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Abstract. The essential self-adjointness of the operator —A -f- V is proved,
where V is a potential whose main property is the high singularity and repulsiveness
at the origin.

1. Introduction

The essential self-adjointness of the operator —Δ -f F will be proved
for a class of potentials V which are defined precisely through the con-
ditions (1.1)—(1.5). Before writing these definitions, the qualitative
description of the potential will be given briefly. The potential F is a
real function F (x, y, z) which is positive at the origin and its singularity
there is higher than l/r2 and independent of the way of approaching the
origin. Outside the origin the potential F (x, y, z) may possess singulari-
ties, such that the square of the potential is a locally integrable function.
KATO [1] considered the same problem for another class of the potentials
which essentially differ in the behaviour at the origin. The exact defi-
nition of the potential is:

The real function V(x, y, z) can be decomposed in the form:

V(x, y, z} = 7ι(x, y, z} + V2(x, y, z) + P(r) Q(x9 y, z) , (1.1)

where the four functions on the right of this decomposition satisfy the

conditions: f Vl(x,y,z)r dxdydz «χ>, ε >0 , (1.2)

limsup \V2(x, y, z)\ < oo , (1.3)

P(r) =

%>y,z
1 —

—£ (δ — r)3 or e ̂  (δ — r)3 , r ̂ , (14)

0 r> ό ,

where α > 2 or β > 0,

lim sup \Q(x, y, z) — QQ\ < q(d), d < δ , (1.5)

where K (d) is the sphere of radius d centred at the origin, Q0 is a positive
constant and q (d) is a monotonic continuous function which vanishes when
d tends to zero. In the following we put QQ = 1 without loss of generality.
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Let .L2(0, oo ) be the Hubert space of functions / (r) in which the scalar
oo

product between elements / and g is defined by (g, /) = / g*(r) f(r) dr.
o

Let Elm be the one-dimensional space determined by the spherical har-
monic Γlm(#, φ). We shall consider the product Ll>m = Elm <8> X2(0, oo)
and the sum L2 = Σ © £|m (The obtained space L2 is isomorphic to the
space of functions / (x, y, z) with integrable square of the modulus by the
simple isomorphism generated by the multiplication with the function

1/γx2 -f- y2 + z2) Then the domains of the symmetric extensions of
— A -+- V will be somewhere in the space jC2. Let @( — Δ) be the domain
in Z/2 of the symmetric operator — Δ. Let Jδ? be the linear manifold com-
posed of the elements of the form exp{ — λ(P(x) -f- P(y) -\- P(z))} x
x f(x, y, z), λ > 0 and / £ ̂ ( — Zl). In this way ££ becomes a dense linear

manifold in the space L2. Moreover, & is contained in the domains
Q)( — Δ) and @(V) of the closures — Δ and V of these operators. Hence
the operator Hs — — Δ + F is symmetric on the domain @(H8) = JSP.
We want to prove that the closure H — H s is a self -adjoint operator.

If the potential is spherically symmetric, F = P, the symmetric
operator JS^ = H0 + P on «5P is essentially self -ad joint. The operator Hl

is reduced by every subspace Z/|w to the operator / ® Hl^ I ̂

® ( — JT H -- 2 - + -P (r) ) Because the function P (r) is singular

more than 1/r2 at the origin, the Schrόdinger differential equation

- ( l , k , r ) =, r) = (P(r) +-^-tlI_ F) φ(ί, i, f). (1.6)

always possesses one regular and one irregular solution at both ends
for complex Jc. Hence by STONE [2] follows the self-adjointness of the
operator Hl and thus of the operator 3V

2. Auxiliary statements

For our proofs we need two special solutions of the differential equa-
tion (1.6): The solution φ(l,k}r) which is regular at the origin and the
Jost solution u (I, k, r) which behaves like exp ( — ikr) for large r. We need
also the Wronskian u (I, k) = W(u(l, k, r), φ(l, &,r)). The uniform estimate
of the solutions with respect to the variable I is of special importance to us.

Let us set s — I -f -~ .

I. For fixed k — — it, t > 0 and large s the solutions φ(l, t, r) and
u (I, t, r) are of the form
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uniformly with respect to r ζ (0, oo), where s = I -{- -^-, t = ik and

1 (2.2)

X e x p - j i ^ r -

The proof of this statement for imaginary t is given in Ref. [3].
In our case t is real but nevertheless we can use the proof from the
Ref. [3] completely.

II. Iff ζ® (HJ then
(2.3)

holds uniformly with respect to r in the interval (0, oo), where a, b are positive
constants independent of I and a can be chosen arbitrarily small.

Let us consider the mapping / = (Hl — E)~lg. We shall choose
E negative because then we are sure that E belongs to the resolvent
spectrum. In our case the resolvent is the integral operator whose
kernel is the Green's function

φ (I, k, /) u(I, k, r)lu(I, k), r' ^ r,

u (I, k, r'} φ (I, k, r)/u (I, k), r' > r, (2'4)

where k — — J/-E7 and the square root is positive for positive E. As the
resolvent maps the whole space L2 onto the domain 2f(H^9 we are sure
that every / ζ^(#z) can be represented in the form / = (H — E^g,
where g is some element of L2.

. (2.5)

The estimations of the two integrals on the right-hand side of (2.5) do
not differ essentially and we restrict ourselves to the estimation of the
first integral. Let us denote this first part by h(r). Accordingly to (2.1)
we have the first estimate

\h(r)\ rg

where C is a constant independent of s and P(r, s, t) — P(r) -f θ2/r2 -f- 12.
Being positive, the integral in the exponent can be omitted and after

22*



324 N. LIMIO:

using Schwarz' inequality we obtain \h(r)\ < C\\g\\l2t3/2. As g = (Hl — E)f,
we get

The same inequality can be obtained for the second part of the relation
(2.5). Together they prove the stated inequality (2.3) because the
parameter t can be chosen arbitrarily large.

III. Each element f ^^(H-^ considered as the function f ( x , y , z )
possesses the estimate

uniformly with respect to r in the interval (0, oo), and the constant a can be
chosen arbitrarily small.

The element / can be represented uniquely in the form

f(x, y,z)=Σ γιm($> Ψ) fim(r), /im 6 ®(Hι) . (2.8)

In order to estimate the function (2.8) we must know estimates of the
functions flm (r). We start in the same way as in the proof of the preceding
statement up to the formula (2.6). Because of the monotonic character
of the function P(r> s, t) the following estimate can be made

r ί r _ \

f PW(x, s, t) exp - f ]/Y(u^s~ϊ) du\ x
0 \ x ]

The last inequality follows from the Schwarz inequality. The same can be
done for the second part of the f unction / l r w(r). But the estimate is more
complicated for this part, because now one must use the monotony of

the function P-V2(r, s, t) exp<ε tr — ε f (PW(u, s, t) — ί) du\, ε < 1 for t
( r )

large enough, instead of the monotony of the function P~l/2(r, s, t),
as the integration is over the range (r, oo). We obtain, finally,

and a can be made as small as we like because t can be chosen arbitrarily
large. Let us use the abbreviations x = {#ίm} = {Yιm(&, φ)jll+η} and
V = {Vim} = {a\\Hιfim\\ + δ||/im||} The function (2.8) can be estimated
using Schwarz' inequality

\f(x, y, z)\ rg Cr^ I Σ *ιm Vιm\ ^ Cι*+*\\x\\ \\y\\ , (2.9)

where ||α:||2 = Σ \xim\2 < °° and \\y\\* = 2α2||#1/||2 -f 262||/||2. The inequa-
lity (2.9) is the stated inequality (2.7).
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IV. ^(H^ C^(Pι) and for every element f ^Q)(H^ we have

\\Pt\\ < "\\Bit\\ +m\> (2.10)

where a and b are positive constants.
Again the mapping / = (Hl — E)~lg will be used. Now the domain

of this mapping will not be the whole space jk2(0> °°) but, rather, the
dense linear manifold Jf , whose elements g are bounded functions:
\g(x)\ < K(g], where K(g) is a finite constant. As we are interested in the
norm of the element Pf = P(Hl — E)~lg, we must square the Green's
function. The mixed product can be estimated by use of the inequality
2 Re α & < | α | 2 - f | & | 2 As in the last proofs we shall restrict our considera-
tion to the term \P(r) h(r)\2. The other term can be estimated similarly

\P (r) h(r)\ < -pϊT^TT
* \ ώ > &> ' I

O l a ;

From this inequality it is easy to derive \P(r) h(r)\ < CPll*(r)\g\ and
consequently

oo

/ \P(r) A(r)|« dr ^ C* δ PV* (|) |b||2. (2.12)

Hence we have to consider only the integral over (0, <5/2) in the following
part of the proof. For r g <5/2 relation (2.11) can be simplified, replacing
P(s, t, r) by P(r) because P(s, t, r) > P(r) > 0 for r ^ 0/2. For q ̂  0/2,
we have

/|P(r)A(r)|»dr<;
0 (2.13)

fdr PV2 (r) \ f pi/* (x) Θχp (— / pi/a (u) du] \g (x)\ dx] .
0 Lo \ x 1 \

This integral surely, exists since the element g was chosen from the linear
manifold JΓ. The existence of the integral enables us to change the order
of the integration in the following treatment. First, we estimate the
bilinear functional represented by the square of brackets. Let us denote

6

it by I(r) and let us use the abbreviation F(r) — f Plt*(x) dx.
r

r r

1 (r) g y exp (2F (r)} f dx f dy P1/* (x) P1/* (y) x
0

x exp(-f» - F(yϊ) (\g(x)\* + \g(y)\*)
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r

We used here the inequality / P1/4 (#) exp (-F (x))dx< p-1/4 (r) exp (— P(r)).
o

Coming back to (2.13) and changing the order of the integration we have

) \g(x)\2d
0 0

This inequality combined with (2.12) and analogous relations for the
other term of the Green's functions gives ||P/||2 ^ C\\9\\z for g ζJf,
where C does not depend on g. Let *Jί be the range of the mapping
(Hl — E}~lg, g ζ «#". ̂  is a dense linear manifold in the Hubert space 3? .
Then we have ||P/|| ^ αf^/H + δ|/| |, / ̂ Jt. Because of the self-ad-
jointness of the operators Pl and Hl on the domains @!(Pι) and 2(H^
respectively, 2 (Pj) 5 -̂  (fl"z) and the obtained inequality can be extended
to the whole domain Sf(H^) with some constants a and b. This concludes
the proof.

3. Self-Adjointness of H8

I. The symmetric operator Hs is essentially self -adjoint. For the proof
we use KATO'S [1] theorem:

II. Let Hl be a self -adjoint operator in L2 and let U be a symmetric
operator in L2 such that

® = 2t(Hι)ζ.&(ϋ) (3.1)
and

for any /^(tfj, (3-2)

where a and b are constants such that 0 ^ a < 1 and b ̂  0. Then H —Hλ ~\- U
is self -adjoint on ^(H^).

In our proof H ± is the self-adjoint operator H-± on the domain @(HΎ]
and U is the symmetric extension of the operator V — P to the domain
& '. First we consider the existence of the element Uf, f

^ f dxdVdz P*(r) \Q(x, y, z) - 1|2 \f(x, y, z)\* +

+ f ^^- 1 V,(x, y, z)|» (/(a:, y, z)| + (3.3)

The first integral /j on the right-hand side of (3.3) really is extended
over the range K(δ}. We divide this range into two disjoint parts K(d)
and K(δ) — K(d), d < ό. It then follows that

I, <Z q*(d) IP/1]2 + MP*(d) I/I2, / t9(HJ .

\\Pf\\ cannot be immediately majorized, as in the statement IV
(2.10), because this statement holds for the elements / ζ@(Hι) and the
restriction of the operator P to 2(βι\. We can simply enlarge the validity
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of (2.10) to any / ^^(H-^ using the reducibility of the operators P
and H1 in the subspaces Ll

2

m. For / ζ £ΰ (H^

\\Pf\\* - \\PΣfιm ® γι Jl2 = Σ \\Pfim\\* ^
a a

We used here (2.10) in the third step of the estimation.

/! ̂  g« (d) (2α«|F1/l|« + 2δ*i/p) + Jf P«(ί) ||/||2 .

The second and third integrals /2 and 73 respectively in the expression
(3.3) are estimated by use of the definitions (1.2) and (1.3) of the potential
and by use of the statement III. (2.3) for the integral /3.

Thus we have obtained

\\Uf\\ ^alHJI + blfl fte&J, (3.4)

where the positive constants a, b do not depend on /, and a can be taken
smaller than unity in accordance with the statement III. and the pro-
perty (1.5) of the function q(d). At first we remark that Uf exists for
every / ζ ^(H-^ because of (3.4). Now it is easy to extend the symmetric
operator U on ££ to the symmetric operator U on ^(H-^ in order to
satisfy condition (3.1). Then the inequality (3.4) is the condition (3.2).
In this way we have proved the self-adjointness of the operator H^ + U
on ®(H^ and hence H = HSJ where Hs^HQ+V^Hι+U on &.
This was the ultimate aim of our proof.
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