C ommmications in $\mathbf{M a t i t e m a n t a c e l} \mathbf{A}_{\text {nalysis }}$

Volume 20, Number 2, pp. 1-7 (2017)

Norm Estimates for Powers of Products of Operators in a Banach Space

Michael Gil**
Department of Mathematics
Ben Gurion University of the Negev
P.0. Box 653, Beer-Sheva 84105, Israel
(Communicated by Simeon Reich)

Abstract

Let A and B be bounded linear operators in a Banach space. We consider the following problem: if $\sum_{k=0}^{\infty}\left\|A^{k}\right\|\| \| B^{k} \|<\infty$, under what conditions $\sum_{k=0}^{\infty}\left\|(A B)^{k}\right\|<\infty$?

AMS Subject Classification: 47A10, 47B10, 15A42
Keywords: Banach space, powers of linear operators, norm estimates

1 Introduction and statement of the main result

Let \mathcal{X} be a Banach space with a norm $\|$.$\| and \mathcal{B}(\mathcal{X})$ the algebra of bounded linear operators in $\mathcal{X} .\|A\|, \sigma(A)$ and $r_{s}(A)$ denote the operator norm, spectrum and spectral radius of $A \in \mathcal{B}(X)$, respectively.

We consider the following problem: let $A, B \in \mathcal{B}(\mathcal{X})$ and $\sum_{k=0}^{\infty}\left\|A^{k}\right\|\left\|B^{k}\right\|<\infty$. What conditions provide the inequality $\sum_{k=0}^{\infty}\left\|(A B)^{k}\right\|<\infty$?

The theory of powers of bounded operators is a significant part of the operator theory, cf. $[1,2,8,10]$, and references given therein. In particular, below we derive conditions that provide the power boundedness of $A B$. The power bounded operators have remarkable spectral properties and attract the attention of many mathematicians, cf. [3, 4, 5, 9, 11].

To the best of our knowledge the above stated problem was not considered in the available literature. Put

$$
\zeta_{m}:=\sum_{k=0}^{m-1}\left\|A^{k}\right\|\left\|B^{k}\right\|(m>1) \text { and } K=A B-B A .
$$

Now we are in a position to formulate our main result.

[^0]Theorem 1.1. Let $A, B \in \mathcal{B}(\mathcal{X})$ and for some integer $m \geq 2$ the condition

$$
\begin{equation*}
\zeta_{m-1}\left(\zeta_{m}-1\right)\|K\|<1 \tag{1.1}
\end{equation*}
$$

hold. Then

$$
\begin{gathered}
\max _{k=0, \ldots, m}\left\|(A B)^{k}\right\| \leq \frac{\max _{k=0, \ldots, m}\left\|A^{k} B^{k}\right\|}{1-\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right)} \text { and } \\
\max _{k=2, \ldots, m}\left\|(A B)^{k}-A^{k} B^{k}\right\| \leq \frac{\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right) \max _{k=0, \ldots, m}\left\|A^{k} B^{k}\right\|}{1-\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right)} .
\end{gathered}
$$

In addition,

$$
\sum_{k=0}^{m}\left\|(A B)^{k}\right\| \leq \frac{\zeta_{m+1}}{1-\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right)} \text { and } \sum_{k=0}^{m}\left\|(A B)^{k}-A^{k} B^{k}\right\| \leq \frac{\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right) \zeta_{m+1}}{1-\|K\| \zeta_{m-1}\left(\zeta_{m}-1\right)}
$$

The proof of this theorem is presented in the next section. The theorem is sharp: if $K=0$, then $(A B)^{k}=A^{k} B^{k}$ for all $k \geq 0$.

Let

$$
\zeta_{\infty}:=\sum_{k=0}^{\infty}\left\|A^{k}\right\|\left\|B^{k}\right\|<\infty
$$

and

$$
\begin{equation*}
\zeta_{\infty}\left(\zeta_{\infty}-1\right)\|K\|<1 . \tag{1.2}
\end{equation*}
$$

Then due to Theorem 1.1 we have

$$
\begin{gather*}
\max _{k=0,1, \ldots}\left\|(A B)^{k}\right\| \leq \frac{\max _{k=0,1, \ldots,}\left\|A^{k} B^{k}\right\|}{1-\|K\| \zeta_{\infty}\left(\zeta_{\infty}-1\right)}, \\
\max _{k=0,1, \ldots}\left\|(A B)^{k}-A^{k} B^{k}\right\| \leq \frac{\|K\|\left(\zeta_{\infty}-1\right) \zeta_{\infty}}{1-\|K\| \zeta_{\infty}\left(\zeta_{\infty}-1\right)} \max _{k=0,1, \ldots}\left\|A^{k} B^{k}\right\|, \\
\sum_{k=0}^{\infty}\left\|(A B)^{k}\right\| \leq \frac{\zeta_{\infty}}{1-\|K\| \zeta_{\infty}\left(\zeta_{\infty}-1\right)} \text { and } \sum_{k=0}^{\infty}\left\|(A B)^{k}-A^{k} B^{k}\right\| \leq \frac{\|K\|\left(\zeta_{\infty}-1\right) \zeta_{\infty}^{2}}{1-\|K\| \zeta_{\infty}\left(\zeta_{\infty}-1\right)} . \tag{1.3}
\end{gather*}
$$

Corollary 1.2. Let condition (1.2) hold. Then $r_{s}(A B)<1$ and therefore the difference equation

$$
x_{k+1}=A B x_{k}(k=1,2, \ldots)
$$

is exponentially stable, i.e. $\left\|x_{k}\right\| \leq$ const $\rho^{k}(0<\rho<1)$ for any its solution $x_{k}(k=1,2, \ldots)$.
Indeed, from (1.3) it follows that $\left\|(A B)^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$, provided condition (1.2) holds. Hence due to the spectral mapping theorem $r_{s}^{k}(A B) \leq\left\|(A B)^{k}\right\| \rightarrow 0$. So really $r_{s}(A B)<1$.

Furthermore, from the well-known representation

$$
A^{k}=\frac{1}{2 \pi i} \int_{|z|=r_{A}} z^{k}(z I-A)^{-1} d z(k=1,2, \ldots),
$$

for any $r_{A}>r_{s}(A)$ it follows that $\left\|A^{k}\right\| \leq c_{A} r_{A}^{k}\left(c_{A}=\right.$ const $\left.\geq 1\right)$. Similarly, $\left\|B^{k}\right\| \leq c_{B} r_{B}^{k}\left(r_{B}>\right.$ $r_{s}(B) ; c_{B}=$ const $\left.\geq 1\right)$. Assuming that $r_{s}(A) r_{s}(B)<1$ we can take $r_{A} r_{B}<1$. Besides,

$$
\zeta_{\infty} \leq c_{A} c_{B} \sum_{k=0}^{\infty}\left(r_{A} r_{B}\right)^{k}=\frac{c_{A} c_{B}}{1-r_{B} r_{A}}
$$

So, if

$$
\begin{equation*}
\frac{\|K\| c_{A} c_{B}}{\left(1-r_{B} r_{A}\right)^{2}}\left(c_{A} c_{B}-1+r_{A}\right)<1, \tag{1.4}
\end{equation*}
$$

then $r_{s}(A B)<1$ due to Corollary 1.2.

2 Proof of Theorem 1.1

Put $X_{m}=(A B)^{m}$ and $Y_{m}=A^{m} B^{m}$ for $m=1,2, \ldots, X_{0}=Y_{0}=I$, and

$$
J_{m}=\sum_{j=1}^{m-1} \sum_{k=0}^{j-1}\left\|A^{k}\right\|\left\|\left|A^{j-k}\| \|\right| B^{j}\right\|(m=2,3, \ldots) .
$$

Lemma 2.1. If

$$
\begin{equation*}
\|K\| J_{m}<1 \tag{2.1}
\end{equation*}
$$

for some integer $m \geq 2$, then

$$
\max _{0 \leq k \leq m}\left\|X_{k}\right\| \leq \frac{\max _{0 \leq k \leq m}\left\|Y_{k}\right\|}{1-\|K\| J_{m}}
$$

and

$$
\max _{0 \leq k \leq m}\left\|X_{k}-Y_{k}\right\| \leq \frac{\max _{k \leq m}\left\|Y_{k}\right\|\|K\| J_{m}}{1-\|K\| J_{m}}
$$

Proof. We have

$$
\begin{equation*}
X_{m+1}=A B X_{m} \quad(m=0,1, \ldots) \tag{2.2}
\end{equation*}
$$

and

$$
Y_{m+1}=A^{m+1} B^{m+1}=A A^{m} B B^{m}=A B A^{m} B^{m}+A\left[A^{m}, B\right] B^{m},
$$

where $\left[A^{m}, B\right]=A^{m} B-B A^{m}$. Hence,

$$
\begin{equation*}
Y_{m+1}=A B Y_{m}+F_{m}(m=0,1, \ldots), \tag{2.3}
\end{equation*}
$$

with

$$
F_{m}=A\left[A^{m}, B\right] B^{m}(m \geq 1), F_{0}=0 .
$$

Subtracting (2.2) from (2.3), we get

$$
Y_{m+1}-X_{m+1}=A B\left(Y_{m}-X_{m}\right)+F_{m}(m=2,3, \ldots)
$$

with $Y_{1}-X_{1}=0$. By induction we can write

$$
\begin{equation*}
Y_{m}-X_{m}=\sum_{j=1}^{m-1}(A B)^{m-j-1} F_{j}=\sum_{j=1}^{m-1} X_{m-j-1} F_{j}(m \geq 2) \tag{2.4}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\left\|X_{m}-Y_{m}\right\| \leq \sum_{j=1}^{m-1}\left\|X_{m-1-j}\right\|\left\|F_{j}\right\| \quad(m \geq 2) . \tag{2.5}
\end{equation*}
$$

As is checked in [7, formula (2.4)],

$$
\begin{equation*}
\left[A^{j}, B\right]:=A^{j} B-B A^{j}=\sum_{k=0}^{j-1} A^{j-k-1}[A, B] A^{k}(j=1,2, \ldots) . \tag{2.6}
\end{equation*}
$$

Consequently,

$$
F_{j}=\sum_{k=0}^{j-1} A^{j-k} K A^{k} B^{j}, j \geq 1,
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m-1}\left\|F_{j}\right\| \leq\|K\| J_{m} \tag{2.7}
\end{equation*}
$$

Put

$$
x_{v}:=\max _{0 \leq m \leq v}\left\|X_{m}\right\|, y_{v}:=\max _{0 \leq m \leq v}\left\|Y_{m}\right\| .
$$

Since $X_{0}=Y_{0}=I, X_{1}=Y_{1}=A B$, due to (2.5) and (2.7),

$$
\begin{equation*}
\max _{0 \leq m \leq v}\left\|X_{m}-Y_{m}\right\|=\max _{2 \leq m \leq v}\left\|X_{m}-Y_{m}\right\| \leq x_{v}\|K\| J_{v} \quad(v=2,3, \ldots), \tag{2.8}
\end{equation*}
$$

Consequently, $x_{v} \leq y_{v}+\|K\| x_{v} J_{v}(v=2,3, \ldots)$. According to (2.1)

$$
x_{v} \leq \frac{y_{v}}{1-\|K\| J_{v}} .
$$

Hence, by (2.8) we finish the proof.

Lemma 2.2. If condition (2.1) holds for some $m \geq 2$, then

$$
\begin{equation*}
\sum_{k=0}^{m}\left\|X_{k}\right\| \leq \frac{1}{1-\|K\| J_{m}} \sum_{k=0}^{m}\left\|Y_{k}\right\| \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{m}\left\|X_{k}-Y_{k}\right\| \leq \frac{\|K\| J_{m}}{1-\|K\| J_{m}} \sum_{k=1}^{m}\left\|Y_{k}\right\| . \tag{2.9}
\end{equation*}
$$

Proof. Since $X_{1}=Y_{1}$ and $X_{0}=Y_{0}$, from (2.5) we have

$$
\begin{gathered}
\sum_{m=2}^{v}\left\|X_{m}-Y_{m}\right\| \leq \sum_{m=2}^{v} \sum_{j=1}^{m-1}\left\|X_{m-1-j}\right\|\left\|F_{j}\right\|=\sum_{m=2}^{v} \sum_{i=2}^{m}\left\|X_{m-i}\right\|\left\|F_{i-1}\right\|= \\
\sum_{i=2}^{v} \sum_{m=i}^{v}\left\|X_{m-i}\right\|\left\|F_{i-1}\right\|=\sum_{i=2}^{v}\left\|F_{i-1}\right\| \sum_{k=0}^{v-i}\left\|X_{k}\right\| \leq \sum_{t=1}^{v-1}\left\|F_{t}\right\| \sum_{k=0}^{v}\left\|X_{k}\right\|(v \geq 2)
\end{gathered}
$$

Hence, due to (2.7)

$$
\sum_{m=0}^{v}\left\|X_{m}-Y_{m}\right\| \leq J_{v}\|K\| \sum_{k=0}^{v}\left\|X_{k}\right\|
$$

Thus,

$$
\sum_{m=0}^{v}\left\|X_{m}\right\| \leq \sum_{m=0}^{v}\left\|Y_{m}\right\|+J_{v}\|K\| \sum_{m=0}^{v}\left\|X_{m}\right\|
$$

Now (2.1) implies

$$
\sum_{m=0}^{v}\left\|X_{m}\right\| \leq \frac{1}{1-J_{v}\|K\|} \sum_{m=0}^{v}\left\|Y_{m}\right\|
$$

and

$$
\sum_{m=0}^{v}\left\|X_{m}-Y_{m}\right\| \leq \frac{J_{v}\|K\|}{1-J_{v}\|K\|} \sum_{m=0}^{v}\left\|Y_{m}\right\|
$$

as claimed.

Furthermore,

$$
\begin{gathered}
J_{m}=\sum_{j=1}^{m-1} \sum_{k=0}^{j-1}\left\|A^{k}\right\|\left\|A^{j-k}\left|\left\|\left|B^{j}\left\|=\sum_{t=0}^{m-2} \sum_{k=0}^{t}\right\| A^{k}\right|\right\|\right| A^{t+1-k}\right\|\left\|B^{t+1}\right\|= \\
\sum_{k=0}^{m-2}\left\|A^{k}\right\| \sum_{t=k}^{m-2}\left\|A^{t+1-k}\right\|\left\|B^{t+1}\right\|=\sum_{k=0}^{m-2}\left\|A^{k}\right\| \sum_{s=0}^{m-2-k}\left\|A^{s+1}\right\|\left\|B^{s+k+1}\right\| \\
\leq \sum_{k=0}^{m-2}\left\|A^{k}\right\|\| \| B^{k}\left\|\sum_{s=0}^{m-2}\right\| A^{s+1}\| \| \mid B^{s+1} \| .
\end{gathered}
$$

Thus $J_{m} \leq \zeta_{m-1}\left(\zeta_{m}-1\right)$. Now the assertion of Theorem 1.1 follows from Lemmas 2.1 and 2.2 , and the obvious inequality

$$
\sum_{k=0}^{m}\left\|Y_{k}\right\| \leq \zeta_{m+1}
$$

\square

3 Particular cases

3.1 Operators in a Euclidean space

In this subsection A and B are $n \times n$-matrices. Introduce the quantity (the departure from normality of A)

$$
g(A)=\left[N_{2}^{2}(A)-\sum_{k=1}^{n}\left|\lambda_{k}(A)\right|^{2}\right]^{1 / 2},
$$

where $\lambda_{k}(A)(k=1, \ldots, n)$ are the eigenvalues of A taking with their multiplicities, and $N_{2}(A)=\left(\operatorname{trace}\left(A A^{*}\right)\right)^{1 / 2}$ is the Hilbert-Schmidt (Frobenius) norm of A. The following relations are checked in [6, Section 2.1]:

$$
g^{2}(A) \leq N_{2}^{2}(A)-\mid \text { trace }\left(A^{2}\right) \mid \text { and } g^{2}(A) \leq \frac{N_{2}^{2}\left(A-A^{*}\right)}{2} .
$$

If A is a normal matrix: $A A^{*}=A^{*} A$, then $g(A)=0$. By Corollary 2.7.2 from [6] we have

$$
\left\|A^{m}\right\| \leq \sum_{k=0}^{n-1} \frac{m!g^{k}(A) r_{s}^{m-k}(A)}{(m-k)!(k!)^{3 / 2}}(m=1,2, \ldots) .
$$

Note that $1 /(k!)=0$ if $k<0$. Thus $\zeta_{\infty} \leq \hat{\zeta}_{\infty, n}$, where

$$
\hat{\zeta}_{\infty, n}:=\sum_{m=0}^{\infty} \sum_{j, k=0}^{n-1} \frac{g^{j}(A) g^{k}(B)(m!)^{2} r_{s}^{m-j}(A) r_{s}^{m-k}(B)}{(j!k!)^{3 / 2}(m-j)!(m-k)!} .
$$

Now we can directly apply Corollary 1.2 , provided $\hat{\zeta}_{\infty, n}\left(\hat{\zeta}_{\infty, n}-1\right)\|K\|<1$. If A is normal, then

$$
\hat{\zeta}_{\infty, n}:=\sum_{m=0}^{\infty} \sum_{k=0}^{n-1} \frac{g^{k}(B) m!r_{s}^{m}(A) r_{s}^{m-k}(B)}{(k!)^{3 / 2}(m-k)!}
$$

If both A and B are normal, then

$$
\hat{\zeta}_{\infty, n}=\sum_{m=0}^{\infty} r_{s}^{m}(A) r_{s}^{m}(B)=\frac{1}{1-r_{s}(A) r_{s}(B)}
$$

3.2 Operators in a Hilbert space

In this subsection, \mathcal{X} is a Hilbert space, $A, B \in \mathcal{B}(\mathcal{X})$ and, in addition, $\mathfrak{J} A=\left(A-A^{*}\right) / 2 i, \mathfrak{J} B$ are Hilbert-Schmidt operators, i.e. $N_{2}(\mathfrak{J} A)=\left(\operatorname{trace}(\mathfrak{J} A)^{2}\right)^{1 / 2}<\infty, N_{2}(\mathfrak{J} B)<\infty$. As is shown in [6, Example 7.15.5],

$$
\left\|A^{m}\right\| \leq \sum_{k=0}^{m} \frac{m!u^{k}(A) r_{s}^{m-k}(A)}{(m-k)!(k!)^{3 / 2}}(m=1,2, \ldots),
$$

where $u(A)=\sqrt{2} N_{2}(\mathfrak{J} A)$. Thus $\zeta_{\infty} \leq \hat{\zeta}$, where

$$
\hat{\zeta}:=\sum_{m=0}^{\infty} \sum_{j, k=0}^{m} \frac{(m!)^{2} u^{j}(A) r_{s}^{m-j}(A) u^{k}(B) r_{s}^{m-k}(B)}{(k!j!)^{3 / 2}(m-k)!(m-j)!} .
$$

Now we can directly apply Corollary 1.2 , provided $\hat{\zeta}(\hat{\zeta}-1)\|K\|<1$. If A is selfadjoint, then

$$
\hat{\zeta}=\sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{m!r_{s}^{m}(A) u^{k}(B) r_{s}^{m-k}(B)}{(k!)^{3 / 2}(m-k)!}
$$

If both A and B are selfadjoint, then $\hat{\zeta}=1 /\left(1-r_{s}(A) r_{s}(B)\right)$.

I am very grateful to the referee of this paper for his (her) really helpful remarks

References

[1] A. Atzmon, Power regular operators, Transactions of AMS, 347, no. 8, (1995), pp 3101-3109.
[2] Aymen Ettaieb, Hammam Sousse and Habib Ouerdiane, Higher powers of analytical operators and associated *-Lie algebras, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 19, no. 2 (2016), article 1650013 (20 pages).
[3] A.G. Baskakov, Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on a Banach space. Mat. Zametki 97 (2015), no. 2, pp 174-190 (Russian); translation in Math. Notes 97 (2015), no. 1-2, pp 164-178.
[4] C. Cuny, Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in Lp. Colloq. Math. 124 (2011), no. 1, pp 61-77.
[5] M.F. Gamal', A class of power bounded operators which are similar to contractions Acta Sci. Math. (Szeged) 80 (2014), pp 625-637.
[6] M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.
[7] M.I. Gil, A bound for the Hilbert-Schmidt norm of generalized commutators of nonself-adjoint operators, Operators and Matrices, 11, no. 1 (2017), pp 115-123.
[8] K. Hedayatian and S. Yarmahmoodi, Power regularity of isometric N-Jordan operators. Honam Math. J. 38 (2016), no. 2, pp 317-323.
[9] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (3), (1986), pp 313-328.
[10] Masoumeh Faghih-Ahmadi, Powers of A-m-isometric operators and their supercyclicity, Bull. Malays. Math. Sci. Soc. 39 (2016) pp 901-911.
[11] A. Ulger, and O. Yavuz, A Fredholm alternative-like result on power bounded operators. Turkish J. Math. 35 (2011), no. 3, pp 473-478.

[^0]: *E-mail address: gilmi@bezeqint.net

