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1 Introduction

Fractional differential and integral equations have recently been applied in various areas
of engineering, mathematics, physics, bio-engineering and other applied sciences [18, 29].
For some fundamental results in the theory of fractional calculus and fractional differential
equations we refer the reader to the monographs of Abbas et al. [3, 4], Kilbas et al. [22] and
Zhou [33]. Implicit differential equations have been considered by many authors [5, 9, 31].

In pharmacotherapy, instantaneous impulses cannot describe the dynamics of certain
evolution processes. For example, when one considers the hemodynamic equilibrium of a
person, the introduction of the drugs into the bloodstream and the consequential absorption
for the body are a gradual and continuous process. In [1, 2, 21, 27] the authors initially
studied some new classes of abstract impulsive differential equations with not instantaneous
impulses.

The measure of weak noncompactness was introduced by De Blasi [14]. The strong
measure of noncompactness was developed first by Banas̀ and Goebel [8] and subsequently
developed and used in many papers; see for example, Akhmerov et al. [6], Alvàrez [7],
Benchohra et al. [12], Guo et al. [17], and the references therein. In [12, 25] the authors
considered some existence results by applying the techniques of the measure of noncom-
pactness. Recently, several researchers obtained other results by application of the tech-
nique of measure of weak noncompactness; see [4, 10, 11], and the references therein.

Recently, considerable attention has been given to the existence of solutions of ini-
tial and boundary value problems for fractional differential equations with Hilfer fractional
derivative; see [15, 16, 18, 19, 20, 30, 32]. In this paper, we discuss the existence of weak
solutions for the following problem of implicit Hilfer fractional differential equation with
not instantaneous impulses


(Dα,β

sk u)(t) = f (t,u(t),Dα,β
sk u(t)); if t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t,u(t−k )); if t ∈ Jk, k = 1, . . . ,m,
(I1−γ

1 u)(t)|t=0 = φ0,

(1.1)

where I0 := [0, t1], Jk := (tk, sk], Ik := (sk, tk+1]; k = 1, . . . ,m, α ∈ (0,1), β ∈ [0,1], γ =

α+ β− αβ, φ0 ∈ E, f : Ik × E × E → E, gk : Jk × E → E are given continuous functions
such that (I1−γ

sk gk)(t,u(t−k ))|t=sk = φk ∈ E; k = 1, . . . ,m, E is a real (or complex) Banach space
with norm ‖ · ‖E and dual E∗, such that E is the dual of a weakly compactly generated Ba-
nach space X, I1−γ

sk is the left-sided mixed Riemann-Liouville integral of order 1−γ ∈ (0,1],
and Dα,β

sk is the generalized Riemann-Liouville derivative operator of order α and type β,
introduced by Hilfer in [18], 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · ≤ sm−1 < tm ≤ sm < tm+1 = T.
In this work, we give some existence results for implicit Hilfer fractional differential equa-
tions with not instantaneous impulses in Banach spaces. We initiate the application of
measure of weak noncompactness for such a class of problems.
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2 Preliminaries

Let I := [0,T ] and let C := C(I) be the Banach space of all continuous functions v from I
into E with the supremum (uniform) norm

‖v‖C := sup
t∈I
‖v(t)‖E .

Denote by

PC =
{
u : I→ E : u ∈ C(I0dd

m
k=1(tk, tk+1)), u(t−k ) = u(tk)

}
,

which is a Banach space equipped with the standard supremum norm

‖u‖∞ := sup
t∈I
‖u(t)‖E .

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. We
denote by AC1(I) the space defined by

AC1(I) := {w : I→ E :
d
dt

w(t) ∈ AC(I)}.

By Cγ(I), C1
γ(I), PCγ(I) and PC1

γ(I), we denote the weighted spaces of continuous func-
tions defined by

Cγ(I) = {w : (0,T ]→ E : t1−γw(t) ∈ C}, C1
γ(I) = {w ∈ C :

dw
dt
∈ Cγ},

PCγ(I) = {w : (0,T ]→ E : t1−γw(t) ∈ PC},

with the norm
‖w‖PCγ := sup

t∈I
‖t1−γw(t)‖E ,

and
PC1

γ(I) = {w ∈ PC :
dw
dt
∈ PCγ},

with the norm
‖w‖PC1

γ
:= ‖w‖∞+ ‖w′‖PCγ .

In the following we denote ‖w‖PCγ by ‖w‖PC , and let (E,w) = (E,σ(E,E∗)) be the Ba-
nach space E with its weak topology.

Definition 2.1. A Banach space X is called weakly compactly generated (WCG, for short)
if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2. A function h : E→ E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any
(un) in E with un→ u in (E,w) then h(un)→ h(u) in (E,w)).

Definition 2.3. [26] The function u : I → E is said to be Pettis integrable on I if and only
if there is an element uJ ∈ E corresponding to each J ⊂ I such that ϕ(uJ) =

∫
J ϕ(u(s))ds

for all ϕ ∈ E∗, where the integral on the right hand side is assumed to exist in the sense of
Lebesgue, (by definition, uJ =

∫
J u(s)ds).
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Let P(I,E) be the space of all E−valued Pettis integrable functions on I, and L1(I,E),
be the Banach space of Lebesgue measurable functions u : I→ E. Define the class P1(I,E)
by

P1(I,E) = {u ∈ P(I,E) : ϕ(u) ∈ L1(I,E); f or every ϕ ∈ E∗}.

The space P1(I,E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ T

1
|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on I.

The following result is due to Pettis (see [[26], Theorem 3.4 and Corollary 3.41]).

Proposition 2.4. [26] If u ∈ P1(I,E) and h is a measurable and essentially bounded E−valued
function, then uh ∈ P1(J,E).

Definition 2.5. The function f : I×E×E→ E is said to be weakly-Carathéodory if

(i) for a.e. v,w ∈ E, the function t→ f (t,v,w) is Pettis integrable a.e. on I,

(ii) for a.e. t ∈ I, the functions v→ f (t,v, ·) and w→ f (t, ·,w) are weakly sequentially
continuous.

For all that follows, the symbol “
∫

” denotes the Pettis integral.

Now, we give some results and properties of fractional calculus.

Definition 2.6. [3, 22, 28] The left-sided mixed Riemann-Liouville integral of order r > 0
of a function w ∈ L1(I) is defined by

(Ir
θw)(t) =

1
Γ(r)

∫ t

0
(t− s)r−1w(s)ds; f or a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞

0
tξ−1e−tdt; ξ > 0.

Notice that for all r,r1,r2 > 0 and each w ∈ C, we have Ir
0w ∈ C, and

(Ir1
0 Ir2

0 w)(t) = (Ir1+r2
0 w)(t); f or a.e. t ∈ I.

Definition 2.7. [3, 22, 28] The Riemann-Liouville fractional derivative of order r ∈ (0,1]
of a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d
dt

I1−r
0 w

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−rw(s)ds; f or a.e. t ∈ I.
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Let r ∈ (0,1], γ ∈ [0,1) and w ∈ C1−γ(I). Then the following expression leads to the left
inverse operator as follows.

(Dr
0Ir

0w)(t) = w(t); f or all t ∈ (0,T ].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proved in [28]

(Ir
0Dr

0w)(t) = w(t)−
(I1−r

0 w)(0+)
Γ(r)

tr−1; f or all t ∈ (0,T ].

Definition 2.8. [3, 22, 28] The Caputo fractional derivative of order r ∈ (0,1] of a function
w ∈ L1(I) is defined by

(cDr
0w)(t) =

(
I1−r
0

d
dt

w
)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
w(s)ds; f or a.e. t ∈ I.

In [18], R. Hilfer studied applications of a generalized fractional operator having the
Riemann-Liouville and the Caputo derivatives as specific cases (see also [19, 20, 30]).

Definition 2.9. (Hilfer derivative). Let α ∈ (0,1), β ∈ [0,1], w ∈ L1(I), I(1−α)(1−β)
0 ∈ AC1(I).

The Hilfer fractional derivative of order α and type β of w is defined as

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I(1−α)(1−β)
0 w

)
(t); f or a.e. t ∈ I. (2.1)

Properties. Let α ∈ (0,1), β ∈ [0,1], γ = α+β−αβ, and w ∈ L1(I).
1. The operator (Dα,β

0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I1−γ
0 w

)
(t) =

(
Iβ(1−α)
0 Dγ

0w
)
(t); f or a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0,1], γ ≥ α, γ > β, 1−γ < 1−β(1−α).

2. The generalization (2.1) for β = 0, coincides with the Riemann-Liouville derivative, and
for β = 1, concides with the Caputo derivative,

Dα,0
0 = Dα

0 , and Dα,1
0 = cDα

0 .

3. If Dβ(1−α)
0 w exists and belongs to L1(I), then

(Dα,β
0 Iα0 w)(t) = (Iβ(1−α)

0 Dβ(1−α)
0 w)(t); f or a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I1−β(1−α)
0 w ∈ C1

γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t); f or a.e. t ∈ I.

4. If Dγ
0w exists and belongs to L1(I), then

(Iα0 Dα,β
0 w)(t) = (Iγ0 Dγ

0w)(t) = w(t)−
I1−γ
0 (0+)

Γ(γ)
tγ−1; f or a.e. t ∈ I.
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Corollary 2.10. Let h ∈ Cγ(I). A function u ∈ L1(I,E) is said to be a solution of the problem
(Dα,β

0 u)(t) = h(t); t ∈ I := [0,T ],

(I1−γ
0 u)(t)|t=0 = φ ∈ E,

if and only if u satisfies the following Volterra integral equation

w(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).

From the above corollary and [5, Lemma 5.1], we have the following lemma.

Lemma 2.11. Let f : Ik ×E ×E→ E be such that f (·,u(·),v(·)) ∈ Cγ(Ik); k = 0, . . . ,m, and
gk(t,u) : Jk×E→ E; k = 1, . . . ,m, be continuous functions for any u ∈ PCγ(I). Then problem
(1.1) is equivalent to obtaining the solutions of the equationsu(t) =

φk
Γ(γ) t

γ−1 + (Iαsk
h)(t); if t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t,u(t−k )); if t ∈ Jk, k = 1, . . . ,m,
(2.2)

where h ∈ Cγ(Ik); k = 0, . . . ,m, such that

h(t) = f
(
t,
φk

Γ(γ)
tγ−1 + (Iαsk

h)(t),h(t)
)
; k = 0, . . . ,m.

Remark 2.12. Let h ∈ P1(I,E). For every ϕ ∈ E∗, we have

ϕ(Iα0 h)(t) = (Iα0ϕh)(t); f or a.e. t ∈ I.

Definition 2.13. [14] Let E be a Banach space, ΩE be the bounded subsets of E, and B1 be
the unit ball of E. The De Blasi measure of weak noncompactness is the map β : ΩE→ [0,∞)
defined by

β(X) = inf{ε > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ εB1 +Ω}.

The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B⇒ β(A) ≤ β(B),

(b) β(A) = 0⇔ A is weakly relatively compact,

(c) β(A∪B) = max{β(A),β(B)},

(d) β(A
ω

) = β(A), (A
ω

denotes the weak closure of A),

(e) β(A + B) ≤ β(A) +β(B),

(f) β(λA) = |λ|β(A),

(g) β(conv(A)) = β(A),
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(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn-Banach theorem.

Proposition 2.14. Let E be a normed space, and x0 ∈ E with x0 , 0. Then, there exists
ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : I→ E let us denote by

V(t) = {v(t) : v ∈ V}; t ∈ I,

and
V(I) = {v(t) : v ∈ V, t ∈ I}.

Lemma 2.15. [17] Let H ⊂ C be a bounded and equicontinuous subset. Then the function
t→ β(H(t)) is continuous on I, and

βC(H) = max
t∈I

β(H(t)),

and

β

(∫
I
u(s)ds

)
≤

∫
I
β(H(s))ds,

where H(s) = {u(s) : u ∈ H}, s ∈ I, and βC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C.

For our purpose we will need the following fixed point theorem:

Theorem 2.16. [24] Let Q be a nonempty, closed, convex and equicontinuous subset of a
metrizable locally convex vector space C such that 0 ∈ Q. Suppose T : Q→ Q is weakly-
sequentially continuous. If the implication

V = conv({0}∪T (V))⇒ V is relatively weakly compact, (2.3)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence of Weak Solutions

Let us start by defining what we mean by a weak solution of the problem (1.1).

Definition 3.1. By a weak solution of the problem (1.1) we mean a measurable func-
tion u ∈ PCγ that satisfies the condition (I1−γ

0 u)(t)|t=0 = φ0, and the equations (Dα,β
sk u)(t) =

f (t,u(t), (Dα,β
sk u)(t)) on Ik; k = 0, . . . ,m, and u(t) = gk(t,u(t−k )) on Jk; k = 1, . . . ,m.

The following hypotheses will be used in the sequel.

(H1) The function f : Ik ×E×E→ E; k = 0, . . . ,m, is weakly-Carathéodory.
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(H2) There exists pk ∈ C(Ik, [0,∞)); k = 0, . . . ,m, such that for all ϕ ∈ E∗, we have

|ϕ( f (t,u,v)| ≤
pk(t)‖ϕ‖

1 + ‖ϕ‖+ ‖u‖E + ‖v‖E
; f or a.e. t ∈ Ik, and each u,v ∈ E,

and for each bounded and measurable set B ⊂ E, we have

β( f (t,B,Dα,β
sk B)) ≤ t1−γpk(t)β(B); f or each t ∈ Ik; k = 0, . . . ,m,

where Dα,β
sk B = {Dα,β

sk w : w ∈ B},

(H3) There exists qk ∈ C(Jk, [0,∞)); k = 1, . . . ,m, such that for all ϕ ∈ E∗, we have

|ϕ(gk(t,ut−k
))| ≤

qk(t)‖ϕ‖
1 + ‖ϕ‖

; f or a.e. t ∈ Jk; k = 1, . . . ,m.

Set
p∗ = max

k=0,...,m
sup
t∈Ik

pk(t), q∗ = max
k=1,...,m

sup
t∈Jk

qk(t).

Theorem 3.2. Assume that the hypotheses (H1)− (H3) hold. If

L :=
p∗T 1−γ+α

Γ(1 +α)
< 1, (3.1)

then the problem (1.1) has at least one weak solution defined on I.

Proof. Transform the problem (1.1) into a fixed point equation. Consider the operator
N : PCγ→PCγ defined by:(Nu)(t) =

φk
Γ(γ) t

γ−1 +
∫ t

sk
(t− s)α−1 h(s)

Γ(α) ds; if t ∈ Ik, k = 0, . . . ,m,

(Nu)(t) = gk(t,u(t−k )); if t ∈ Jk, k = 1, . . . ,m,
(3.2)

where h ∈ Cγ(Ik,E); k = 0, . . . ,m, with

h(t) = f
(
t,
φk

Γ(γ)
tγ−1 + (Iαsk

h)(t),h(t)
)
.

First notice that, the hypotheses imply that s 7→ (t− s)α−1 h(s)
s , for all t ∈ Ik, is Pettis inte-

grable, and for each u ∈ PCγ, the function

t 7→ f
(
t,
φk

Γ(γ)
tγ−1 +

∫ t

sk

(t− s)α−1 h(s)
Γ(α)

ds,h(t)
)

is Pettis integrable over Ik. Thus, the operator N is well defined.
Let R > 0 be such that

R ≥max
{

p∗T 1−γ+α

Γ(1 +α)
,q∗T 1−γ

}
,
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and consider the set

Q =
{
u ∈ PCγ : ‖u‖PC ≤ R and ‖t1−γ

2 u(t2)− t1−γ
1 u(t1)‖E ≤

p∗

Γ(1 +α)
T 1−γ|t2− t1|α +

p∗

Γ(α)

∫ t1

1
|t1−γ

2 (t2− s)α−1− t1−γ
1 (t1− s)α−1|ds,

and ‖t1−γ
2 u(t2)− t1−γ

1 u(t1)‖E ≤

‖t1−γ
2 gk(t2,u(t−k ))− t1−γ

1 gk(t1,u(t−k ))‖E on Jk, k = 1, . . . ,m
}
.

Clearly, the subset Q is closed, convex end equicontinuous. We shall show that the opera-
tor N satisfies all the assumptions of Theorem 2.16. The proof will be given in several steps.

Step 1. N maps Q into itself.
Let u ∈Q, t ∈ I and assume that (Nu)(t), 0. Then there exists ϕ ∈ E∗ such that ‖t1−γ(Nu)(t)‖E
= ϕ(|t1−γ(Nu)(t)). Thus, for each t ∈ Ik, k = 0, . . . ,m, we have

‖t1−γ(Nu)(t)‖E = ϕ

(
φk

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

)
,

where h ∈ Cγ(Ik), k = 0, . . . ,m, with

h(t) = f
(
t,
φk

Γ(γ)
tγ−1 + (Iα0 h)(t),h(t)

)
.

Then

‖t1−γ(Nu)(t)‖E ≤
t1−γ

Γ(α)

∫ t

0
(t− s)α−1|ϕ(h(s))|ds

≤
p∗T 1−γ

Γ(α)

∫ t

0
(t− s)α−1ds

≤
p∗T 1−γ+α

Γ(1 +α)
≤ R.

Also, for each t ∈ Jk, k = 1, . . . ,m, it is clear that

‖t1−γ(Nu)(t)‖E ≤ q∗T 1−γ ≤ R.

Hence,
‖N(u)‖PC ≤ R.

Next, let t1, t2 ∈ Ik, k = 0, . . . ,m, be such that t1 < t2 and let u ∈ Q, with

(ln t2)1−r(Nu)(t2)− (ln t1)1−r(Nu)(t1) , 0.

Then there exists ϕ ∈ E∗ such that

‖t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)‖E = ϕ(t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)),
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and ‖ϕ‖ = 1. Then

‖t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)‖E = ϕ(t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)),

≤ ϕ

(
t1−γ
2

∫ t2

0
(t2− s)α−1 h(s)

Γ(α)
ds− t1−γ

1

∫ t1

0
(t1−)α−1 h(s)

Γ(α)
ds

)
,

where h ∈ Cγ(Ik) with

h(t) = f
(
t,
φk

Γ(γ)
tγ−1 + (Iα0 h)(t),h(t)

)
.

Then

‖t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)‖E ≤ t1−γ
2

∫ t2

t1
|t2− s|α−1 |ϕ(h(s))|

Γ(α)
ds

+

∫ t1

1
|t1−γ

2 (t2− s)α−1− t1−γ
1 (t1− s)α−1|

|ϕ(h(s))|
Γ(α)

ds

≤ t1−γ
2

∫ t2

t1
|t2− s|α−1 p(s)

Γ(α)
ds

+

∫ t1

1
|t1−γ

2 (t2− s)α−1− t1−γ
1 (t1− s)α−1|

p(s)
Γ(α)

ds.

Thus, we get

‖t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)‖E ≤
p∗

Γ(1 +α)
T 1−γ|t2− t1|α

+
p∗

Γ(α)

∫ t1

1
|t1−γ

2 (t2− s)α−1− t1−γ
1 (t1− s)α−1|ds.

Also, for t1, t2 ∈ Jk, k = 1, . . . ,m, such that t1 < t2, let u ∈ Q, with

t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1) , 0,

then there exists ϕ ∈ E∗ such that

‖t1−γ
2 (Nu)(t2)− t1−γ

1 (Nu)(t1)‖E ≤ ‖t
1−γ
2 gk(t2,u(t−k ))− t1−γ

1 gk(t1,u(t−k ))‖E .

Hence N(Q) ⊂ Q.
Step 2. N is weakly-sequentially continuous.

Let (un) be a sequence in Q and let (un(t))→ u(t) in (E,ω) for each t ∈ I. Fix t ∈ I, since f
satisfies the assumption (H1), we have f (t,un(t),Dα,β

sk un(t)) converges weakly uniformly to
f (t,u(t),Dα,β

sk u(t)) on Ik, k = 0, . . . ,m. Hence the Lebesgue dominated convergence theorem
for Pettis integrals implies (Nun)(t) converges weakly uniformly to (Nu)(t) in (E,ω), for
each t ∈ I. Thus, N(un)→ N(u). Hence, N : Q→ Q is weakly-sequentially continuous.

Step 3. The implication (2.3) holds.
Let V be a subset of Q such that V = conv(N(V)∪{0}). Obviously

V(t) ⊂ conv(NV)(t))∪{0}), t ∈ I.

Further, as V is bounded and equicontinuous, by [13, Lemma 3], the function t→ v(t) =

β(V(t)) is continuous on I. From (H2), Lemma 2.15 and the properties of the measure β, for
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any t ∈ Ik; k = 0, . . . ,m, we have

t1−γv(t) ≤ β(t1−γ(NV)(t)∪{0})

≤ β(t1−γ(NV)(t))

≤
T 1−γ

Γ(α)

∫ t

0
|t− s|α−1 p(s)β(V(s))ds

≤
T 1−γ

Γ(α)

∫ t

0
|t− s|α−1s1−γp(s)v(s)ds

≤
p∗T 1−γ+α

Γ(1 +α)
‖v‖PC .

Thus
‖v‖PC ≤ L‖v‖PC .

From (3.1), we get ‖v‖PC = 0, that is v(t) = β(V(t)) = 0, for each t ∈ I, and then by [23,
Theorem 2], V is weakly relatively compact in PCγ. Applying now Theorem 2.16, we
conclude that N has a fixed point which is a solution of the problem (1.1). �

4 An Example

Let

E = l1 =

u = (u1,u2, . . . ,un, . . .),
∞∑

n=1

|un| <∞


be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.

As an application of our results we consider the following problem of implicit Hilfer frac-
tional differential equation of the form

(D
1
2 ,

1
2

0 un)(t) = fn(t,u(t), (D
1
2 ,

1
2

0 u)(t)), t ∈ [0,1],
u(t) = g(t,e−), t ∈ (1,2],

(D
1
2 ,

1
2

2 un)(t) = fn(t,u(t), (D
1
2 ,

1
2

2 u)(t)), t ∈ (2,3],

(I
1
4
0 u)(t)|t=0 = 0,

(4.1)

where

fn(t,u(t), (D
1
2 ,

1
2

k u)(t)) =
ct2(e−7 + e−t−5)

1 + ‖u‖E + ‖D
1
2 ,

1
2

k u‖E
un(t), t ∈ [0,1]∪ (2,3], k ∈ {0,2},

g(t,e−) =
e−2t

1 + e
, t ∈ (1,2],
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with

u = (u1,u2, . . . ,un, . . .), and c :=
e5

4×3
13
4

Γ

(
1
2

)
.

Set f = ( f1, f2, . . . , fn, . . .). Clearly, the function f is continuous. For each u ∈ E and
t ∈ [0,1]∪ (2,3], we have

‖ f (t,u(t), (D
1
2 ,

1
2

k )(t))‖E ≤ ct2
(
e−7 +

1
et+5

)
, k ∈ {0,2}.

Hence, the hypothesis (H2) is satisfied with p∗ = 18ce−5.

We shall show that condition (3.1) holds with T = 3. Indeed,

p∗T
5
4

Γ( 3
2 )

=
36c3

5
4 e−5

Γ( 1
2 )

=
1
2
< 1.

Simple computations show that all conditions of Theorem 3.2 are satisfied. It follows
that the problem (4.1) has at least one solution on [0,3].
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