall take A4 self-adjoint; since 7, is *-iso-
morphism, A (¢) is thenself-adjoint for all £.

With the notation f(s, f) « {p, A(s) A(t)p) we know that f(p, q)
has support contained in —M < p < M,—M < g £ M. Therefore
[5] there exists a function f(&, n) entire in the direct product of the
&, n planes and coinciding with f(s, #) on the real plane. In particular,
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(s, t) can be expanded in a convergent power series in s,  around the
origin. An easy substitution shows then that
ot
his, 1) = 0s% gtz s=1t=0
One can then find § > 0 such that, for |t| < J, |h(s, ¢)] < 1. q.e.d.
The operator A’(t) we have defined is, for every ¢, linear, homo-
geneous and also symmetric, since, for @, p € D 4

' . A — 4
(g, A" (O)y) = 3{13)47), —gjil—(—t)@

— lim (<w,fw ¢>)*: (p, A (t)p)*. 9)

t—0

- (s — )% 4 higher order terms . (8)

Hence A’ (t) is, for every ¢, a linear homogeneous symmetric operator
defined everywhere and therefore [6] (Ch. VIII, No. 114) by the Hellinger-
Toeplitz theorem, a bounded operator.

To complete the proof of Proposition 2, we have to show that
{p, A" (t)p) is an entire function of exponential type M for all @, p € #°,
and also that |4’ (t)| is independent of ¢.

The first assertion follows immediately from the fact that (¢, 4’ (t)y)

= ait {p, A(t)p). As for the second, we recall that strong convergence

implies convergence of the norms. Therefore

14" @] = shino A6+ 8)— II lim 146 —4QO)]

s—>0

=470

for allt. q.ed.
We next prove

Proposition 3. The map d defined in Proposition 2 is a derivation of
the C*-algebra 15,

It must be proved that, if 4, BEM, (AB)=A"B+ AB'. We
already know that the limits which define (4 B)’, 4" and B’ exist in the
strong (and therefore also weak) sense. We have only to check that

lim By () = 0 Vg € #, (10)
where setting 4 = A4 (t)|;_ , ete.,

h¢(t)¢1__ef<(p’A(t)B(tt)—AB A(t)t~AB AB(’) <p> (11)

Let f,(s,f) o {p, A(s) B(t)p). The function f,(s,¢) is entire in the
product of the s, ¢ planes and, for ¢ small enough,

o2f
hq}(t) =-a_87t—s=t=0. t+0(t2) . qed (12)
15 The map d is continuous in the uniform topology. This follows from the
general theory of derivations of C*-algebra [7]; in our particular case, it can be
easily checked using BErNsTEIN’s theorem [8] which states that, if f(z) is entire
of exp. type M and if |f(#)] < 1 for all real ¢, then |f'(¢§)] < M for all real ¢.
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Theorem 1 follows now from Propositions 1—3; we can take, e.g.,
for B the C* algebra generated by the elements in d» - 2, for every
finite n. Obviously, B~ = A,

Combining Theorem o and Theorem 1, we obtain

Proposition 4. There exists a self-adjoint operator H,, € 2, such that

A =1i[A,H,] forall 4¢B.
That H, can be chosen self-adjoint follows because if 4 is self adjoint
A’ is also; therefore H,, H a-nd% (H,+ H¥) generate the same deri-

vation of B.
We can write then, for @, y € 5, with 4(f)|,—,= 4,

(9 A9y =2 gy AOPYymo = i, [, HApYy.  (13)
By iteration
2 AOYYeo= i LA HL B . (14)
n times

Since {¢p, 4 ()y) is entire, we conclude
Proposition 5. For all 4 €2, one has
At + s) = e~ iHal 4 (5) giHat
and this relation extends by continuity to 2 .

This means that the automorphisms 77 of 2 are implemented by the
unitary operators U () = ¢H=t ¢ 9 for all ¢.

Our next task is to show that also the one-parameter group of
automorphisms 7, of U is implemented by a strongly continuous one-
parameter group of unitary operators V, € A~ with infinitesimal genera-
tor H.

We shall first prove the following lemma?6.

Lemma 1. Let 2~ be a Von-Neumann algebral?, 7z a projection in .

Let y be a vector in o such that the set A", = { s AnA;ﬂp} is dense
n

in J.

Let 7 be a C*-automorphism of A~. Suppose that there exists a
unitary operator U, U €, such that t(4) = UAU-1for all 4 €2 .
Then there exists a unitary operator V € 2~ such that t(4)= V4 V-!
forall 4 €A, and V = U on #,.

The proof will consist in the construction of the operator V. By

assumption, the set N, = {Z AnA;sz} is dense in o for some yp € T H.
n

All sums here are finite and 4,, 4, are arbitrary elements in A, '

respectively.

16 The proof presented here has been suggested to me by H. J. BorcHERs. A
similar proof is given in [9].
17 Weakly closed C*-algebra of operators on a Hilbert space.
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We define on t, an operator V by the following prescription:
VX A, Ay =Y 7(d,) 4, Uy (15)
n

This prescription defines a linear, homogeneous operator on q,, if we can
show that ¢ € R, and V ¢ = 0 imply ¢ = 0. If ¢ €N, the norm of V ¢ is

1Vl =2 <y, U*A*nt(4F) 1(4,) 7w A, Uy)
=2 (p, A,¥U*t(n A} A7) A, Uy = g

m,n
We have used the fact that 7 commutes with U and ', and the identities
iy =y and t(n) = w. We have also made use of the property that <,
when restricted to U, is induced by U.

The identity (16) shows that V is defined on 9%, and is uniformly
bounded there, and also that V"V =1 on Q. V can therefore be ex-
tended by continuity to s and V'V =1 on #. To prove unitarity,
we shall show that the range of V is dense in J#. Assume to the contrary
that there exists a vector &, & €, || =1, such that (& Ve)=0
Voo, g =1.

Let ¢ € RN,, o =2 A, 4,9. Then (&, V) =3 (§,7(4,) 4, Up)=0

n
for all choices of 4,, 4;. But 7(2A) = A and Ny, is dense in . Therefore
& 9y =0V cANy,= & =0, a contradiction.
To prove that V € U~, let B be any element in Q’. For every ¢ ¢,
we have
VBp=V}3 A,BA,p= 2 7(4,) BA,Uy= BVy. (17)
n n

(16)

Since B is arbitrary in " and 9, is dense in o, V € U~.
Also, z Vo = n Um. In fact, again on x,,

aVa) A, Ay =5 t1(@d,m)Ud,py=aU) ad,nd,yp
n n n

(18)
=aUnge
and the identity extends to 5 by continuity.
We shall need one more identity, namely for B €A, p € #,,
V3 4,4,By=}"7(4,) 4, UByp. (19)
n

It should be remarked at this point in order to use Lemma 2 we have to
reduce our problem to the case in which there exists a vector y with the
desired properties. We shall accomplish this making use of the
assumption that = has central support 1.

Notice first that the center € of - is left invariant by the auto-
morphism 7. In fact, if B € €, t(B) € A, and for every 4 € A,

[t(B), A]=7[B,77*(4)]=0.
Therefore 7(B) € A" N A~ q.e.d.

27 Commun. math. Phys., Vol. 2
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We now prove that the center is left pointwise invariant by the auto-
morphism 7, ie., 7(B) = B for all B € €. Consider the subalgebra 2I,;
since 7r € A, its center is €, [10]. It is left pointwise invariant by 77,
since the latter is induced by a unitary operator in 21 .

Suppose now that € were not left pointwise invariant by 7. There
would exist then an element B € € such that 7(B) = B. Without loss of
generality, we can take B (and therefore 7(B)) self-adjoint. Since
restricted to A, coincides with 77, we also have 77 (B) = B i.e.

7(r(B)— B)=0. (20)

The operator 7(B) — B is self-adjoint. Let P be any projection in its
spectral family. From (20) one derives

Pn=0. (21)

But then the projection 1 — P belongs to the center of 2~ and
contains s in the sense that 7 (1 — P) = x. This contradicts the assump-
tion that s has central support 1.

With & an arbitrary vector in st 2, let P¢ be the projection onto the
closure of . P is in the center of 2’ and is therefore invariant under 7.
Since 7z has central support I, the projection (1 — P)x is non-zero. Let
7 be a vector in (1 — Pg)m s, P, the projection onto the closure of N,,.
P, belongs to the center and Pg- P, = 0. Proceeding by induction, we
construct a family of orthogonal central projections P;, 7 € I, of sum 1.
Each P, is left invariant by 7 and therefore 7 defines in a natural way an

automorphism ¢ or each subalgebra 2, ot UAP,. In 5 P; 2 there exists
by construction, a vector y; with the property R, = P, 5. In each sub-
space P;2¢ the conditions of Lemma 2 are verified and there exists
therefore a family Vi of unitary operators, Vi ¢ P,2~, such that
ViA(Vi~t=1i(A) for all t and 4 € P, QL.

Each P;H is left invariant by 2~ and \;jH .= H. We collect all this
information in

Proposition 6. Under postulates ) and f) there exists, for each ¢, a
unitary operator V, such that 7,(4) = V,4 V; 1 for all 4 ¢ 2. Moreover,
V,€Ad~ for all ¢

We want now to show that the Vs form a strongly continuous one-
parameter group.

Let us first see that the V;s form a representation of the group of
real numbers, ie., V- Vo=V, . Forall o €R,, v € #,,

Vt+s(p = 2 tt+s(An)A;z Ut-(—sw = 2 1t(Ts(An))A7,z U, Ut'l/)

= UtUs'(P

(22)

and the relation extends to & by continuity. q.e.d. In deriving (22) we
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have used the fact that the automorphisms 7, form a representation of
the group of real numbers and Eq. (19). (Notice that U, € 2, Vs).

We shall now proceed to prove strong continuity. It will in fact be
sufficient to prove weak continuity as they are equivalent for groups of
unitary operators.

We shall prove: for any #, ¢ € 5, 3¢, such that

Kn, V&Y gy — <, @)l <1 for t<ty. (23)
It will be sufficient to prove this inequality for ¢ € %, v € 5, when
AN, is dense in .
For such ¢, one has

(n, Vt)p) = 2 g, V() 4, 4,9 = Z(n:n(A VA, Uy . (24)

Now {U,} form a umformly continuous group, therefore one can choose
¢ so small that

|2 (s T(An) Ay Usyp) — 3 (g, () Ay ) < 12 (25)
(Notice that [ Z 7 (d,) 4, = 2 [4,] |4,]| independent of ¢.) But 7, is

by assump’olon Weakly contlnuous in ¢. Therefore, for ¢ sufficiently small

|2 s 7o (An) Apy) — s )l < 1)2. (26)
n

Combining (25) and (26) we have finally that, for ¢ sufficiently small,
K, Vi) —<n @)l < 1. qed. (27)

By StoxE’s theorem there exists therefore a selfadjoint operator H
such that V = e?#t, Since V (¢) € 2~ for all ¢ and every bounded function
of H is in the von Neumann algebra generated by the eH?, V¢, we
conclude that all the elements of the spectral family of H belong to -,
ie., Hn2~. It is easily checked that H leaves 5, invariant and that its
restriction to 5%, coincides with H..

Also, H is bounded below. We shall give the proof of this for the case
in which there exists a vector y € S, such that N, is dense in 5. The
general case is treated along the same lines modulo a suitable decomposi-
tion of the center.

The additive constant modulo which H is defined can be chosen so
that H., is positive and its spectrum starts at zero. Also, since {¢p, 4 (f)y)
has Fourier transform with support in —M < p< M, 0 H, < M.

We shall now show that H is bounded below. We shall in fact prove

that
. Jht)<p, V() 2y dt =0
I

he L, NPy, [th(t)dt<oo and supph(p)c{p:p < —2M},

for all ¢, y € #.
27
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Since
[JR@) V(@) dt] < |hly <o and V(@) €YU,
it will suffice to prove it for states y of the form y = Ay, 4 €. Here p
is again a vector in z % such that .4, is dense in . By definition,
Vitydy = A() U(t)y where

M
U(t)= [ e* dE(2).
0

Therefore

o oo M
_f h(t) {p, V(&) y) dt =_f h(¢) dtofei“dt<<p,A(t) E) x>

M
=/ k) dt—of (@) 2, A() EQA) ) + &M, A1) 1)

M ©
= — [d2 [ tdth(t) (p, A(@) B(R) ) et + [ dth(t) {p, A(0) )i
0 —
The interchange of order of integration is allowed since
Ko, 4O E@) )l = |4] and [ [R(5)] tdi < o

by assumption. If A(p) =0, p>—2M, then [e-i?tith(f)ei*t=0,
p>—2M+ A>—Mand [ e Pt h(t) e!Mt dt = 0, p > — M. Therefore,
since y €x, [hE) < @V({t)y>dt=0. With V()= [e#tdF (u),
this implies dF, =0, p <—2M, since the functions %(p) with the
properties specified above are dense in the space of continuous functions
with support in {p: p < —2M}: We have therefore proved.

Theorem 2.8 Let 2 be a C*-algebra of operators on a separable
Hilbert space 7. Let 7, be a weakly continuous group of automorphisms
of U satisfying postulates o) and j) stated above. Then there exists a
strongly continuous group of unitary operators V(f), V (f) € A~, with
infinitesimal generator H, H % 2~, such that for all ¢ and all 4 ¢ ¥,
T,(A) = V(&) A V().

In particular, if 2~ represents the physical observables of a given
theory and 7, is, e.g., the group of time translations, then Theorem 2
asserts that the Hamiltonian exists and that the energy is a physical
observable.

We shall conclude with a corollary which has an obvious application,
e.g., to the measurability of momentum in relativistic theories.

Corollary. Let the algebra 2 have a weakly continuous n-parameter
Abelian group of automorphisms 7, . , and let postulates «) and f)
be satisfied for n one-dimensional subgroups T,,,; .. w.ts« - +» Tapt,....amts
such that the matrix o;; is invertible. Then such automorphisms are

18 A proof that, if the strongly continuous group V(f) exists and satisfies

assumption «) (assumption f is automatically satisfied) its generator is affiliated to
-, has been given by a different method by H. J. BorcrErs [11].
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implemented by a strongly continuous n-parameter Abelian group of
unitary operators and all the generators of one-dimensional subgroups
are affiliated to 2.
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Appendix 1

Let I, be a denumerable set of points on the real ¢-axis. We want to
prove

Lemma Al. If B¢, for every pair @,y € ', (not necessarily
normalized to 1) there exists a sequence 4,, 4,, ..., 4, €U, such that
on [,

(g AOy) 52w BO)y) -
For ¢ € o, t €1, let o, be the normal state of A, defined by*®

o (d) =<y, AO)p), A €U
Here and in what follows 4 = A (t)|, - .
Since ¢, is a normal state, there exists a denumerable orthogonal set
of vectors i, € #,, ) |yhl=M < oo (M = 0y(I) = indep. of ¢) such
n

that
oy (4) = X' (vl Ayl
n
forall 4 €2,
We shall denote by 5#; the (separable) Hilbert space spanned by the

vectors yh, n = 1, 2. .. and by 5 the (separable) Hilbert space spanned
by the vectors in U 3? One has #; CH#,.

Let E be the prOJectlon from # to A’y ; it satisfies B = K. Let B
be an element in . Since M C A, CAU~, B is in the strong closure of 2.
Without loss of generality, we shall take |B|| =1. By KAPLANSKY’s
Density Theorem [10] (p. 96, Th. 3) B is in the strong closure of %,.
Since |EA E| < ||4| for all bounded 4, E BE is in the strong closure of
EU, E. The set £, E is bounded and, by construction, EUAE C £ (#'1)*.
Since 77 is separable, & (1) is countably decomposable. There
exists therefore [10] (p. 33, Cor.) a sequence of elements in EAE which
converges strongly to Z BE.

19 We have already remarked that Postulate 8 guarantees that ¢, is a normal
state for every y € # and real ¢.

20 £ () is the (Vonx NEUMANN) algebra of all bounded operators on the Hilbert
space 7.
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Let A,,A,,... be a sequence in A such that EAnEmEBE’,

where the limit is taken in the strong sense.

Consider for y, p €, the sequence of functions (y, 4, (f)y). Since
Ex = E, this is a sequence of entire functions of exponential type M.
Let t, € I,. Then

s (A te) — Bio) ) =k§°°1 (vl (An— BYyke) .

There exists an integer k, such that 3’ |yf|*> < 1/4. Also, there exists
> ko
an integer n, such that, for n > n,, [{p%, (4, — B)yi)| < 1/2k,, since

EA,E—~ EBE and Ey} = yf, Yk. Therefore there exists an integer n,
such that
IKps (An(te) = Blto))ypl <1 for n>m,.

This shows that for every p € 5, the sequence of (entire, of exponential
type M) functions {y, 4, (t)p) converges to the function {y, B(t)y) on
the denumerable set I,,. By polarization, one has the same results for the
sequence of functions (¢, 4, ()y), @, ¥ € #p.

Appendix 2

Lemma A2. Let f,(2), f5(2), ... be a sequence of entire functions of
exponential type 1, converging pointwise on the real axis to the continuous
function f(¢), uniformly on the compact sets.

Let |[f,(6)] = 1, |f(¢)] < 1, for all integers n and real ¢. Then f(f) is the
restriction to the real axis of an entire function of exponential type 1.

Let y(2) be entire of exponential type o, square integrable and
bounded by 1 on the real ¢-axis.

Define

022) E fa@) y(@): 90) = 1) y(1), treal.

For all », g, (2) is entire of exponential type 1 + ¢ and its restriction to
the real t-axis is square-integrable. Also, g(¢) € &, and is continuous.
Given ¢ > 0, let £ be a compact set such that

[lv@®)|2dt<e/4.
One has then -
lgn—gla= [ 1fa® — @) |y @©)]* dt
ékf Ifn(6) — f(9)]* At +k[ ly ()] dt

Due to uniform convergence on the compact sets, there exists an
integer n, such that, for n > ny, [ |f,(8) —f(t)|2 dt < 1/2. Therefore, for
k

n > ng, g, —9g)s < &
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The sequence g;, ¢, . . . converges in %, to g € £, and this implies
convergence of the Fourier transforms @, g,, - . . to §.

By assumption, the support of §, is contained in {p: |p| < 1 + o}.
This implies that § has also support in {p: |p| < 1 + o}. Since this holds
true for every choice of the entire function y of exponential type o, one
has supp/c{p: |p| = 1 + 20}. Lemma 2 follows now from the arbitrari-
ness of ¢ > 0.

Corollary. Let f,(z), f5(2), . .. a sequence of entire functions of ex-
ponential type 1, bounded by 1 on the real axis and converging on a
dense subset I, of the real axis to an entire function f(z) of exponential
type «. Then « = 1.

We must prove uniform convergence on the compact sets, and then
apply Lemma A2. Let K be compact, Ps a partition of K in m, intervals
K; of length §,2=1,2,... .

Let ¢; be any point in K; N I, (since I, is dense in K, the set K; N I,
is not empty). Writing f(¢,) for f(¢)|;~, for all n and real ¢,

[fa®) — O] = |fu(t) — F(t)] + 26 for some ¢; .
Given ¢ > 0, take 0 < g/4o and let n; be such that |f, () —f(¢)| <

det
< ¢g2forn>m;letng = sup n,. Then, for n > n,,
1=1,...,m,

lfo(®) —f@)] = ¢/2 4+ ¢/2 =¢ uniformly in K. q.e.d.
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