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Abstract

Via a variational approach involving Concentration-Compactness principle, we show
the existence of x-periodic travelling wave solutions for a general 2D-Boussinesq sys-
tem that arises in the study of the evolution of long water waves with small amplitude
in the presence of surface tension. We also establish that x-periodic travelling waves
have almost the same shape of solitons as the period tends to infinity, by showing that
a special sequence of x-periodic travelling wave solutions parameterized by the period
converges to a solitary wave in a appropriate sense.
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1 Introduction

In this paper we study the existence of non trivial x-periodic travelling waves for the two
dimensional abc-Boussinesq system related with the water wave problem
(I = buA)YD, + (I - apAn + -5 (@5 + @) =0,
(1.1)
(I = buAyn, + (I = cpuA)AD + €V - (n (0L, @} )) = 0,
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where 2b—a—c= % —o,witha,b,c>0and p= I;—; with py, p» integers such that ged(p1,p2) =
1 and p; odd. In the case p = 1, € stands for the ratio of typical wave amplitude to fluid depth
(amplitude parameter or nonlinearity coefficient), /u = ho/L represents the ratio of undis-
turbed fluid depth to typical wave length (long-wave parameter or dispersion coefficient)
and o is associated with the surface tension (Bond number), ® is the rescaled nondimen-
sional velocity potential on the bottom z = 0, and 7 is the rescaled free surface elevation.
Fora=o,c= % b= % and p =1 the 2D Boussinesq system was obtained by J. Quintero and
A. Montes in [12] to describe the propagation of long water waves with small amplitude in
the presence of surface tension (see also [6]).

We will establish the existence of x-periodic travelling wave solutions of period k > 0 for
the system (1.1) with fixed positive values of p, €,u,a,b,c and wave speed w small enough.
Moreover, as in some water wave models (see for example [8], [10]), we show that a special
sequence of x-periodic travelling waves is uniformly bounded and converges to a solitary
wave (travelling wave in the energy space) in an appropriate norm, indicating that the shape
of x-periodic travelling waves and the solitary waves are almost the same, as the period k is
big enough.

Following the same variational approach as J. Quintero and A. Montes in [12], it is
possible to show the existence of solitons (travelling wave solutions of finite energy) for the
abc-Boussinesq system (1.1) in the energy space X = H! XV, where V is defined by the

norm ||®|ly = |[VO||4:. We see that the abc-Boussinesq system (1.1) can be written in the

Hamiltonian form
M\ _ a7 _ 0 (I-bun)™
(cp,) =BH (@)’ 5= ((1 —buA)™! 0 ‘

where the Hamiltonian is given by

n _l 2,2 2 2 € p+1 p+1
w(q))_ > j]; 2(|Vc1>| +1° + cul ADP + au|Vn| +_p+1"(®x +@)*))dxdy,

Note that the functional H is well defined when (, V®) € H I H', where H!' = H'(R?) is
the usual Sobolev space.
In this paper we show the existence of travelling waves in the space

X =H11 X Vi,

where H ,1 =H ,i (R?) is the usual Sobolev space of order 1 of x-periodic functions of period
k and Vi is defined by the norm ||®||, = ”Vq)HH/l' In order to have the result, we follows a
variational approach by characterizing travelling waves as a minimizer of a functional under
a suitable constrain. Using an appropriated local compact embedding from the space H, 11 X
Vy to a special LY(R?) type space and the Lions’s Concentration-Compactness Theorem,
we prove that any minimizing sequence converges strongly, after an appropriate translation,
to a minimizer.

J. Quintero in the case of the Benney-Luke equation for wave speed small enough (see
[10]) and A. Pankov and K. Pfliiger in the case of the Kadomtsev-Petviashvili equation
(see [8]) proved the existence of nontrivial x-periodic travelling waves of period k that are
uniformly bounded in k and bounded away from zero with respect to an appropriate norm.
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They also included the limit behavior of such periodic solutions as k — co. As done for some
1D models (see [2], [1], [9]), they proved also for those models that a special sequence of
x-periodic travelling waves parameterized by the period k converges to a solitary wave in
a appropriate sense, as the period k — oo. In this work, we prove that travelling wave
solutions for the abc-Boussinesq system (1.1) share the same property for the Benney-Luke
equation and Kadomtsev-Petviashvili equation, established by J. Quintero in [10] and by A.
Pankov and K. Pfliiger in [8], respectively, in the sense that a suitable renormalized family
of solitary waves of the abc-Boussinesq system (1.1) converges strongly in an appropriate
space to a nontrivial solitary wave for the Kadomtsev-Petviashvili equation (see [6], [12]
inthe casea=o0, c = %, b= % and p = 1). This concordance can be explained by the fact
that the Benney-Luke equation and the KP equation can be derived, up to some order with
respect to € and y, from the Boussinesq system (1.1),

Other results on the Boussinesq system (1.1) including the well posedness of the Cauchy
problem, Strichartz type estimates and the stability of solitary wave solutions have been
studied in [7], [11], [13]. The paper is organized as follows. In section 2, we present
some preliminaries related with embedding lemmas and the Concentration-Compactness
Theorem. In section 3, we show the existence of x-peridic travelling wave solutions with
period k. In Section 4, we prove the inter-relation between special periodic travelling waves
(ground states) and solitary waves. Throughout this work C denotes a generic constant
whose value may change from instance to instance.

2 Preliminaries

The periodic spaces

For k > 0 fixed, we define the following appropriate periodic spaces. For Q c R?, we denote
L1(Q) with 1 < g < oo as the usual Lebesgue space and H*(Q) denotes the usual Sobolev
space. If we set Oy = [—%, %] X R, we denote with LZ(RZ) to space of x-periodic with period
k functions given by

LZ(Rz) = {f ‘RZ5R: f € LY(Qy) and x-periodic of period k} ,

with norm
”u“LZ(RZ) = ”u“L‘i(Qk)-

Now, let C;"N(RZ) be the space of smooth functions which are x-periodic with period k and

have compact support in y and define
Yi={ela. 0 < C(2))
We denote by Vy the closure of Y with respect to the norm given by
2 _ 2,022 2 2 _ 2 2
||'7b”(vk - Lk (wx + lpy + '7be + zwxy + wyy) dXdy - ||'ﬁx||H1(Qk) + H"by”H'(Qk)
Note that (V. ||.llv,) is a Hilbert space with inner product

@)y, = (¢x’¢’X)H11(R2) + (¢y"/’y)Hk1(R2)’



30 José R. Quintero and Alex M. Montes

where H /1 (R?) is the Hilbert space of functions ¢ € LI%(RZ) such that ¢, ¢, € Li(Rz). The
space H ,l (R?) has the inner product given by

(@ V) 2) = (D)0 + (P ¥) 1200 + By ) 120,

We define also the Hilbert space X = H,i (R?) x V; with respect to norm

1 Iz, = Il + Il

Embedding

The existence of periodic travelling wave solutions requires using a compact embedding
result proved by J. Quintero in [10] for the Benney-Luke equation (see also A. Pankov and
K. Pfliiger in [8] for the KP equation). We follow the notation and the approach used in
[10]. For g > 2, we define the Banach space M?(Q) as the closure of C°(Q) with respect to
the norm given by

||lﬁ||‘/1w](Q) = “lpx“Zq(Q) + ||lﬁy||zq(Q)'

Then the following embedding results hold.

Lemma 2.1. Let g > 2. We have that the following embedding are continuous:
Ve MUR?), X LIR?) x MIR).
Moreover, we also have that the following embedding are compact:

Ve M;’OC(RZ), X LT (Qr)xM! (Or).

loc loc

We note that these results are a consequence of fact that if ¢ > 2 then the embedding
H'(R) — L4(R) is continuous and the embedding H (R) — L;]OC(R) is compact. In the case
of the space V; we have a similar result. To do this, we require the use of a cut-off operator
to extend any function in “V to a function in V. Let y be a C’(R) cut-off function satisfying

x(s) =1, [s|<k/2,
x(s)=0, [s|=(k+1)/2,

X/ ,X” S CO.
A. Pankov and J. Plugger considered in [8] the cut-off operator

X

(Pxy) =0 e v, ke = [

v(r,y)dr.
—k/2

Using this operator, it is possible to establish an extension operator Ej from X; to X.

Lemma 2.2. 1. Let Sy be the operator defined on Vi by

X

Sy = (9;1 [Pr(0,V)], (9;1v(x,y) = f v(r,y)dr.

—00

Then S is a uniformly bounded (with respect k) linear operator from Vy into V and
Sivlg, =v.
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2. Let Fy be the operator defined on H, (R?) by

Fi(u) = x(0)u(x,y).

Then Fy is a uniformly bounded (with respect k) linear operator from H,i (R?) into
H'(R?) and Frulg, = u.

3. Ex = (Fk,Sy) defines a uniformly bounded (with respect k) linear operator from X,
into X such that Ex(u,v)lg, = (u,v).

The first part was proved by J. Quintero in [10]. The second part is straightforward.
From previous result and Lemma 2.1 we obtain the corresponding embedding in “V; and
Xk

Lemma 2.3. For g > 2 we have that

1. The embedding Vi — MI(Qy) is continuous with the embedding constants being
uniformly bounded with respect to k and the embedding Vi — M;IOC(Qk) is compact.
2. The embedding X — L1(Qy) X M1(Qy) is continuous with the constants being uni-
formly bounded with respect to k and the embedding X; — L (Qy) X M(q)(Qk) is

loc loc
compact.

Concentration-Compactness Principle

We will use the Concentration-Compactness Principle in the periodic case by P. L. Lions
(see [3], [4]), to show the existence of a nontrivial x-periodic travelling wave solution of
period k for tha abc-Boussinesq system (1.1). For £ € R and r > 0, we define the rectangle

X[{=rd+r].

k k
R i (0) = [—5,5

Theorem 2.4. (P. L. Lions, [3], [4]) Suppose {v,,} is a sequence of nonnegative measures
on Qy C R? such that

lim dvy,=1.

5
m=e0J ok

Then there is a subsequence of {v,,} (which we denote by the same symbol) that satisfies
only one of the following properties.

Vanishing. For any r > 0,

lim (supf dvm) =0. 2.1
m=o\ yer JRox(v)

Dichotomy. There exist 0 € (0,1) such that for any y > 0, there are r > 0 and a sequence

{ym} in R with the following property: Given r’ > r there are nonnegative measures v\ ,v2,

such that

1,2
1. 0y, +v, <vp,
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2. supp (Vrln) - Rr,k()’m), supp (V;%J - Qk \Rr’,k(ym),

3. limsup,, (10— Jo, Dl 1T =0)= [, dvil) <.

Compactness. There exists a sequence {y,} in R such that for any y > 0, there is r > O with
the property that

f dvy =21 -, forallm. (2.2)
rk(é’m)

3 Existence of x-periodic travelling waves with period &

Let £ > 0 be fixed. In this section we will show the existence of a x-periodic travelling
wave solution of period k for the abc-Boussinesq system (1.1) with fixed positive values of
€,1,a,b,c and wave speed w small enough.

By a travelling wave solution for the system (1.1) we mean a solution (7, @) of the form

T = )

A direct computation shows that the traveling-wave system for (1.1) takes the form

n(x,y,t) =

y

( —w(I = bA)uy+ (I = cA)AV+V - (+(1v§,v”+)l) ]:( 0 ) o
—w(I = bAW, + (I = abu+ S (VI +0]) 0

We follow a variational approach by characterization travelling wave as minimizer of a
functional under a suitable constrain. As happens in the case of solitons for the abc-
Boussinesq system in [12], x-periodic travelling waves (u,v) for (3.1) are critical points
of the functional J,,; given by

2
JoxW,v) = I(u,v) + ——Gi(u,v),
p+1
where the functionals /; and Gy, are defined on the space X by
_ 2 2 2 2
Lu,y) = f (i +alVul® + Vv + c(Av) = 20uv, — 2bwuAv) dxdy,
Ok
Gi(u,v) = f u( pl +v§+1)dxdy.
Ok

First we have that I}, Gy, Jyx € C 2(Xt,R) and a direct computation shows that

u—alAu—w(l—bA)v, + p+1 ( erl+vp+1)
I, 5 v) = :
csz—Av+w(I—bA)ux (u(vx,v )
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meaning that critical points of the functional J,, x satisfy the travelling wave system (3.1).
Hereafter, we will say that solutions for (3.1) are critical points of the functional J, k. In
particular, we have that

2(p+2)
p+1

(I, uv). (,v)) = 20, v) + Gi(u,v). (3.2)

On the other hand, one can see easily that the functional Gy is well-defined on X. By using
Young’s inequality and Lemma 2.3 we have that there is a constant C > 0 (not depending
on k) such that

2 2 2
G| < Clul]) 2 ) + M ) < ClGL W™ (3.3)

As in the case of solitary wave solutions, to establish the existence of a travelling wave
solution in the space X for the system (1.1) we consider the following minimization prob-
lem

Ti(w) =1inf {L(u.v) © (w,v) € Xy with Gpu,v) = (-1} (3.4)

The first observation is that

Lemma 3.1. Let k>0 and 0 < w <min{1, %, 7}. Then the functional Iy is nonnegative and

there are positive constants Ci(a,b,c,w) < Ca(a,b,c,w) such that
Ci(a,b,¢c,)li(u,v) < @, VI, < Cala,b,c,)i(u,v). (3.5)

Proof. From the definition of [; and Young’s inequality we obtain that

L(u,v) < f ((1+ ) + (a+ bw) iy + auj + (1 + WV +} + (c + bw) (Av)? ) dxdy
Ok
<max(l+w,a+bw,a,l +w,c+bw)||(u,v)||§§k.

In a similar way, we have that

Ii(u,v) > f ((1 - a))u2 +(a—bw) u)zc + aui +(1- a))v)zc + v§ +(c—bw) (Av)z)dxdy
Ok
>min(l —w,a-bw,a,l —w,c—bw) ||(u,v)||§§k,
showing that the inequality (3.5) holds. O

We see directly from Lagrange multipliers, the following result:

Lemma 3.2. For any k > 0, I (w) is finite and positive. Moreover, If (uy,Vvo) is a minimizer

for Ii(w), then (u,v) = B(ugy,vo) is a nontrivial solution of (3.1) for (-B)’ = (Z_::é)[k‘

Proof. tis easy to see that there is (u,v) € C;’(Qk) X C7'(Ok) such that
Gr(u,v) = (=1)"*1.

On the other hand, from inequality (3.3) we have that there is C > 0 such that for any
(u,v) € Xy,

2 2 2
L= 1Gr(u ) < CALy% o+ Ve o) < Cll VI,
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meaning that /;(«#,v) > C, and so that the infimum J(w) is finite and positive. Now, by the
Lagrange Theorem there is a multiplier A such that for any (w,z) € X,

(I (w0, v0). (w,2)) = (G (g, v0), (w,2)) = 0. (3.6)
Taking (w,z) = (19, vo), we obtain that
0 = (I (1, v0), (140, v0)) = (G0, v0), (10, v0)) = 2Ui(1tg,v9) = Ap + 2)Gi(tt, v0).

Since Gy (ug, vo) = (=1)P*! and I (ug, vo) = I &, we have that 1 = (—=1)P*! (ﬁ)]k. Moreover,
for (u,v) = B(ug,vp), we see that

(L), ) = A7 (G, v). (u,v)) = 0.

Then, if we choose S to be

_,w—Pzpi & (=17

p+1
+1

1
p+2)fk=ﬁp = (&)IF(—ﬁ)P,

p+2

then we have that (u,v) is a nontrivial solution of (3.1). O

Now to use the Concentration-Compactness Principle, let us define positive measures
{vin} by dv,,, = p dxdy, where p,, is the density defined by

Pm = 12, + Vit + Vvl + c(Avip)? = 20118,V — 26w Uy Ay, (3.7)

where we are assuming that {(u,,,v,)} in X is a minimizing sequence for J;(w). From
Theorem 2.4, we know that there exists a subsequence of {v,,} that satisfies either vanishing,
or dichotomy, or compactness. We will see that vanishing and dichotomy can be ruled out.

Lemma 3.3. Let {(u;;, vin)}im be a bounded sequence in Xy. If there exists r > 0 such that
lim (supf dvm) =0.
MO yeR JRk(y)

lim Gy (u, Vi) = 0.
m—oo

Then we have that

In particular, if {(p, Vi) }m is @ minimizing sequence for I (w), then vanishing is ruled out.

Proof. 1s easy to see that for some positive constant C = C(a, b, c, w)

2 2
||um||H1(Rr,k(y)) + ”VVmHHl(Rr,k(y)) S C,fR 0)pm dXdy = C‘fR ()) de-
rk(y rk(Y

Now, we need to recall that the embedding H 1(Rr,k(y)) — LP+2(Rr,k(y)) is continuous, and
so we obtain that

f Uy ((ame)p+1 + (ayvm)p+1)dxdy
Rr,k(y)

p+2 p+2

1

p+1 p+1 2
= C[””m”H%Rnk@))+”VVm”H1(Rr,k(y))]( lek(y) d"m) :
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Covering Qy by a countable number of rectangles such that every point in Qy is contained
in at most three rectangles R, x(y), we see that

f Um ((ame)p+l + (5yvm)p+l ) dXdy
Ok

1/2
1 +1
< 3C (Hanll g, + 19l )(supf v,
g Yoo JUEP Jo

" 12
s3C(1k(um,vm))T(sup f dvm) .
yER Rr,k(Y)

Using (3.5) and that {(u,,,v;»)}m is a bounded sequence in X; we conclude that

m—00

lim f tt ((Dvm)P*" + By ) dxdy = 0.
Ok

Now, if {(¢4m,Vm)}m 1s a minimizing sequence for 7;(w) then we have that G(u,,,vy) =
(=1)P*!, but from the previous fact we obtain a contradiction. O

To rule out dichotomy, we will establish a splitting result for a sequence {(#,,v,,)} in
Xk. Fix a function ¢ € Cg"(R,R*) such that supp¢p Cc [-2,2] and ¢ =1 in [-1,1]. If r >0
and yg € R, we define a split for (u,v) € X given by

u= ui+u% and v:v}+v%,
where
ul = u,, i =u(l-¢,), vg=-a)p, v>=v-a)1-¢)+a,
with Yoy
— )0
80 =4(222),
and

1
4= S0l (A, (o)) Lr(}@) v(x,y)dxdy, Ar(yo) = Rark(¥0) \ Rri(o).

We note that the decomposition of v is non standard and reflects the nature of the space V.
As a consequence of the coming result we will obtain that dichotomy is not possible.

Lemma 3.4. Let r,, > 0 and {yn} in R be sequences. Define A(m) = A, (ym) and ¢;(y) =
¢(w) If

T'm

limsup (f dvm) =0. (3.8)
m— oo A(m)
Then we have that
B {7yt vin) = Ity Vi) = Dt vi) | = 0, (3.9)
1im [Gi(ttm, Vi) = Gty V) = Gt v2)| = 0. (3.10)

m—o00

For the proof, we see details in the work [12] in the case of solitary wave solutions.
Using this result, we have that
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Lemma 3.5. Let {(uy,, vin)}m be a minimizing sequence for I (w). Then dichotomy is not
possible.

Proof. Assume that dichotomy occurs, then we can choose sequences y,, — 0 and r,;, — oo
such that

supp (Vy,) € Ry k), supp(vi) € Qi \ Rasy k() (3.11)
and
1imsup(]9—f dvh |+ (T ~0)- dv51|) -0, (3.12)
m—00 Ox Ok

Using these facts, we see that

limsup (f dvm) =0. (3.13)
m—o00 A(m)

Now, from (3.13) and Lemma 3.4 we have that the splitting limits (3.9) and (3.10) hold and
conclude that

1im [ Lt Vi) = Lty V1) = I, V)| = 0,
nM—00
1im |Gt Vi) = Gty v3) = Giluap,, vi,) | = 0.

m—oo

Now, let A,,; = Gi(ul,,vi ), for i = 1,2. Passing to a subsequence, if necessary, we have that
A = 1limy 0 Ay €Xists. We claim that 4; # 0. To see this, suppose that lim,;, e 4,1 =0,
then limy,—eo A2 = (=1)P*1 (we proceed in a similar way in the other case). Then we
conclude that 4,7 # 0, for m large enough. Now, if we define

plo=pa 2 o
(Wme Zm) = (_1)[”2 /lm,z (Mm, Vm),

then, we have that
Winszm) € X, GkWinszm) = (=1)P*1

On the other hand, using the characterization 7 (w),

Ti(w) = 1im (L, vy) + 11, v3,))
2
> lim ( f dvy,+ s Ik(Wm,Zm))
er,k(}’m)

2
> lim ( f dv,;m;,j;fk(w))
m—oo Ok >

=0+ I (w).

In other words, |4, > O for m large enough and i = 1,2. Then we are allowed to define

Pl
(Wm,i,Zm,i) = (_1)1”2 /lmi.*z (u;na v;n)a 1= 132
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As above, we also have that (Wi, 2m) € X and Gy(Wp.i»Zm,) = (=1)P*!. Then using the
same argument as above, we conclude that

Ti(w) = Tim (Te(uy,vp) + (13, v3,))

m>

. 2 2

ril_r}go(lﬂm,lll’*z LW, 1,2m,1) + A 2|7+ Ik(Wm,z,Zm,z))
2 2
> (|17 + 12077 ) Ti(w).
From this fact, we conclude that
2
12 0172 4+ )77 2 (] + )72 2 (4 + Ao]77 = 1.
Hence, |11]| +]42| = 1, and also that
2 2 2

[A1]7#2 + 2] 772 = (|A1] +]A2]) 72, (3.14)

2_ .
which is a contradiction, since the function f(z) = 7+ is strictly concave on R*. In other
words, we have ruled out dichotomy. O

Now we will show the main result in this section: the existence of a minimizer for
I 1(w), which implies the existence of solutions for the system (3.1) in the space X.

Theorem 3.6. If {(uy, vin)} is a minimizing sequence for I (w), then there is a subsequence
(which we denote by the same symbol), a sequence of points {y,} in R, and a minimizer
(ug,vo) € Xy, for I (w), such that the translated functions

(lm(x,3), Vi (x%,¥)) = (U (X, Y + Vi), Vi (X, + Ym))
converge to (Up,vo) strongly in Xi.
Proof. Let {(u;;,vy)} be a minimizing sequence for 7 (w). This is,

lim I @y, vi) = Ti(w) and G, vi) = (= 1P

Since we ruled out vanishing and dichotomy above for a minimizing sequence of J(w),
then by P. L. Lion’s Concentration-Compactness Theorem, there exists a subsequence of
{vin} (which we denote by the same symbol) satisfying compactness. Then, there exists a
sequence {y,,} in R such that for a given y > 0, there exists r > 0 with the following property,

f dvy > Ii(w)—7y, forall meZ*. (3.15)
Rr,k(_)’m)

Using this we may localize the minimizing sequence {(#;,,Vy)}» around the origin by defin-
ing the translation in the y variable

Pm(x,Y) = P,y +Ym)s @i, Vi) (X, ) = (Ui, Vi) (X, Y + Vo).

Thus, we have the following localized inequality

f Pmdxdy = f dvy > Ii(w)—y, forall meZ*, (3.16)
Rr,k(o) Rr,k(ym)



38 José R. Quintero and Alex M. Montes

and also that
lim L (i, V) = im LU, vin) = Ti(w), Gi(itm, ¥m) = Gi(m, Vin) = (_1)p+1‘ (3.17)
m—-oo m—-oo

From previous fact and by (3.5), we note that {(it,,;, V,)}» is a bounded sequence in X;. On
the other hand, since i,,, V#,, € H' (U) for any bounded open set U C Qy and the embedding
HY(U) — LY(U) is compact for g > 2, then there exist a subsequence of {(,, ¥,)}» (Which
we denote the same) and (g, vo) € X such that fori=1,2,

iy —ug i H'(QY), iy —uo in L*(Qp),

Vw—=vo in Vi, 8, —vo in LA2(Q)
and we also have that
iy —up in L (Ok), i — dvo in L (Q).
Moreover,
i, > uy a.e.in O, 0V, — 0;vp a.ein Qy fori=1,2.

Using these facts we will show that some subsequence of {(i,;, V,;)}» (Which we denote in
the same way) converges strongly in X}, to a nontrivial minimizer (ug, vo) of (3.4). We first
see that

ity — U, OV — Oivo in L*(Qp). (3.18)

In fact, using (3.16), (3.17) and the definition of /; we have that for y > 0, there exists » >0
such that for m large enough,

f i[> dxdy > | lil* dxdy—2y.
R x(0) Ok

Then we have that

luo|*dxdy < liminf f |iiyn|>dxdy
Ok m=eeJoy

< liminf f |ty |*dxdy + 2y
Ry1(0)

m-—o00

= f luo|>dxdy + 2y
R (0)

< | l|uoldxdy+2y.
Ok

Therefore

liminff Iﬁmlzdxdyz |u0|2dxdy.
Ok Ok

nm—00

Thus, there exist a subsequence of {ii,} such that i, — ug in L?>(Qy). Using a similar
argument we prove the other part of (3.18). Moreover, also we can see that

aii;tm i aiuo, a,’j\'}m 4 a,'jVO in Lz(Qk). (319)
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Now, using (3.18)-(3.19) and that the inclusion H'(Qy) — L1(Qy) is continuous for q=2,
we have that
Gi(uo,vo) = im Gy, ) = (-1)7*. (3.20)
m—oo

In fact, for j = 1,2, we have that
f (itm(@5m)P*" = uo(8,v0)"*" ) dxdy
Ok

- f |G = u0)(@ 7! + 110 ((0;5)7 " = (@,v0)7"" ) | dxcly.

Ok

Now, we have that

p+1

(it = 10)(D 7)™+ dxdy <l = uollz 20107l e,

Ok
~ NNy 221
< C“um_MOHLZ(Qk)(Ik(Mm,Vm)) z.

On the other hand we also have, after using Holder inequality, that

f |u0((ajvm)f’“ —(ajvo)p+l)|dxdysC f 100 %m = & v0] (107l +10 jv0l” ) daxdly
Ok Ok

< €19, = v0)ll2 19 m + YL 011500

< CllOj(Fm —volllz2 o0 (Vm + V0)||Z|(Qk)||MO||H](Qk)

N L Pl
< CllOj(Vm = volllz2( o) Tkt V) + Ik(uo,v0)) 7 .

Then we conclude that (3.20) holds, which implies that (ug,vo) # (0,0). On the other hand,
from (3.18)-(3.19), we can see that

Lim 1, Vm) = i(uo, vo) = Li(w),  im (it — o, ¥ — vo) = 0.
m—-0oo m—-0o0
Moreover, the sequence {(i,,, V,,)}m converges to (ug,vy) in Xi, since

(@t — o, ¥ = vo)llx, < Cilk(ttm — o, Vi — o).
Then we concluded that {(i1,,, ¥,,)} converges to (ug,vo) in Xy and (ug,vp) is a minimizer for
T (w). O
Combining Lemma 3.2 and Theorem 3.6 we obtain the following corollary.
Corollary 3.7. Let k>0 and 0 < w <min{l,7,7}. Then the abc-Boussinesq system (1.1)
has a nontrivial x-periodic travelling wave solution of period k in the space Xy.

4 Inter-relation between periodic travelling waves and solitons

In this section we will show that a special sequence of x-periodic travelling wave solutions
parameterized by the period k converges to a solitary wave in a appropriate sense as the
k — oco. This result in particular shows that the shape of x-periodic travelling wave solutions
are “similar” to the shape of solitons, as the period k — co.

Before we go further, we discuss the results for solitary wave solutions,
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On the solitons for the abc-Boussinesq system

Recently in [12] for the case a =0, b = % and ¢ = %, J. Quintero and A. Montes showed the
existence of solitary wave solutions (solitons) in the energy space X = H'(R?) x V via the
Concentration-Compactness Principle by P. Lions (see [3], [4]). By following the same
approach, it is possible to prove the existence of solitons for the abc-Boussinesq system in
the energy space X = H'(R?) x V by considering the following minimization problem

T(w) =inf{Iu,v) : wv)€X with Gu,v)=(-1)"*'}, 4.1)

where the energy / and the constraint G are functionals defined in X given by
I(u,v) = f (u2 + aquI2 + IVVI2 + C(Av)2 —2wuv, — Zba)uxAv) dxdy, “4.2)
R2

G(u,v) = f u(vfrl +v§+l)dxdy. 4.3)
R2

The existence of solitons for the abc-Boussinesq system is obtained by adapting the results
in [12]. In particular, we have the following results,

Lemma 4.1. If (ug,vo) is a minimizer for the problem (4.1), then (u,v) = B(ug,vo) is a
nontrivial solution of (3.1) for (=B)P = (5—:;)]@0).

Lemma 4.2. Let 0 < w <min{l,7,7}. Then the functional I is nonnegative and there are

positive constants Ci(a,b,c,w) < Ca(a,b,c,w) such that
Ci(a,b,c,)(u,v) < |(u, Vi < Ca(a,b,c,w)I(u,v). 4.4)
Furthermore, I(w) is finite and positive.

Lemma 4.3. Let 0 < w <min{l, 5, 7). If {(um,vm)} is a minimizing sequence for (4.1),

then there is a subsequence (which we denote by the same symbol), a sequence of points
(X Ym) € R2, and a minimizer (ug,vo) € X of (4.1), such that the translated functions

(@ (%, ), Vi (X,9)) = U (X + X, Y + Yi)s Vin (X + X, Y + Y1)

converge to (ug,vg) strongly in X.

A variational approach

We will consider ground state travelling waves, meaning x-periodic travelling waves (uy, vi)
of period k for the abc-Boussinesq system (1.1) which minimize the problem

Ti(w) = Jy g (ug, vi) = inf {J, 1 (u,v) : (u,v) € X with Ag(u,v) =0}, 4.5)

where ) )
Aaat) = (77000, ) = 20 ) + LD G ), (4.6)

’ p+1

Note that the condition Ag(u,v) = 0 is just a “artificial constraint” for minimizing the func-
tional J,,x on Xj. It is important to observe that the infimum in (4.5) is being taken in a
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nonempty class. To see this, we choose ¢, € C°(Q1) such that G1(¢,y) # 0 (if p; is even,
G1(¢,¢¥) < 0). Then the x-periodic extension of (¢,i), denoted by (¢, ), belongs to X
and satisfies that Gi(¢x, ¥x) = G1(d, ). If we define a by

o = _ P+ DI i)
(P +2)Gi( B 1)

we have that

Al vi) = 2a (Ik«»k yo + LD p= 2 G| =

We also note that a minimizer for J;(w) corresponds to a x-periodic solution of period k for
the system (3.1). More exactly,

Theorem 4.4. If (ug,vi) € Xy is a minimizer for (4.5), then (ug,vy) is a solution of the system
(3.1).

We also have the following results.

Theorem 4.5. Let k > 1 be fixed and 0 < w < min{1, 7,7} If {(m,Vim)}m is a minimizing

sequence for Ji(w), then there is a sequence of points {y,,} in R, a subsequence of {(un, Vin)}m
(which we denote by the same symbol) and a minimizer (ug,vy) € Xy for J(w) such that the
translated functions

(@ (X, ), ¥ (X, ) = (U (X, Y + V), Vin (X, Y + Ym))

converge strongly to (uy,vy) in Xy and (ug,vy) is a nontrivial solution of the system (3.1).

Moreover,
p+2

p+1 z=
Ti(w >—p+2( ) [ T(w)] 7. 4.7)

Proof. This result is a consequence of the Lemma 3.2, Theorem 3.6, and the following
argument. Let (u,v) € X \ {0} be such Ji(w) = J,x(1,v) and that Ag(u,v) =0, then

+2
Te(u,v) = ——Gk(u v) = —|Gk<u Wl = 222, ).
p+ p+1 P
Now consider the couple
ptl __1
(z,w) = (=172 [Gr(u, )] 772 (u,v).
Then Gi(z,w) = (=1)?*1. Thus,

Tu(w) < L(zw) = [Gr(u, )77 L, v)

- (2] o

=(p_+2)w[p+2 Tusten] 2.

p+1
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We concluded from this that

2

£ (p—“) 7] 7 <)

p+2\p+2
Now, let (u,v) # 0 such that 7j(w) = It(u,v) and that G(u,v) = (—1)?*!. If we define ¢ by

p__ (DI
(-DP(p+2)
we have that
(p+2)tP
+1

Ar(t(u,v)) = 27 (Ik(u,v) + Gi(u, v)) =0.

In this case,

Then we see that

2
2P 1\7 pt2
T(@) < Juat, 1) = 2 eu,v) + ——Getav)| = =2 () 1] 7
’ p+1 p+2\p+2
Hence, as desired (4.7) holds. Now, the first part follows by noting that if (u,,,v,,) € Xj is
such that Ji(w) = limy;,—c0 S k (Um, Vin) With Ag (i, v) = 0, then

p+2 p+2
L, vin) = ———=Gp (U, vin) = _Jw,k(um, Vin).
p+1 P
Moreover, we also have that

s W) = (= D)7 (Gt V)] 772 (s V-

is such that Gi(zy, wi) = (=1)P*! and T j(w) = lim,,_,c0 It(Zm, W), Which follows by using
formula (4.7). In other words, (u,,vn) € X is a minimizing sequence for J;(w). So, the
conclusion follows by Theorem 3.6, after going back to the minimizing sequence (u,,,V;,) €
X  for Jk(a)). O

Theorem 4.6. For k > 1, we have that the family {Ji(w)}i>1 is bounded below and above
for positive constants independent of k.

Proof. Let (ug,vi) € Xy be a family such that
Jo kU, vi) = Jp(w),  Ag(ug, vi) = 0.
Then, using (3.3)-(3.5) and (4.6), we have that

+2 p+2
Iyt ) = == G ) < C o I < COp) Ul 0]
This implies that there is C3 = C3(p) > 0 such that

Ji(w) = Jo i (i, vie) = le(uk,vk) > Cs.
p+2
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On the other hand, for k > 1 we can choose ¢ € CS" (Q1) such that G (¢, ¢) # 0 (if p; is even,
G1(p,¢) <0). Since suppp C Q1 C Ok, then we can define a periodic extension of ¢ as
follows

dr(x,y) = p(x,y), (x.y) € Q1
$ir(x,y) =0, (x,y) € Or\ Q1.

Then (¢, ¢r) belongs to X and satisfies that Gi(dr, dx) = G1(d,¢) # 0 (if p; is even,
G1(¢,¢) <0). If we set a by

p— _ 2+ DI d1)
(p+2)Gi(r-d1)

then a direct computation shows that

2 P
Ax(a(bedr) = 202 (1k<¢k,¢k> + (”;%kak,m)) - 0.

Hence, we conclude that
Ji(w) < Jy (P, ¢r)) = J1(a(9,9)) = Ca(9).
This implies that there are positive constants C3,C4 (not depending on k) such that
C3<Ji(c)<Cy, k=1. (4.8)
O

Now we establish some technical results. The first one is related with the characteriza-
tion of “vanishing sequences” in Xj. Define p on X, be defined as

ou,v) = u’ + aquI2 + |Vv|2 + c(Av)2 —2wuvy, —2wbu,Av, 4.9)
and for r > 0 denote by R,() the closed square centered at the point £ € R2.

Lemma 4.7. Let k > 1 and assume that {(ug,vi)}i>1 is a sequence of x-periodic functions
such that (ug,vi) € Xy and ||(ug, vi)llx, < C for all k. If there exist r > 0 such that

lim supf p(ug,vi)dxdy = 0. 4.10)
k= rep2 JR,(0)

Then, for g > 2 we have that
]}LIEO||Vk||M4(Qk) = ,}Lrglluklqu(Qk) =0.

Proof. First suppose that {w;}x is a sequence such that w; € H'(Q) and ||wyl| won < C.
Assume that there is a positive constant » > 0 such that

lim sup f w? dxdy = 0. 4.11)
k=0 rep2 IR, (0)
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We will see that limy_, [[Willzeg,) = 0. In fact, if g > 2 we have that
q q-1 g-1
”Wk”Lq(R,({)) < ||Wk||L2(R,(g))||Wk||L2(q_1)(Rr(§)) < ||Wk||L2(R,.(g))||Wk||H1(Qk)-

Covering Qy by a countable number of squares such that every point in Qy is contained in
at most three squares R,({), we obtain that

—1
||Wk||Zq(Qk) < 3?111&132 ||Wk||L2(R,(g))||Wk||qu(Qk)‘
le

Using (4.11) and that there is C > 0 such that [|[wi||51(g,) < C, we conclude that
k]i_{?oHWkHL‘I(Qk) =0.

Now suppose that ||(ux, vi)llx, < C and that (4.10) holds. Then uy,dvi,0yvi € H'(0y).
Hence, for wy being defined as either ug, 0,v, or dyv, we see that wy satisfies in each
case the condition (4.11). By the previous observation, we conclude for g > 2 that

lim [[willzeg,) = 0.
k—o0
In other words, we have for g > 2 that
lim llelloigo) = im [Mlawcgo = 0.
O

Now we prove a result related with the behavior of the bounded sequence {(u, vr)}x of
critical points for J/ .

Lemma 4.8. Let k > 1 and assume that {(ug,vi)}i>1 is a sequence of x-periodic functions
such that (uy, vi) € Xy, l(ug, vi)llx, < C and J |, (ug,vi) = 0. Then

1. limy o0 | (i, villse, = 0, or

2. There are positive constants r,1 and a sequence {x € R* such that

lim p(ug, vi)dxdy > 1.
ko0 IR, (@0

Proof. Note that

+2
TG, vi) + Z22 G, vi) = 0.
p+1
Then from (3.3)-(3.5) we conclude that
Gtk VI, < Cliatg, vid) < C(P) Gt vl < () (I3 0 + IV 3 ,) -

If condition (2) does not hold, then from previous result we conclude that the right hand
side tends to zero, which implies that the condition (1) holds. O
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Finally we establish the main result in this section. We define J,, in the space X with
values in R as

2
Jo,v) =1(u,v) + —G(u,v),
p+1

and denote with A to
A(u,v) = (I, (u,v), (u,v)).

Theorem 4.9. Let k > 1 and let (uy,vy) € Xy be a minimizer for Ji(w). Then there exists
a sequence (y € R? and a function (ug,vo) € X such that S (ur(- + &), vi(- + {x)) converges
weakly to (ug,vo) € X along a subsequence. We also have that (uy, vo) is a nontrivial solution
of the system (3.1) and a minimizer for J(w), where

J(w) = J,(uo,vo) = inf {J,(u,v) : (u,v) € X with A(u,v) =0},
Moreover,

]}Lrglo 1Cuax, vie) = (uo (- + &), vo (- + i), = 0. (4.12)

Proof. Using (3.5), (4.8) and the equality J,, x(ug, vi) = [%Ik(uk, Vi) we can conclude that
0 < C3 < |l(ux, vi)llx, < Ca,

implying that the condition (1) in Lemma 4.8 does not hold. In other words, there exists a
sequence {j € R? such that the shifted sequence (iig, V) = (ur(- + &), vi(- + &), for appro-
priate choice of r,n > 0, satisfies

f pii, V) dxdy = f p(ug, vi)dxdy > g
R,(0) R (&)

Clearly (iix, V) is also a minimizing sequence for Ji(w). Now observe that the sequence
E; (iig, V) € X is bounded since

1 Ex (i, Vil < Cs |l (@i, Vi)l -
Thus, there exists a subsequence of {Ey(fig, V)} (denoted by the same symbol) and (ug, vo) €
X such that
E (i, V) — (uo,vo), as k — oo (weakly in X).
We claim that (ug,vo) is a non trivial solitary wave for the system (3.1). Let Z = (U,V) €

Cy (R%)x Cy (R2). Then, for sufficiently large k we have that K = suppZ C Oy X Q. Hence,
Z can be considered as an element of X}, for a large k just by defining its periodic extension.
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Thus, we see that
(I'(up,vo),Z)

= 2[ (upU +aVuy-VU + Vg - VV + cAvgAV) dxdy
K
—a)f(ZMOVX+2(V0)XU+Zb(uo)xAV+2bAvon)dxdy
K

=2 lim (Fr(@i)U +aVFi(itg) - VU + VS (Fr) - VV + cAS (1) AV) dxdy

i
k—oo Ok

- a)klirn CFr@u) Vi +2(S 1(01))x U + 2b(F i (itx)) x AV + 2bAS 1 (V) U ) dxdy
—00 Qk

k—o0

=2 lim f (G U + aViiy - VU + Vi - VV + cAV AV) dxdy
Ok

—w lim Qi Vi +2(0) U + 2b(ity ) AV + 2DAV, U ) dxdy

k—o0 o

= lim (I 50). 2).

In a similar way, noting that the sequences {(8,~S k(\?k))p”} ‘ and {Fy (i) (0;S k ()P}, are
bounded in L*(R?) (taking a subsequence, if necessary), we have that

(G'(up,v0),Z) = kh_{f)lo <G1/<(17’k,‘~’k),z>-
In other words, we have shown that
(Ji(u0,v0),.2) = lim (J, (Gix, 7). Z) = 0.
Then, by a using a density argument, we conclude that
J! (up,vo) = 0.

In other words, (ug, vp) is a non trivial soliton (a travelling wave solution in the energy space
X) of the system (1.1). Finally we want to establish that

Jo(ug,vo) =1, = inf {J,(u,v) €X : A(u,v) =0}, klim I|(tx, Vi) — (uo,vo)llx, = 0.

First we notice that if (w,z) € X and A(w,z) = 0, then there exists a sequence {(wg, Zx)}x such
that (wg,zx) € Co(Qx) X Co(Qy) such that

klirg l(wi, zk) — (W, 2)lIx = 0.

By the assumption on (w,z) we have that I(w,z) + %G(W, z) = 0. Then, it follows that
G(w,z) < 0. Hence, for k large enough we have that G(wy, zx) < 0. Moreover, A(fxWg, txzx) =
0 for 7, € (0,1) given by t]f = —ptDIvead). Ngte that the continuity of functionals / and G

: PG
and that A(w,z) = 0 imply that

. ( (p+ DIOwe,20) )i . (_ (p+ DIw.2)

_(P"‘z)G(Wk,Zk) (P+2)G(W,z)) =1, as k— co.
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On the other hand, #;(wy,zx) — (w,z) in X. Then the continuity of the functional J,, implies
that
Jo (Wi, tkzi)) = Ju(z,w), as k — oo,

Thus, given € > 0, there exists k. such that if k > k.,
Jotewi, tezi) < Jo(w,2) + €.

This implies that limsup,_, ., Jx(w) < J,(W,z) + € for any (w,z) € X with A(w,z) =0 and any
€ > 0. Therefore
limsupJi(w) < J(w).

k—o0

Now, we recall that

Ji(w) = Jo k (g, V) = ﬁlk(ﬁk,vk) = 1% Qkp(ﬁk,f/k)dxdy-

Note that for a given bounded domain Q c R?, we have that Q ¢ Q for k large enough.
Then

T(w) = J o i (g, Vi) > P fp(ﬁk,f/k) dxdy.
r+2Ja

Hence, due to the local compactness result, we get that

.. e 14 U 14
1 f >1 fl— = )
11113}1013 Ji(w) > 1121021 (p+2 Lp(uk,vk)dxdy) PR Lp(uo,vo)dxdy

Thus, since Q is arbitrary, we have shown that

I(up,vo).

.. p P
1 f > — =
1]?_1)1013 Ji(w) > p+2fR2,0(M0,V0)dXdy P12

Since <J(:)(M(),V0),(MO,VO)> = 0. Then J.(ugp,vo) = ﬁ](uo,\/o). So that

liminf (@) > J(w).

In other words,

1i]?1inf3k(w) =l(w) = I(uo,vo) = Jo(uo, vo),

p
+2

which is equivalent to say that (ug,Vvg) is a ground state solution. It was also proved that
Lim 1y (i, V) = I(ug,vo).
k—o0

It remains to prove that
Tim g, B) = (o, vz, = 0. (“.13)

To see this, let (wg,zx) € C5(Or) X C7(Qx) such that (wg,zx) — (uo,vo) in X. We will show
that

]}Lrgo (g, V) — (Wk» 20)lIxc, = O.
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This implies that the limit (4.13) holds. We consider the operators A and Ay defined by
A ), ) = ('), ), @) €X; A(wv),) = (L)), () € Xy
Then we have that
L [t Vie) — (Wi, i)

= L, Vi) + (Wi, i) — Ak (g, Vi), (Wi, 7))
= Li (g, i) + I Wie, zi) — Ak (B, Vi), (1o, vo)) — A (g, Vi), (Wi — o, zx — Vo)) -

Since (wx,zx) converges strongly to (up,vo) in X and ||(itx, 7¢)|lx, is bounded, we conclude
as k — oo that

|Ak (g, Vi), (Wi, k) — (o, vo)l < Cll (g, Vi)l |(Wi, z1) = (o, vo)llsc — 0.

But, we have that

Ay (g, Vi), (uo, vo)) = A((uo, vo), (1o, vo)) = 21(ug, vo).

So, taking limit as k — oo,

(i, Vi) — (Wk,Zk)H%gk < CLi ((itg, V) — (Wi, wi)) — 0.

Then, as desired
[ICutge, vie) = (uo (- + Zi)s vo(- + &)l — 0.

O
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