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Abstract. The LSZ asymptotic condition and the Yang-Feldman equations
are derived in a Wightman quantum field theory on a dense set of scattering states.
The Green's distributions are shown to be sufficiently regular around the energy
shell to give well-defined reduction formulae for the scattering amplitudes.

I. Introduction

The analysis of the fundamental notions of relativistic quantum
mechanics has been carried out in several axiomatic formalisms [1],
which differ significantly in the primary notions involved.

The quantum field theory of LEHMANN, SYMANZIK, and ZIMMEBMANN
[2] (LSZ) is based on a complete particle interpretation. The $-matrix is
assumed to be interpolated by a set of local fields satisfying a weak
convergence asymptotic condition. Furthermore, one assumes that the
fields are such that Green's functions can be defined and are sufficiently
regular around the mass shell, in order to give sense to the reduction
formulae for the scattering amplitudes. Then the main results of the LSZ
theory are analyticity properties of the $-matrix elements and the many-
particle structure of Green's functions.

The more general WIGHTMAN framework [3] is based on fields which
are local and Lorentz covariant operator-valued tempered distributions
in a Hilbert space. Under more detailed assumptions on the spectrum of
the energy-momentum operator a collision theory has been developed by
HAAG [4] and RTTELLE [5].

In view of the particle interpretation implied by the Haag-Ruelle
asymptotic condition, it is natural to investigate the connection between
the LSZ and the Wightman framework. The most ambitious program
would be to prove that an LSZ theory is a special Wightman theory in
which the asymptotic states are complete. More modestly, we intend to
show that on a dense set of collision states the LSZ asymptotic condition
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and the Yang-Feldman equations [6] can be proved from the assump-
tions leading to the Haag-Ruelle scattering theory. The proof is based on
the physical idea that collision states describing divergent asymptotic
particle configurations can be rapidly approximated by states which are
created from the vacuum by polynomials in the fields corresponding to
1-particle excitations.

The asymptotic condition in #-space, which is a convergence property
at infinity of (regularized) Green's functions in the variables dual to
p° — (m2 + p2)1/2, gives regularity in ^9-space for the amputated Green's
functions around the energy shell {p° = (m2 + p2)1/2}. The restriction of
these distributions to the energy shell is therefore well-defined, at least
for momentum configurations describing divergent particle beams. This
will justify the reduction formulae of LSZ for the scattering amplitudes.

II. Asymptotic Condition

In this section we shall derive the LSZ asymptotic condition and the
Yang-Feldman equations in the framework of the Haag-Ruelle collision
theory.

We first restrict ourselves to the theory of one kind of neutral scalar
particle with mass m > 0. We assume that 1-particle states are created
from the vacuum Q by a neutral scalar Wightman field A (x). This
statement is (up to a normalization) equivalent to the following structure
of the 2-point function:

(A (x) A (y))0 = i A™ (x-y) +i f de(/i) A\ (x-y), (2.1)
o

with supp Q r\ {\/u>2 — m2\ < c} = 0 for some c > 0. Let G = {p£R*:
p° > 0, \p2— m2| < c} and let 6? (G) be the space of test functions
/ £ Sf{R*) with supp /C 0. For any / £ ^ (E 4 ) and all t (with co = (p2 +
-f m2)V2)

A (f, t) = (2T*)-V2 / dp J(p)* A(p) exp [~i (po _ m) f\ (2.2)

is a bona fide operator in $). For f£^(G) A*(f,t) creates from Q a
1-particle state with a wave function /(p) = j(co, p) £ <$f(Rz):

A*(f,t)Q=\f), A(f,t)Q = 0. (2.3)

Using (2.3) one can construct asymptotic observables. HAAG [4] and
RUELLE [5] have shown that for f{

lim II AW (fi91) Q (2.4)

exists in the strong topology in $). The states (ex = in, out)

Um 77^*(/ i ,«) i3=| / 1 ) . . . , /r ) (2-5)
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span Fock spaces of scattering states characterized by initial (final) wave
packets fl9 . . ., fn and outgoing (incoming) waves after (before) collision.
If the ft £ Sf (R*) satisfy no restriction on their supports, then one has in
weak convergence [7] on £jex

m \

(2.6)

(
( m \

<Z>ex, 7 7 A * (U *) fl = (<Z>CX |A, . . ., / £ )
* = i /

m n \ / m \

0 - IlAiUt) II A* fat) Q\ = (&"9 i 7 a e x ( / ) | ^ . . . , r
i = l 7=1 / \ i = i /for all 0 e x £ § e x and {fa} C Sf [Q). Here asymptotic free fields are defined

by Aex(f) = ( 2 ^ / 2 [a*,(A) + «ex(/l)] f°r / ^ ^ ( ^ 4 ) and A(p) = / (« , p),
//2(P / ;

The investigation of asymptotic observables can be carried much
further in the LSZ framework, where the ^-matrix elements are related
to Green's functions in momentum space, using a weak convergence
asymptotic condition for the field operators. We shall see that a sharpen-
ed form of the LSZ asymptotic condition can be proved in the Haag-
Ruelle collision theory. For that purpose we shall first discuss the
approach of (2.4) to its limit.

We call {/J C £P (0) non-overlapping, if the supports of the {fy
are pair-wise disjoint in velocity space, i. e., if for all p{ = ($, p j £ supp/^
one has

Vt ^T1 #= VJ w j x f o r i j r j . (2.7)

A set {A} C Sf (RB) is called non-overlapping, if (2.7) holds for all p̂  g supp A-
It is a consequence of the short range of the forces in a local quantum
field theory with smallest mass m > 0, that non-overlapping scattering
states I A, • . ., /Sx) can be approximated rapidly in t by almost localized
states IlA* (fi91) Q. The proof follows from the

Theorem 2.1: For non-overlapping {A}C ^(G) one has

~di \t\)~* (2.8)

with cN < oo for all N.

Proof: One develops
2

into a sum of products of

truncated vacuum expectation values [4] (TVEV). Since A(fi9t)Q

= -jj A* (fi, t) Q = 0, all terms with 1-point functions and pure 2-point

functions vanish identically. We shall show that for any k ^ 3 and any
N>0:

\tN (II AW (fo, 0* II A(*)(fiv, t)}
 T\ < cN (2.9)

l + 1
7*
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is uniformly bounded for all t by some cN < oo. For k ^ 3 one has either
j 2̂  2 or k — ^ 2 . Suppose j *z 2 and as the first two factors in (2.9)
J. (fii91) A (fiz, t). Using translation in variance (2.9) becomes in momen-
tum space

\t* f IIdp,M-p,)?"*1 IIdp.fi*> (±p r)e±*«*« W(Pv .. . , V t ) T \ . (2.10)

In #-space the TVEV W(xv . . ., xk)
T are strongly decreasing for large

space-like separation of the arguments [5, 8], Therefore WT is of the form

<M ZJ Pi) ffi (V& • • •> Pk)T with WT being C°° and of polynomial increase

in p2, . . ., p/c, when integrated over f% . . ., p% with a test function from
) . Thus (2.10) becomes

A . . .,p fc)exp[tfl(p2> . . .,pfc)*] I , (2.11)

? . . ., P*) = / iVi fiS-Vi) Tl dfv f[f(±pv) W(Pl, . . ., pkf , (2.12)

2 i 1 / 2J
(2-13)

with x $ ^(i?3^"1)) . Since /^ and Jiz are non-overlapping,

-a^- = [™* + [ E Vi) J E Vi + coi"1 P2 * 0 (2.14)

in the support of #. By a suitable ^/-partition of the unity {a^}, 1 ^
^ i ^ 3, one can arrange that dQjdpl =j= 0 in supp^ a .̂ Then the trans-
formation jQ <-> ̂ >| is regular in supp^ at-. Therefore one has
/ IIdyv x(9) Oi(p) exp [i "Q (p) t] £ ^(R1) for 1 ^ i ^ 3. This proves
(2.9) and therefore Theorem 2.1.

It may be remarked, that the majorization extends trivially to
arbitrary non-overlapping cp £ £f(Gn), which are not necessarily of the
type A ® • • • ® /„.

The first consequence of theorem 2.1 is that for non-overlapping
velocities the Haag-Ruelle limit (2.4) is attained faster than any power
in \t\~1, independently of the dimension of space in a normal hyperbolic
space-time. Hence also in a world of one or two space dimensions, a
reasonable collision theory can be developed.
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Let <p £ Sf (Gn) be non-overlapping and & denote the symmetric
group on n letters. Define

xexp v - cov)
(2.15)

and @ex(<p) as its asymptotic limit, which is characterized by the n-par-
ticle wave function

> • • ., Pn) = <OQ(n),

Let B be an arbitrary polynomial in the smeared-out field. By the
Schwarz inequality one has

d d d
(2.17)

The second factor on the right-hand side of (2.17) increases with a fixed
power of \t\ due to the temperedness of the Wightman distributions,
while the first factor decreases stronger than any power of \t\ for non-
overlapping <p ^£f (Gn). Therefore B@((p,t) again converges strongly
for t-> ±00. Let ̂ 3 be the algebra of all polynomials in the smeared-
out fields. By assumption [3]^ Q is dense in § and belongs to the domain
of B*. Therefore the closure B = B** of B exists. By definition of B
one has

lim B0(w,t) = B0ex(w) (2.18)

(2.19)

and (again using the definition of the closure) for Bv B2

Bx B20(<p, t) -> B^~20™($) = £ 1 ( ^ 0

Let Z>QX n e m i e a r space of all non-overlapping <2>ex (<p) with <p
n = 0, 1, 2, . . . . DQX is dense in § e x , since the functions (2.16) are dense
in the lAspace of all totally symmetric 99(pl5 . . ., pn) with / IIdpid+ (pt)

The spaces DQX share many important properties with ^3 Q, where
the field operators are originally defined. DQX lies in the intersection of the
domains of all B, B £<$, and all a ^ ( / ) with square integrable testing
functions.

Due to (2.19) the B, B £<$, can be freely multiplied onDe*. [B^, W2] = 0
holds on Z)QX if the test functions corresponding to Blt B2 ^ ̂ 3 have space-
hke supports. The unitarity of the representation U(a, A) oiiLl entails

onD™:
U {a, A)BU {a, A)-1 =U(a,A)BU (a, A)-1. (2.20)
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Finally, let ipv £ Sf(R*») and &out((p) £D%U\ Then B(<ipv) s / dxx

dxn ipv(xv ...,xn)A (xj) . . . A (xn) satisfies

•, s) . (2.21)

The squared integrand can be majorized using (2.17) by a finite sum

\s\)~N (2.22)\ y\ W\ty f\ ^r
a, P, V,6 %,y

with Cgpyt <<x> for all N ^ 0. Therefore ipv ~> 0 in £f(R*) entails

These properties of DQX motivate the "abus de langage" B 0ex for B
operating on DQX.

Now the ground is laid for a proof of the LSZ asymptotie condition
given independently by HAAG and ROBINSON [9] using similar methods:

Theorem 2.2: Let <Z>ex £ Df and {/<} C ̂ (G)9 then

Jdm II A(*)(fi,t)0
QX=; na(g>{fi)0

ex.

lim ( Tex, 77 ^4* (^-, tt 0 e x I = I !?ex , 77 a*x (g{) 0
el

(2.23)

( m n \

WGX, U A (gi91) TI A * (fj91) 0ex (2.24)

; = 1

Proof: We first remark that for 0ex£Dlx (2.23) and (2.24) are

well-defined. We approximate II AW(fi,t)0
ex(<p) by II AW(fi9t)

t = l i = l
?, ̂ ), which is possible due to Theorem 2.1:

nn
i = l

(2.25)

since the integrand can be majorized as in (2.17) by dK (1 + \s\)~K (1 + \t\)L ,
with £ fixed and d* < oo for all K. Then (2.23) and (2.24) follow from
the Haag-Ruelle theorem (2.4) and (2.6).
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The generalization of theorems 2.1 and 2.2 to arbitrary spins and
bound-states is not difficult. If a general iSL(2, (7)-covariant (2r+ 1) x
(2t + 1) component field [3] AQi(x) with

U{a9 A) AQi(x) U(a, A)~^ = D ^ / h 1 ) B^AA'1)* Ae>r(Ax + a)

creates from Q a 1-particle state of mass m > 0 and spin s(\r + t\ ^ s ^
^ \r — £|), then there exists [5, 10] a local (2s + 1) component field Aa(x),
whose 2-point function (Aa(x) Af (y)yo coincides (up to normalization)
with the 2-point function of the corresponding free field in a neighbor-
hood G of the energy shell (<5+ (p) = d (p°) d (p2 — m2)):

(Ao(z)Af(y)}0= (2ji)

+ (continuum contribution) . (2.26)

Then the Haag-Ruelle and the LSZ asymptotic condition can be proved
using

2s + l
A (/, t) = (2^)-1'2 Z fdp fo(p)* lAp) exp [-»(p° - to) t] (2.27)

with fa £ £P(G) or ^ Sf'(i?4) for strong or weak convergence. In the case
of a bound state a polynomial B in the smeared-out fields is assumed to
create from Q a 1-particle state corresponding to [m, s] (i. e., B* Q £ §[WjS]
and B Q= 0). Then Theorems 2.1 and 2.2 follow using the limiting
procedure [4, 5].

) ^ i fdxf*(x)^0[U(x9l)BU'Hx9l)] (2.28)

with f(x)^(2n)-^ f d+(p)f(p)e~i^dp,

— 5/9x0. Here weak convergence holds again even if E[m,s] B* Q 4= B*Qt

with ^[^,8] projector on §[m,s], if m̂  4= m^ for different [m^ s{].
In conclusion we discuss another formulation of the asymptotic con-

dition which is currently believed to be equivalent to the axiom of LSZ:
the definition of asymptotic fields by the Yang-Feldman equations [6].

For any / 6 ^ ( ^ 4 ) there exist / ^ ^ ( ^ 4 ) ? 1 ̂  * ^ 3, with f(p)

supp ]x C {\p2 — m2| < c,p° > 0}

supp /2 C {\p2 — m2\ < c, p° < 0} (2.29)

supp /3 r\ \ \p2 — m2\ < ~n-\ = (f>.

The 0°°-function Fx (s) = ^ - (271)1/2 4 * (/1? 5) !P i n satisfies for W*m £ D% the
0

majorization Hi^s)! < ^ ( 1 + |<s|)~3/2in—00 < s < 0. Therefore / ess x
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x F-L (s) ds is uniformly convergent for 0 ^ s ^ e0, s0 > 0, and one
obtains:

o o
)d8 = 1im f ess F^s) ds

0

= lim fdsifdp^ (p) x

x exp [i s(p° — co — i s)] (p° — co)A(—p) W™ (2.30)
= -Hm / dp Up) [(p» +co)(p»-co

Here one uses Theorem 2.1. Furthermore one uses p° + co > c > 0 in
supp Jujip) = (—p% + m2) 4̂ (p), and for e > 0 in the topology of

Similarly one shows that

= -]imfdp J2(p) [(po +co-is) (p° - co^-iji-p) Win . (2.32)

Since the mass shell lies outside of the support of /3, one finally has

Ain (/,) = 0 and A (/,) ^ t o = - / dp /8 (?) [?2 - ^2]-1J (~P) ^la •

This gives in o;-space the
Theorem 2.3: For Wex £ DQX the Yang-Feldman equations hold as

distribution identity in &31 (J?4):

A (x) W™* = A in (*) ̂  + / dy A ret (x - y) j (y) Y™*. (2.33)
out adv

III. Reduction Formulae

The well-known reduction formulae [2] for the scattering amplitudes
are usually derived with help of the LSZ asymptotic condition. In the
Wightman framework they are not trivially obtainable, because they
require a knowledge of the singularity structure of (not well-defined)
Green's functions around the energy shell. But, since the LSZ asymptotic
condition can be proved in a strong form on non-overlapping states as a
consequence of the more fundamental Theorem 2.1, we expect to gain a
deeper insight into the structure of the LSZ formalism by deriving
somehow similar reduction formulae in the Wightman framework.

We avoid all existence questions of Green's functions [11] in terms of
Wightman distributions by using regularized characteristic functions.
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The connection with the scattering amplitudes will turn out to be
independent of the regularization and will extend immediately to
"sharp" Green's functions, whenever the latter can be defined. Through-
out this chapter we assume (2.1) with a mass eigenvalue m2 of P 2 outside
the continuum.

Let x ^^(R71'1) be arbitrary except that it satisfies for all P £ 6 n :

• ->SP(n-l) — SP(n)) = X(S1~ 52> • • •> Sn-1 ~ Sn) ,

» - i Z ( * i , . . . , * » - i ) = l .

Then "smooth" time-ordered, advanced and retarded products are
defined by

Tx(xlf . . .,»n) =

X Z(*l —«2> • • •>*n-l—*n

= in-1 fd(s1 — s2) . . . ^ ( ^ n _ x — sn) x (3.2)

(n)— sP(n) — »P(n-l) + 5P(n-l)) • • •

and similarly Rx(x1; x2, . . ., xn).
The following simple reduction formula [2] is well known from LSZ.

Let Tx(xl9 . . ., xn) be any smooth, time-ordered product. Then for
sufficiently large R > 0 one has

{ I1 (<v w \ A (>v \ -fr»T» w w ^ 7? f9 <i ? <L w\

J. v [JCO* • • •? w-w 7 -̂ J- V« î j? 1 U I JLA JU-t ^> ±\> \ £ -^ v —^ ft)%\ 2? ' ny v I / ' z l \ — — t /gg\
where JTZ(^2> • • •» ̂ n) ̂ s defined as in (3.2) by restricting £ to those

p
p (LQn with P( l ) = 1 and by replacing d(x^ — s± — x%^) + SP(2)) ^J 1-
Then one can derive for $ o u t g D°o

u\ Win £ D[Q the following distribution
identity in 9' (G x i24 <n -1)):

Tx(-p2, . . . , - p « ) x
(3 4)

^ A yyin\-| | v y

Here the restriction of the tempered distribution (p\ — m2) (@out, T^—p^
. . ., — £>n) !F

in) to the energy shell will turn out to be well-defined as a
continuous function in the critical variable p\ — a>v

For, take {p £ 9(0 x i?4^"1)). Since the Fourier transform of
xp exp [i (p% — a*!) t] decreases in o;-space strongly in x\ — t, one has for
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£-> _[_oo:

/ 77 dpt y> (p) exp [»(rf - coj) t] (<Z>0Ut, T z ( - f t , . . ., - p n ) Wia)

- f ndpi-ip(p)exV[i(po
1^mi)t](l(p1)0

m\Tx(-p2,.. .,-pn)V™) (3.5)

- (2W)1/* / /7d f t 6+(ft) y (jj) (aout(Pl) &™\ Tx(-p2, . . ., -pn) T*)

as \t\-V2, due to the LSZ asymptotic condition. For t -> —oo the left-
hand side of (3.5) converges to

(2n)V* f Ildpi d+ipJyUp) (^out, Tx(-p2, . . ., ~Vn) a^(Pl) F i n) .

Therefore

/ AdPi d+(Pl)ip(p) {(aout(Pl) &>*\ Tx(-p2i . . ., -pn) W™) -

- «P0Ut, ^ (-P 8 , • • ., ~Vn) at (Pi) ^ i n)}
+ oo (3.6)

- i(2n)~1/2 f dtf d*n py{p) (p? + co^-1 exp | » ? - cox) fl ( 0 o u t ,

The ^-integrand in (3.6) can be majorized by 0(1 + |£|)-3/2. Therefore [12]
its Fourier transform is continuous in the variable p\ — a>v after integra-
tion over p1? p2,..., pn, and the well-defined restriction to the energy shell
gives (3.4).

In the same sense [with f(x) as in (2.28)], the following reduction
formulae are well-defined:

x(x29 . . ., xn) — Tx{x2, . . ., xn) ain{f)

= - * / dx1 /*(^) Kx Tx(xv . . ., xn) ,

[Rx(a0; »i, • • ., ̂ n-i), < ( / ) ] = / d%nfM KnRx{x^ x1, . . ., sn) , (3.8)

[^x(a:0; xl9 . . ., »„»!), <!t(/)] = / da?w /(»«) %n Ax{xQ\ xv . . ., xn) . (3.9)

(3.7) holds between &0Ut£DZut and ̂ i n g DJf, (3.8) and (3.9) between
states from DQ11 and DQ^, respectively. Obviously these formulae remain
valid, if "sharp" Green's functions can be defined.

The simple support argument leading to formula (3.4) allows a
generalization, which first turned up in Zimmermann's study of the
1-particle singularities of the Green's functions [13]. Let (p^^{R^n)
have support xnq = p1-\---- + pmin.G and consider

F(t) = fndPi tp{p) exp[i(go - ĉ ) t] (Tx(-pv . . ., ~pn)\ . (3.10)
i

Since the Fourier transform of cp exp [i(q° — ojQ) t] is concentrated in
#-space around x$ ̂  t (I <L i <Z> m), xf?&O(m+l<LjsZ ri), one can for
t ->^ + oo replace (Tx(- pv . . ., - pn)\ by (Tx{- pv . . . , -pj x
x Tx(—pm+1. . .— 2?n)>ouPto terms 0(|*|-^).The latter distribution has
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support in q £ 7_ and gives no contribution to (3.10). Similarly, one has for
t -> — oo:

\F(t)-f TFdpi $(&,...tPn)x

The property ~rr F(t) £ ^(R1) is equivalent to the statement that

(q2— ra2) (Tx (—p, . . ., — pn))o is C°° in q° — coQ around the origin,
when integrated over the remaining variables. After an allowed inter-
change of integrations one obtains

+ oo

lim F{t) = — f dt~F(t)
t~+—oo J at

— CO

5+(q) [(?2-m2) (Tx(-Pl, . . ., ~pn)\] (3.11)

= J IIdpif(pv . . ., pn) (Tx{—pm+1, . .., — pn) Tx(—pv . . ., —pm)\ .

This is Zimmermann's formula [13] for the 1-particle singularity of
n

(Tx{—pv . . ., ~pn)yoraq = 2J p{. When "sharp" time-ordered distribu-

tions can be defined, one can obtain from (3.11) and (3.4) the "residuum":
9TT f fih ri^n <n m (m\ /S (h\ X(h% «)2\ /'ffi (T, ~ ~, \\ (1,2 ^W2\ v
A JXJ ] UJ Hi Vb P Y \J?) " + K'v) LV " ^ / X"*- V^J j r l ' * * 'J —Jr 771//O \ / ^

oo

Computing F(0) — — / dt-rr F(t) as in. theorem 2.3 one obtains in the
o

topology of £f' (R*n):

(TA—pv . . ., — Pn)\ == ^ m m ^1? *•' *? ^n^0-̂  # (3.12)

Firr{t) ss ^ ( 0 — JP(— OO) 6(—0 is C°° in t except for a discontinuity at
t = 0 and satisfies \Firr(t)\ < GN(l + \t\)-N with GN<oo for all JV.
Therefore

(3.13)

is regular in q° — coQ around the origin, when integrated over the remain-
ing variables.

Let us remark that the formulae (3.11), (3.12) and (3.13) were derived
only from mass spectrum conditions, without the asymptotic condition
(based on locality). This possibility was first realized by RUELLE [14]
and STREATER [15] by studying the absorptive part of the generalized
retarded functions. A similar argument as above fails to exhibit the
1-particle structure of the retarded distributions given first by SYMANZIK

[16].
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Locality and mass spectrum conditions in the form of the LSZ
asymptotic condition are an important tool to determine the singularity
structure of Green's functions simultaneously in several variables
around the energy shell. Our main result is expressed in the following:

Theorem 3.1: The distribution

h (pt-m2)(Vv--.,Vrt\Tx(±pk+1,...,±pl)\Vi+1,.--,Vm> (3.14)
i = k + 1

is C°° in the variables p® + 1 — cok+l5 . . ., pf — coi around the origin, when
integrated over p1? . . ., p w with testing functions ip £ <9p(BZm) having pair-
wise disjoint supports in the variables p^ col'1.

Proof: Take non-overlapping { / J c ^ ( # ) and define /J&, £) =
= SF {ft exp [i (p° — co) t]} (x) and /< (a?, t) = dfit ft (x, t). Then we claim that

h J,) (),,.. Jrt\Tx(xk+v...,xl)\fl+v...J^) (3.15)

lies in f9
p(Bl~k) in the variables tk+1, . . ., tv Since all the ^-derivatives

of the O°° function (3.15) are again of the type (3.15), it is sufficient to
show that for all Nk+15 . . ., Nz ^ 0

sup |/ fl dxit?<fl*){zi,tt)(fi,...,fF
t\x m m

X Tx(xk+1, . . ., xt) \fl + l9 . . ., /in>| < oo .

Let us first outline the idea leading to (3.16). The time-ordering in
Tx(xk+lt . . ., xz) guarantees in (3.15) that the group of field operators
integrated over the /|** (xi9 tt) with largest tt operates on the left on
|/ l 5 . . . , /£u t) , and those with the smallest ti on the right on \fi+1, . . >, fm}-
By using non-overlapping f{ one ensures that for almost equal tt the
Aw (fi91^ commute up to an error of 0(1^1"-^), N arbitrary, since their
test functions have centers separating in space-like directions linearly
in tt. This removes the time-ordering within these groups and (3.16)
follows from Theorem 2.1.

Uniform majorizations for /̂  (x, t) in x, t follow from the work of
RUELLE [5] and ARAKI [7] on the smooth solutions of the Klein-Gordon
equation. One obtains:

\ft(x, t)\ < CMN(l + (XO - tf)-MI\l + (X2 + <2))-^2

for xiCv(fitt),

\U{x, t)\ < Cu(l + (x0~ tf)-ui\\ + (x2 + <a))-3/*

for x £ C , (/„*).

Here Gn (f{, t) is defined as the set of points x = p t co"1, for which at least
one (p°, p) is contained in the ^-neighborhood of supp fit r\ > 0 fixed. The
constants GMN, C^ depend on rj, but not on x, t.
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One sees that ft (x, t) together with all its derivatives is, for fixed t,
strongly decreasing with the distance from its "essential support"

8n{h, t) = {x:xo = t,x£Cn(/„ t)} . (3.18)
For non-overlapping ]k+1, . . ., fi all ^ ( / ^ 1 dz^) are pairwise space-like
separated for sufficiently small r\ > 0. Then the Sv(fi, ( l ± ^ i ) 0 move
pair-wise apart in space-like direction, linearly in t for |^-| < r\. Using
this we can majorize (3.15).

Due to the symmetry of Tx(xk+1, . . ., xt) we can restrict ourselves
to the sector

tk+1^ tk+2^---tt. (3.19)

Without restriction let t= tk+1 ^ |^|. We consider a subsector fulfilling
in addition

ti-h+1^ 4{l
V_k)t (k+l^i^n-l), tn-tn+1> Hll_k)t (3.20)

with h -f 1 ^ n ^ I. We claim that for all N ^ 0 and all tk+1, . . ., ll

satisfying (3.19), (3.20) the distribution in (3.15) can be replaced by

<A, . . ., / r * \A (xk+1), . . . , A (xn) Tx(xn+1, . . ., xx)\ fl+1, . . ., /JJJ> (3.21)
up to an error of 0(^1"-^).

For, consider a permutation P £&~k with {P(k + 1), . . ., P{n)} 4=
4= {& + 1, . . ., n). The term containing A(xP(k+1)), . . ., A(xP{l)) in (3.2)
has support in GP = {xP^ — xP(^ + i) > —R, k -{- I ^ i < I — 1} for
some R = R (%) < oo. Since the time-ordering induced by Pis incompatible
with (3.19), (3.20), one can deduce from (3.17) uniformly for all (t) $
£ {(3.19), (3.20)} and {x) £ GP the estimate

\P,DX 77 /Ffe, h)\ < 0(1 + 1*1)-̂  (3.22)
i = k + l

with C = C(N, Px, Dx) < oo for all N and all polynomials Px, Dx in the
x\, djdx{. Up to an error of o{\t[~N) those terms can therefore be omitted
in {(3.19), (3.20)}.

Consider now a contribution to Tx(xk+V . . ., xz) corresponding to
a P ( S l " f c with {P(k + 1), . . ., P(n)} = {k+l, . . ., n}. Here one can
replace in (3.15) </„ . . ., /£ut \A(xPik+l)), . . ., A(xP(l))\ fl+v . . ., O by
(fv . . ., /2ut \A(xk+1), . . ., A(xn)A(xP{n+l)), . . ., A(xPil))\ fl+1,. . .,/^n>.

This introduces in the support of (g) t^(xi9 tt) for (0 £ {(3.19), (3.20)}

only an error of o(\t[~N), since rj > 0 was chosen sufficiently small,
so that the essential supports S^fj, tt), k -\- 1 ^ i ^ n, separate by a
space-like interval increasing linearly in \t\. Furthermore up to o(|£|~^)
0(%°P(n) — sp{n) — «S>(n + i) + sp{n+i)) G^ ^ replaced by 1 in the time-
ordering (3.20). By adding the regularized 0-iunctions up to 1, one
obtains (3.21).
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By the Schwarz inequality:

|/ n dxJW (zith) <A,... ,4ou t | A(xk+,),...,A(xn) Tx(xn+!,..., *,) x
£ = &+ 1

Jc+ 1

X |/,+!,...,/£> I < I / n dxJWiXiJ^AixJlh,...,}^)]] X (3.23)
i = n

h it tt) Tx(xn+1, . . ., Xl) \fl+1, ..., O\\ .
+

Due to the LSZ asymptotic condition the first factor is decreasing faster
than any power of l^"1 in the subsector {(3.19), (3.20)} for r\ > 0 suf-
ficiently small. Since the second factor is tempered in t, we obtain (3.16).

These majorizations extend to

X n (z«?-m*)exp [»

1, . . ., ±Pl)\ p I + 1 , . . ., pĵ > X
(3 24)

integrated over test functions from ^(R3(m+k ~l) xG(l~k)) with pair-
wise disjoint supports in the velocities pt- co^1. In the variables $ — a>i,
p^ (3.15) is equivalent to the fact that (3.14) integrated over non-over-
lapping tp £@ (R3m) is C°° in the variables p{ — co^ina neighborhood of
the origin (depending on y), and at the origin for non-overlapping
%p i ^{RZm). This proves Theorem 3.1.

Since (3.15) is uniformly fast decreasing in tk+1, . . ., tl9 it can be
integrated in any order over all tk+1, . . ., tx. The repeated integral can
be evaluated using the reduction formulae (3.4) and (3.9). This gives
for non-overlapping {/t} C S? (0) the well-known [2] connection with the
$-matrix:

(fv.-;f™t\L + l,-->fm)=(-iV2K)l-kf, TI dptd+ipJX

*._n h*(Pi) _n h(Pi)[_n (*?-m2)x

x ( h , . . . , / r i Tx(Pk+1,..., Pn, -Pn¥1,..., -Pl) i /,+1,..., /in>.
We collect these results in the

Theorem 3.2: For pt 4= Pj, i =4= j , the scattering amplitudes are related
to time-ordered distributions by

{Pi> • • •> Pw1 I P w + u • • •» Pw11) (3.25)

- m 2 ) (fx(Pi, . . ., pm, - p m + 1 , . . . , - ^ l
= l

0

[ n
II(pf — m2) (fx(plf . . ., pm, —pm+1, . . .,

—^w))o (depending on the regularization %) are C°° around the energy shell,
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when integrated over p l 5 . . ., p n for p^ cof1 4= p., ooy1^ ={= j). If sharp iL+-
invariant tempered time-ordered distributions (^T0(xli . . ., # n ) ) 0 can be
defined satisfying

(TQ(xv..., xn))0 = (A (xP(l)), ...,A (xPin)))Q for xP{1)) • • •> xP{n), (3.26)

then (3.25) remains valid in the same sense.
Remark: The last statement follows from an analysis of the proof of

Theorem 3.1. As expected, possible ambiguities in the definition of
(T0(xl9 . . ., xn)yo do not contribute to the energy shell relation (3.25).

In the proof of Theorem 3.1 it became apparent that for non-over-
lapping \p £ 6f(Gn)

n
F(t) = f Ildpi exp [i(p$ — <w<) tt] yj (p) x

i = 1 (3.27)

X (TX(Pl> ' • •> Pm, — Pm + V ' • '>—Pn)}o

converges rapidly whenever some of the tv . . ., tn tend independently to
i oo. This asymptotic behavior of (3.27) for large |^| can be equivalently
expressed by the singularity structure of (Tx{px, . . ., —29w))o around the
energy shell: apart from singularities of the type d(p^ — cOi) i

± — P(Pi — (^i)~x in. any subset of the variables ^S — col5 . . ., p% — con

(Tx(pl9 . . ., —£>n))o is C°° around the origin, when integrated over non-
overlapping (jp ^ 6^(RZn). This sheds some light on the results of GREEN-

BERG [17] and WIGHTMAN, who derived the LSZ asymptotic condition
from similar assumptions on the singularity structure of the VEV
(A (±p1), . . ., A (±pn))0 around p* = cot.

F(t) in (3.27) tends rapidly to zero for any tt ->—oo. Let A = <—oo, 0]n.
Then F (0) can be computed by the uniformly convergent integral:

F(0) = / Ildti-zT-lFfo, . . ., y = Hm x
A u - i J ( 3 < 2 8 )

x / IIdpi(p^ — m2-\-iei)~
1y}{p) U(p%—m2) (Tx(pv...,—£>n))o •

Since there is no division problem away from the mass shell, this gives as a
distribution identity the well-known formula [13].

(Tx(pv ..., pn)\ = lim
fii,...,ewl0 i==1

(3.29)

Theorem 3.2 and formula (3.29) for (fx(pv . . ., pm9 —pm+1, . . ., — pn)\
can be immediately generalized [see (3.11), (3.12)] to the 1-particle
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structure in the variables qi = 2J Vk around the energy shell, for any

partition Xly . . ., Xl of {1, . . ., n}.
Physically important are 2 -> n particle reactions. In this case one

can show, as in LSZ, that the scattering amplitude can be extrapolated
n + 2 _

from the energy shell by advanced distributions H (p\ — m2) (A^{—px\

—~p2, Ps, . • ., Pn+2)}o f° r non-overlapping velocities:
Theorem 3.3: For p̂  w^1 4= p5- coy1, i 4= j , one has the distribution

identity:

The off-shell extrapolation IJ(pf — m2) (A%{—p^, —p 2 , . . ., p n ) ) 0 is (7°°

in p\— cOi around the origin, when integrated over p1? . . ., pn with non-
overlapping yj g £f'(R3n).

The proof of Theorem 3.3 follows using the same argument as in
Theorem 3.1. Spectrum conditions for the 2 -> n reactions eliminate those
terms in the development of (A^x^ . . ., xn)}0 into VEV, for which no
LSZ asymptotic condition has been proved, i. e. terms of the structure
A(*) (fi, t) 0, 0 ^ ^ Q, which need not necessarily converge for t -> i oo.
Similar spectrum conditions are not valid in general. Therefore no further
information about the singularity structure of (Ax(±pv . . ., ±^n))o>
C^(±iPi> • * •' i^n))o around p% = oyi has been derived.

IV. Conclusion

The results obtained in this paper are an intermediate step in under-
standing the asymptotic structure of quantum field theory. The tools
provided by the Haag-Ruelle collision theory allow a partial justification
of the LSZ framework from more fundamental physical assumptions,
sufficient e. g. for the derivation of dispersion relations [18]. The asym-
ptotic condition as an e*^°~^-limiting procedure gives in a theory of
massive particles a meaning to the retarded prescription in the Yang-
Feldman equations and to the restriction of the amputated Green's
functions to the mass shell. Difficulties connected with the LSZ asym-
ptotic condition in canonical quantized quantum electrodynamics
[19, 20] do not appear in our case.

It remains an open question, whether the LSZ asymptotic condition
can be proved for overlapping scattering states, e. g. for |/l5 . . ., /^

x) with
{fi} C ̂ (R3), under the assumptions of the Haag-Ruelle collision theory.
In a framework of bounded local observables ARAKI [8] proved the LSZ



Connection between LSZ and Wightman Quantum Field Theory 111

asymptotic condition on all states of bounded energy. Closely connected
is the question of how to interpret the reduction formulae for overlapping
momenta. For separately non-overlapping incoming and outgoing
momenta (3.25) remains valid in the sense of a repeated restriction to the
mass shell, independent of the order of the limits. Thus the matrix
elements of the unitary $-matrix (assuming asymptotic completeness)
between a dense set of states are related to II (p% — m2) (T^p^. . ., ̂ n))o-
This complete determination of S might be sufficient for practical
purposes, where the singular configuration of particles running asym-
ptotically parallel with equal velocities are always treated as a limit.
Yet in many operations with the Green's distributions, as in the use of
the unitarity equations for the many-particle structure analysis [16],
one needs stronger tools for handling mathematically ill-defined expres-
sions.

The author gratefully acknowledges many stimulating discussions with Profes-
sors R. JOST and A. S. WIGHTMAN. It is a pleasure to thank Professor R. OPPEN-
HEIMEE for the warm hospitality at the Institute for Advanced Study.
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