Volume 20, Number 1, pp. 27-49 (2017)
www.math-res-pub.org/cma

Periodic Travelling Waves and its Inter-relation with Solitons for the 2D $a b c$-Boussinesq System

José R. Quintero*
Department of Mathematics
Universidad del Valle
Cali, Colombia

Alex M. Montes ${ }^{\dagger}$
Department of Mathematics
Universidad del Cauca
Popayán, Colombia

(Communicated by Marco Squasina)

Abstract

Via a variational approach involving Concentration-Compactness principle, we show the existence of x-periodic travelling wave solutions for a general 2D-Boussinesq system that arises in the study of the evolution of long water waves with small amplitude in the presence of surface tension. We also establish that x-periodic travelling waves have almost the same shape of solitons as the period tends to infinity, by showing that a special sequence of x-periodic travelling wave solutions parameterized by the period converges to a solitary wave in a appropriate sense.

AMS Subject Classification: 35Q35, 35B10, 35Q51, 35A15
Keywords: Periodic travelling waves, Solitary waves, Concentration-compactness principle, Variational principle.

1 Introduction

In this paper we study the existence of non trivial x-periodic travelling waves for the two dimensional $a b c$-Boussinesq system related with the water wave problem

$$
\left\{\begin{array}{l}
(I-b \mu \Delta) \Phi_{t}+(I-a \mu \Delta) \eta+\frac{\epsilon}{p+1}\left(\Phi_{x}^{p+1}+\Phi_{y}^{p+1}\right)=0, \tag{1.1}\\
(I-b \mu \Delta) \eta_{t}+(I-c \mu \Delta) \Delta \Phi+\epsilon \nabla \cdot\left(\eta\left(\Phi_{x}^{p}, \Phi_{y}^{p}\right)\right)=0,
\end{array}\right.
$$

[^0]where $2 b-a-c=\frac{1}{3}-\sigma$, with $a, b, c>0$ and $p=\frac{p_{1}}{p_{2}}$ with p_{1}, p_{2} integers such that $\operatorname{gcd}\left(p_{1}, p_{2}\right)=$ 1 and p_{2} odd. In the case $p=1, \epsilon$ stands for the ratio of typical wave amplitude to fluid depth (amplitude parameter or nonlinearity coefficient), $\sqrt{\mu}=h_{0} / L$ represents the ratio of undisturbed fluid depth to typical wave length (long-wave parameter or dispersion coefficient) and σ is associated with the surface tension (Bond number), Φ is the rescaled nondimensional velocity potential on the bottom $z=0$, and η is the rescaled free surface elevation. For $a=\sigma, c=\frac{2}{3}, b=\frac{1}{2}$ and $p=1$ the 2D Boussinesq system was obtained by J. Quintero and A. Montes in [12] to describe the propagation of long water waves with small amplitude in the presence of surface tension (see also [6]).

We will establish the existence of x-periodic travelling wave solutions of period $k>0$ for the system (1.1) with fixed positive values of $p, \epsilon, \mu, a, b, c$ and wave speed ω small enough. Moreover, as in some water wave models (see for example [8], [10]), we show that a special sequence of x-periodic travelling waves is uniformly bounded and converges to a solitary wave (travelling wave in the energy space) in an appropriate norm, indicating that the shape of x-periodic travelling waves and the solitary waves are almost the same, as the period k is big enough.

Following the same variational approach as J. Quintero and A. Montes in [12], it is possible to show the existence of solitons (travelling wave solutions of finite energy) for the $a b c$-Boussinesq system (1.1) in the energy space $\mathbb{X}=H^{1} \times \mathcal{V}$, where \mathcal{V} is defined by the norm $\|\Phi\|_{\mathcal{V}}=\|\nabla \Phi\|_{H^{1}}$. We see that the $a b c$-Boussinesq system (1.1) can be written in the Hamiltonian form

$$
\binom{\eta_{t}}{\Phi_{t}}=\mathcal{B} \mathcal{H}^{\prime}\binom{\eta}{\Phi}, \quad \mathcal{B}=\left(\begin{array}{cc}
0 & (I-b \mu \Delta)^{-1} \\
(I-b \mu \Delta)^{-1} & 0
\end{array}\right)
$$

where the Hamiltonian is given by

$$
\mathcal{H}\binom{\eta}{\Phi}=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla \Phi|^{2}+\eta^{2}+c \mu|\Delta \Phi|^{2}+a \mu|\nabla \eta|^{2}+\frac{\epsilon}{p+1} \eta\left(\Phi_{x}^{p+1}+\Phi_{y}^{p+1}\right)\right) d x d y
$$

Note that the functional \mathcal{H} is well defined when $(\eta, \nabla \Phi) \in H^{1} \times H^{1}$, where $H^{1}=H^{1}\left(\mathbb{R}^{2}\right)$ is the usual Sobolev space.
In this paper we show the existence of travelling waves in the space

$$
\mathbb{X}_{k}=H_{k}^{1} \times \mathcal{V}_{k}
$$

where $H_{k}^{1}=H_{k}^{1}\left(\mathbb{R}^{2}\right)$ is the usual Sobolev space of order 1 of x-periodic functions of period k and \mathcal{V}_{k} is defined by the norm $\|\Phi\|_{\mathcal{V}_{k}}=\|\nabla \Phi\|_{H_{k}^{1}}$. In order to have the result, we follows a variational approach by characterizing travelling waves as a minimizer of a functional under a suitable constrain. Using an appropriated local compact embedding from the space $H_{k}^{1} \times$ \mathcal{V}_{k} to a special $L^{q}\left(\mathbb{R}^{2}\right)$ type space and the Lions's Concentration-Compactness Theorem, we prove that any minimizing sequence converges strongly, after an appropriate translation, to a minimizer.
J. Quintero in the case of the Benney-Luke equation for wave speed small enough (see [10]) and A. Pankov and K. Pflüger in the case of the Kadomtsev-Petviashvili equation (see [8]) proved the existence of nontrivial x-periodic travelling waves of period k that are uniformly bounded in k and bounded away from zero with respect to an appropriate norm.

They also included the limit behavior of such periodic solutions as $k \rightarrow \infty$. As done for some 1D models (see [2], [1], [9]), they proved also for those models that a special sequence of x-periodic travelling waves parameterized by the period k converges to a solitary wave in a appropriate sense, as the period $k \rightarrow \infty$. In this work, we prove that travelling wave solutions for the $a b c$-Boussinesq system (1.1) share the same property for the Benney-Luke equation and Kadomtsev-Petviashvili equation, established by J. Quintero in [10] and by A. Pankov and K. Pflüger in [8], respectively, in the sense that a suitable renormalized family of solitary waves of the $a b c$-Boussinesq system (1.1) converges strongly in an appropriate space to a nontrivial solitary wave for the Kadomtsev-Petviashvili equation (see [6], [12] in the case $a=\sigma, c=\frac{2}{3}, b=\frac{1}{2}$ and $p=1$). This concordance can be explained by the fact that the Benney-Luke equation and the KP equation can be derived, up to some order with respect to ϵ and μ, from the Boussinesq system (1.1),

Other results on the Boussinesq system (1.1) including the well posedness of the Cauchy problem, Strichartz type estimates and the stability of solitary wave solutions have been studied in [7], [11], [13]. The paper is organized as follows. In section 2, we present some preliminaries related with embedding lemmas and the Concentration-Compactness Theorem. In section 3, we show the existence of x-peridic travelling wave solutions with period k. In Section 4, we prove the inter-relation between special periodic travelling waves (ground states) and solitary waves. Throughout this work C denotes a generic constant whose value may change from instance to instance.

2 Preliminaries

The periodic spaces

For $k>0$ fixed, we define the following appropriate periodic spaces. For $Q \subset \mathbb{R}^{2}$, we denote $L^{q}(Q)$ with $1 \leq q \leq \infty$ as the usual Lebesgue space and $H^{s}(Q)$ denotes the usual Sobolev space. If we set $Q_{k}=\left[-\frac{k}{2}, \frac{k}{2}\right] \times \mathbb{R}$, we denote with $L_{k}^{q}\left(\mathbb{R}^{2}\right)$ to space of x-periodic with period k functions given by

$$
L_{k}^{q}\left(\mathbb{R}^{2}\right)=\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R}: f \in L^{q}\left(Q_{k}\right) \text { and } x \text {-periodic of period } k\right\}
$$

with norm

$$
\|u\|_{L_{k}^{q}\left(\mathbb{R}^{2}\right)}=\|u\|_{L^{q}\left(Q_{k}\right)}
$$

Now, let $C_{p e r}^{\infty}\left(\mathbb{R}^{2}\right)$ be the space of smooth functions which are x-periodic with period k and have compact support in y and define

$$
\mathcal{Y}_{k}=\left\{\left.\varphi\right|_{Q_{k}}: \varphi \in C_{p e r}^{\infty}\left(\mathbb{R}^{2}\right)\right\}
$$

We denote by \mathcal{V}_{k} the closure of \boldsymbol{y}_{k} with respect to the norm given by

$$
\|\psi\|_{\mathcal{V}_{k}}^{2}=\int_{Q_{k}}\left(\psi_{x}^{2}+\psi_{y}^{2}+\psi_{x x}^{2}+2 \psi_{x y}^{2}+\psi_{y y}^{2}\right) d x d y=\left\|\psi_{x}\right\|_{H^{1}\left(Q_{k}\right)}^{2}+\left\|\psi_{y}\right\|_{H^{1}\left(Q_{k}\right)}^{2}
$$

Note that $\left(\mathcal{V}_{k},\|.\|_{\mathcal{V}_{k}}\right)$ is a Hilbert space with inner product

$$
(\phi, \psi)_{\mathcal{V}_{k}}=\left(\phi_{x}, \psi_{x}\right)_{H_{k}^{1}\left(\mathbb{R}^{2}\right)}+\left(\phi_{y}, \psi_{y}\right)_{H_{k}^{1}\left(\mathbb{R}^{2}\right)}
$$

where $H_{k}^{1}\left(\mathbb{R}^{2}\right)$ is the Hilbert space of functions $\phi \in L_{k}^{2}\left(\mathbb{R}^{2}\right)$ such that $\phi_{x}, \phi_{y} \in L_{k}^{2}\left(\mathbb{R}^{2}\right)$. The space $H_{k}^{1}\left(\mathbb{R}^{2}\right)$ has the inner product given by

$$
(\phi, \psi)_{H_{k}^{1}\left(\mathbb{R}^{2}\right)}=(\phi, \psi)_{L^{2}\left(Q_{k}\right)}+\left(\phi_{x}, \psi_{x}\right)_{L^{2}\left(Q_{k}\right)}+\left(\phi_{y}, \psi_{y}\right)_{L^{2}\left(Q_{k}\right)} .
$$

We define also the Hilbert space $\mathbb{X}_{k}=H_{k}^{1}\left(\mathbb{R}^{2}\right) \times \mathcal{V}_{k}$ with respect to norm

$$
\|(\phi, \psi)\|_{\mathbb{X}_{k}}^{2}=\|\phi\|_{H_{k}^{1}}^{2}+\|\psi\|_{\mathcal{V}_{k}}^{2}
$$

Embedding

The existence of periodic travelling wave solutions requires using a compact embedding result proved by J. Quintero in [10] for the Benney-Luke equation (see also A. Pankov and K. Pflüger in [8] for the KP equation). We follow the notation and the approach used in [10]. For $q \geq 2$, we define the Banach space $\mathcal{M}^{q}(Q)$ as the closure of $C_{0}^{\infty}(Q)$ with respect to the norm given by

$$
\|\psi\|_{\mathcal{M}^{q}(Q)}^{q}=\left\|\psi_{x}\right\|_{L^{q}(Q)}^{q}+\left\|\psi_{y}\right\|_{L^{q}(Q)}^{q} .
$$

Then the following embedding results hold.
Lemma 2.1. Let $q \geq 2$. We have that the following embedding are continuous:

$$
\mathcal{V} \hookrightarrow \mathcal{M}^{q}\left(\mathbb{R}^{2}\right), \quad \mathbb{X} \hookrightarrow L^{q}\left(\mathbb{R}^{2}\right) \times \mathcal{M}^{q}\left(\mathbb{R}^{2}\right)
$$

Moreover, we also have that the following embedding are compact:

$$
\mathcal{V} \hookrightarrow \mathcal{M}_{l o c}^{q}\left(\mathbb{R}^{2}\right), \quad \mathbb{X} \hookrightarrow L_{l o c}^{q}\left(Q_{T}\right) \times \mathcal{M}_{l o c}^{q}\left(Q_{T}\right) .
$$

We note that these results are a consequence of fact that if $q \geq 2$ then the embedding $H^{1}(\mathbb{R}) \hookrightarrow L^{q}(\mathbb{R})$ is continuous and the embedding $H^{1}(\mathbb{R}) \hookrightarrow L_{l o c}^{q}(\mathbb{R})$ is compact. In the case of the space \mathcal{V}_{k} we have a similar result. To do this, we require the use of a cut-off operator to extend any function in \mathcal{V}_{k} to a function in \mathcal{V}. Let χ be a $C_{0}^{\infty}(\mathbb{R})$ cut-off function satisfying

$$
\begin{aligned}
\chi(s) & =1, \quad|s| \leq k / 2 \\
\chi(s) & =0, \quad|s| \geq(k+1) / 2 \\
\chi^{\prime}, \chi^{\prime \prime} & \leq C_{0}
\end{aligned}
$$

A. Pankov and J. Plugger considered in [8] the cut-off operator

$$
\left(P_{k} v\right)(x, y)=\partial_{x}\left[\chi(x) \partial_{x, k}^{-1} v(x, y)\right], \partial_{x, k}^{-1} v(x, y)=\int_{-k / 2}^{x} v(r, y) d r
$$

Using this operator, it is possible to establish an extension operator E_{k} from \mathbb{X}_{k} to \mathbb{X}.
Lemma 2.2. 1. Let S_{k} be the operator defined on \mathcal{V}_{k} by

$$
S_{k} v=\partial_{x}^{-1}\left[P_{k}\left(\partial_{x} v\right)\right], \partial_{x}^{-1} v(x, y)=\int_{-\infty}^{x} v(r, y) d r
$$

Then S_{k} is a uniformly bounded (with respect k) linear operator from \mathcal{V}_{k} into \mathcal{V} and $\left.S_{k} v\right|_{Q_{k}}=v$.
2. Let F_{k} be the operator defined on $H_{k}^{1}\left(\mathbb{R}^{2}\right)$ by

$$
F_{k}(u)=\chi(x) u(x, y) .
$$

Then F_{k} is a uniformly bounded (with respect k) linear operator from $H_{k}^{1}\left(\mathbb{R}^{2}\right)$ into $H^{1}\left(\mathbb{R}^{2}\right)$ and $\left.F_{k} u\right|_{Q_{k}}=u$.
3. $E_{k}=\left(F_{k}, S_{k}\right)$ defines a uniformly bounded (with respect k) linear operator from \mathbb{X}_{k} into \mathbb{X} such that $\left.E_{k}(u, v)\right|_{Q_{k}}=(u, v)$.

The first part was proved by J. Quintero in [10]. The second part is straightforward. From previous result and Lemma 2.1 we obtain the corresponding embedding in \mathcal{V}_{k} and \mathbb{X}_{k}.

Lemma 2.3. For $q \geq 2$ we have that

1. The embedding $\mathcal{V}_{k} \hookrightarrow \mathcal{M}^{q}\left(Q_{k}\right)$ is continuous with the embedding constants being uniformly bounded with respect to k and the embedding $\mathcal{V}_{k} \hookrightarrow \mathcal{M}_{l o c}^{q}\left(Q_{k}\right)$ is compact.
2. The embedding $\mathbb{X}_{k} \hookrightarrow L^{q}\left(Q_{k}\right) \times \mathcal{M}^{q}\left(Q_{k}\right)$ is continuous with the constants being uniformly bounded with respect to k and the embedding $\mathbb{X}_{k} \hookrightarrow L_{l o c}^{q}\left(Q_{k}\right) \times \mathcal{M}_{l o c}^{(q)}\left(Q_{k}\right)$ is compact.

Concentration-Compactness Principle

We will use the Concentration-Compactness Principle in the periodic case by P. L. Lions (see [3], [4]), to show the existence of a nontrivial x-periodic travelling wave solution of period k for tha $a b c$-Boussinesq system (1.1). For $\zeta \in \mathbb{R}$ and $r>0$, we define the rectangle

$$
R_{r, k}(\zeta)=\left[-\frac{k}{2}, \frac{k}{2}\right] \times[\zeta-r, \zeta+r]
$$

Theorem 2.4. (P. L. Lions, [3], [4]) Suppose $\left\{v_{m}\right\}$ is a sequence of nonnegative measures on $Q_{k} \subset \mathbb{R}^{2}$ such that

$$
\lim _{m \rightarrow \infty} \int_{Q_{k}} d v_{m}=I
$$

Then there is a subsequence of $\left\{v_{m}\right\}$ (which we denote by the same symbol) that satisfies only one of the following properties.
Vanishing. For any $r>0$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\sup _{y \in \mathbb{R}} \int_{R_{r, k}(y)} d v_{m}\right)=0 \tag{2.1}
\end{equation*}
$$

Dichotomy. There exist $\theta \in(0, \mathcal{I})$ such that for any $\gamma>0$, there are $r>0$ and a sequence
 such that

$$
\text { 1. } 0 \leq v_{m}^{1}+v_{m}^{2} \leq v_{m}
$$

2. $\operatorname{supp}\left(v_{m}^{1}\right) \subset R_{r, k}\left(y_{m}\right), \quad \operatorname{supp}\left(v_{m}^{2}\right) \subset Q_{k} \backslash R_{r^{\prime}, k}\left(y_{m}\right)$,
3. $\lim \sup _{m \rightarrow \infty}\left(\left|\theta-\int_{Q_{k}} d v_{m}^{1}\right|+\left|(\mathcal{I}-\theta)-\int_{Q_{k}} d v_{m}^{2}\right|\right) \leq \gamma$.

Compactness. There exists a sequence $\left\{y_{m}\right\}$ in \mathbb{R} such that for any $\gamma>0$, there is $r>0$ with the property that

$$
\begin{equation*}
\int_{R_{r, k}\left(\zeta_{m}\right)} d v_{m} \geq I-\gamma, \text { for all } m \tag{2.2}
\end{equation*}
$$

3 Existence of x-periodic travelling waves with period k

Let $k>0$ be fixed. In this section we will show the existence of a x-periodic travelling wave solution of period k for the $a b c$-Boussinesq system (1.1) with fixed positive values of ϵ, μ, a, b, c and wave speed ω small enough.

By a travelling wave solution for the system (1.1) we mean a solution (η, Φ) of the form

$$
\eta(x, y, t)=\frac{1}{\epsilon^{\frac{1}{p}}} u\left(\frac{x-\omega t}{\sqrt{\mu}}, \frac{y}{\sqrt{\mu}}\right), \Phi(x, y, t)=\frac{\sqrt{\mu}}{\epsilon^{\frac{1}{p}}} v\left(\frac{x-\omega t}{\sqrt{\mu}}, \frac{y}{\sqrt{\mu}}\right) .
$$

A direct computation shows that the traveling-wave system for (1.1) takes the form

$$
\begin{equation*}
\binom{-\omega(I-b \Delta) u_{x}+(I-c \Delta) \Delta v+\nabla \cdot\left(u\left(v_{x}^{p}, v_{y}^{p}\right)\right)}{-\omega(I-b \Delta) v_{x}+(I-a \Delta) u+\frac{1}{p+1}\left(v_{x}^{p+1}+v_{y}^{p+1}\right)}=\binom{0}{0} . \tag{3.1}
\end{equation*}
$$

We follow a variational approach by characterization travelling wave as minimizer of a functional under a suitable constrain. As happens in the case of solitons for the $a b c$ Boussinesq system in [12], x-periodic travelling waves (u, v) for (3.1) are critical points of the functional $J_{\omega, k}$ given by

$$
J_{\omega, k}(u, v)=I_{k}(u, v)+\frac{2}{p+1} G_{k}(u, v),
$$

where the functionals I_{k} and G_{k} are defined on the space \mathbb{X}_{k} by

$$
\begin{aligned}
I_{k}(u, v) & =\int_{Q_{k}}\left(u^{2}+a|\nabla u|^{2}+|\nabla v|^{2}+c(\Delta v)^{2}-2 \omega u v_{x}-2 b \omega u_{x} \Delta v\right) d x d y \\
G_{k}(u, v) & =\int_{Q_{k}} u\left(v_{x}^{p+1}+v_{y}^{p+1}\right) d x d y
\end{aligned}
$$

First we have that $I_{k}, G_{k}, J_{\omega, k} \in C^{2}\left(\mathbb{X}_{k}, \mathbb{R}\right)$ and a direct computation shows that

$$
J_{\omega, k}^{\prime}(u, v)=2\binom{u-a \Delta u-\omega(I-b \Delta) v_{x}+\frac{1}{p+1}\left(v_{x}^{p+1}+v_{y}^{p+1}\right)}{c \Delta^{2} v-\Delta v+\omega(I-b \Delta) u_{x}-\nabla \cdot\left(u\left(v_{x}^{p}, v_{y}^{p}\right)\right)},
$$

meaning that critical points of the functional $J_{\omega, k}$ satisfy the travelling wave system (3.1). Hereafter, we will say that solutions for (3.1) are critical points of the functional $J_{\omega, k}$. In particular, we have that

$$
\begin{equation*}
\left\langle J_{\omega, k}^{\prime}(u, v),(u, v)\right\rangle=2 I_{k}(u, v)+\frac{2(p+2)}{p+1} G_{k}(u, v) . \tag{3.2}
\end{equation*}
$$

On the other hand, one can see easily that the functional G_{k} is well-defined on \mathbb{X}_{k}. By using Young's inequality and Lemma 2.3 we have that there is a constant $C>0$ (not depending on k) such that

$$
\begin{equation*}
\left|G_{k}(u, v)\right| \leq C\left(\|u\|_{L^{p+2}\left(Q_{k}\right)}^{p+2}+\|v\|_{\mathcal{M}^{p+2}\left(Q_{k}\right)}^{p+2}\right) \leq C\|(u, v)\|_{\mathbb{X}_{k}}^{p+2} . \tag{3.3}
\end{equation*}
$$

As in the case of solitary wave solutions, to establish the existence of a travelling wave solution in the space \mathbb{X}_{k} for the system (1.1) we consider the following minimization problem

$$
\begin{equation*}
I_{k}(\omega):=\inf \left\{I_{k}(u, v):(u, v) \in X_{k} \text { with } G_{k}(u, v)=(-1)^{p+1}\right\} . \tag{3.4}
\end{equation*}
$$

The first observation is that
Lemma 3.1. Let $k>0$ and $0<\omega<\min \left\{1, \frac{a}{b}, \frac{c}{b}\right\}$. Then the functional I_{k} is nonnegative and there are positive constants $C_{1}(a, b, c, \omega)<C_{2}(a, b, c, \omega)$ such that

$$
\begin{equation*}
C_{1}(a, b, c, \omega) I_{k}(u, v) \leq\|(u, v)\|_{\mathcal{X}_{k}}^{2} \leq C_{2}(a, b, c, \omega) I_{k}(u, v) \tag{3.5}
\end{equation*}
$$

Proof. From the definition of I_{k} and Young's inequality we obtain that

$$
\begin{aligned}
I_{k}(u, v) & \leq \int_{Q_{k}}\left((1+\omega) u^{2}+(a+b \omega) u_{x}^{2}+a u_{y}^{2}+(1+\omega) v_{x}^{2}+v_{y}^{2}+(c+b \omega)(\Delta v)^{2}\right) d x d y \\
& \leq \max (1+\omega, a+b \omega, a, 1+\omega, c+b \omega)\|(u, v)\|_{\mathbb{X}_{k}}^{2}
\end{aligned}
$$

In a similar way, we have that

$$
\begin{aligned}
I_{k}(u, v) & \geq \int_{Q_{k}}\left((1-\omega) u^{2}+(a-b \omega) u_{x}^{2}+a u_{y}^{2}+(1-\omega) v_{x}^{2}+v_{y}^{2}+(c-b \omega)(\Delta v)^{2}\right) d x d y \\
& \geq \min (1-\omega, a-b \omega, a, 1-\omega, c-b \omega)\|(u, v)\|_{\mathbb{X}_{k}}^{2}
\end{aligned}
$$

showing that the inequality (3.5) holds.
We see directly from Lagrange multipliers, the following result:
Lemma 3.2. For any $k>0, I_{k}(\omega)$ is finite and positive. Moreover, If $\left(u_{0}, v_{0}\right)$ is a minimizer for $\mathcal{I}_{k}(\omega)$, then $(u, v)=\beta\left(u_{0}, v_{0}\right)$ is a nontrivial solution of (3.1) for $(-\beta)^{p}=\left(\frac{p+1}{p+2}\right) \mathcal{I}_{k}$.
Proof. It is easy to see that there is $(u, v) \in C_{0}^{\infty}\left(Q_{k}\right) \times C_{0}^{\infty}\left(Q_{k}\right)$ such that

$$
G_{k}(u, v)=(-1)^{p+1}
$$

On the other hand, from inequality (3.3) we have that there is $C>0$ such that for any $(u, v) \in \mathbb{X}_{k}$,

$$
1=\left|G_{k}(u, v)\right| \leq C\left(\|u\|_{L^{p+2}\left(Q_{k}\right)}^{p+2}+\|v\|_{\mathcal{M}^{p+2}\left(Q_{k}\right)}^{p+2}\right) \leq C\|(u, v)\|_{\mathbb{X}_{k}}^{p+2}
$$

meaning that $I_{k}(u, v) \geq C$, and so that the infimum $I_{k}(\omega)$ is finite and positive. Now, by the Lagrange Theorem there is a multiplier λ such that for any $(w, z) \in \mathbb{X}_{k}$,

$$
\begin{equation*}
\left\langle I_{k}^{\prime}\left(u_{0}, v_{0}\right),(w, z)\right\rangle-\lambda\left\langle G_{k}^{\prime}\left(u_{0}, v_{0}\right),(w, z)\right\rangle=0 \tag{3.6}
\end{equation*}
$$

Taking $(w, z)=\left(u_{0}, v_{0}\right)$, we obtain that

$$
0=\left\langle I_{k}^{\prime}\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right\rangle-\lambda\left\langle G_{k}^{\prime}\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right\rangle=2 I_{k}\left(u_{0}, v_{0}\right)-\lambda(p+2) G_{k}\left(u_{0}, v_{0}\right)
$$

Since $G_{k}\left(u_{0}, v_{0}\right)=(-1)^{p+1}$ and $I_{k}\left(u_{0}, v_{0}\right)=\mathcal{I}_{k}$, we have that $\lambda=(-1)^{p+1}\left(\frac{2}{p+2}\right) \mathcal{I}_{k}$. Moreover, for $(u, v)=\beta\left(u_{0}, v_{0}\right)$, we see that

$$
\left\langle I_{k}^{\prime}(u, v),(u, v)\right\rangle-\lambda \beta^{-p}\left\langle G_{k}^{\prime}(u, v),(u, v)\right\rangle=0
$$

Then, if we choose β to be

$$
-\lambda \beta^{-p}=\frac{2}{p+1} \Leftrightarrow(-1)^{p}\left(\frac{p+1}{p+2}\right) \mathcal{I}_{k}=\beta^{p} \Leftrightarrow\left(\frac{p+1}{p+2}\right) \mathcal{I}_{k}=(-\beta)^{p}
$$

then we have that (u, v) is a nontrivial solution of (3.1).
Now to use the Concentration-Compactness Principle, let us define positive measures $\left\{v_{m}\right\}$ by $d v_{m}=\rho_{m} d x d y$, where ρ_{m} is the density defined by

$$
\begin{equation*}
\rho_{m}=u_{m}^{2}+a\left|\nabla u_{m}\right|^{2}+\left|\nabla v_{m}\right|^{2}+c\left(\Delta v_{m}\right)^{2}-2 \omega u_{m} \partial_{x} v_{m}-2 b \omega \partial_{x} u_{m} \Delta v_{m} \tag{3.7}
\end{equation*}
$$

where we are assuming that $\left\{\left(u_{m}, v_{m}\right)\right\}$ in \mathbb{X}_{k} is a minimizing sequence for $\mathcal{I}_{k}(\omega)$. From Theorem 2.4, we know that there exists a subsequence of $\left\{v_{m}\right\}$ that satisfies either vanishing, or dichotomy, or compactness. We will see that vanishing and dichotomy can be ruled out.

Lemma 3.3. Let $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ be a bounded sequence in \mathbb{X}_{k}. If there exists $r>0$ such that

$$
\lim _{m \rightarrow \infty}\left(\sup _{y \in \mathbb{R}} \int_{R_{r, k}(y)} d v_{m}\right)=0
$$

Then we have that

$$
\lim _{m \rightarrow \infty} G_{k}\left(u_{m}, v_{m}\right)=0
$$

In particular, if $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ is a minimizing sequence for $\mathcal{I}_{k}(\omega)$, then vanishing is ruled out. Proof. Is easy to see that for some positive constant $C=C(a, b, c, \omega)$

$$
\left\|u_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{2}+\left\|\nabla v_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{2} \leq C \int_{R_{r, k}(y)} \rho_{m} d x d y=C \int_{R_{r, k}(y)} d v_{m}
$$

Now, we need to recall that the embedding $H^{1}\left(R_{r, k}(y)\right) \hookrightarrow L^{p+2}\left(R_{r, k}(y)\right)$ is continuous, and so we obtain that

$$
\begin{aligned}
\int_{R_{r, k}(y)} u_{m}\left(\left(\partial_{x} v_{m}\right)^{p+1}+\right. & \left.\left(\partial_{y} v_{m}\right)^{p+1}\right) d x d y \\
& \leq C\left(\left\|u_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{p+2}+\left\|\nabla v_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{p+2}\right) \\
& \leq C\left[\left\|u_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{p+1}+\left\|\nabla v_{m}\right\|_{H^{1}\left(R_{r, k}(y)\right)}^{p+1}\right]\left(\int_{R_{r, k}(y)} d v_{m}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Covering Q_{k} by a countable number of rectangles such that every point in Q_{k} is contained in at most three rectangles $R_{r, k}(y)$, we see that

$$
\begin{aligned}
\int_{Q_{k}} u_{m}\left(\left(\partial_{x} v_{m}\right)^{p+1}+\right. & \left.\left(\partial_{y} v_{m}\right)^{p+1}\right) d x d y \\
& \leq 3 C\left(\left\|u_{m}\right\|_{H^{1}\left(Q_{k}\right)}^{p+1}+\left\|\nabla v_{m}\right\|_{H^{1}\left(Q_{k}\right)}^{p+1}\right)\left(\sup _{y \in \mathbb{R}} \int_{R_{r, k}(y)} d v_{m}\right)^{1 / 2} \\
& \leq 3 C\left(I_{k}\left(u_{m}, v_{m}\right)\right)^{\frac{p+1}{2}}\left(\sup _{y \in \mathbb{R}} \int_{R_{r, k}(y)} d v_{m}\right)^{1 / 2}
\end{aligned}
$$

Using (3.5) and that $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ is a bounded sequence in \mathbb{X}_{k} we conclude that

$$
\lim _{m \rightarrow \infty} \int_{Q_{k}} u_{m}\left(\left(\partial_{x} v_{m}\right)^{p+1}+\left(\partial_{y} v_{m}\right)^{p+1}\right) d x d y=0
$$

Now, if $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ is a minimizing sequence for $\mathcal{I}_{k}(\omega)$ then we have that $G\left(u_{m}, v_{m}\right)=$ $(-1)^{p+1}$, but from the previous fact we obtain a contradiction.

To rule out dichotomy, we will establish a splitting result for a sequence $\left\{\left(u_{m}, v_{m}\right)\right\}$ in \mathbb{X}_{k}. Fix a function $\phi \in C_{0}^{\infty}\left(\mathbb{R}, \mathbb{R}^{+}\right)$such that $\operatorname{supp} \phi \subset[-2,2]$ and $\phi \equiv 1$ in $[-1,1]$. If $r>0$ and $y_{0} \in \mathbb{R}$, we define a split for $(u, v) \in \mathbb{X}_{k}$ given by

$$
u=u_{r}^{1}+u_{r}^{2} \text { and } v=v_{r}^{1}+v_{r}^{2}
$$

where

$$
u_{r}^{1}=u \phi_{r}, \quad u_{r}^{2}=u\left(1-\phi_{r}\right), \quad v_{R}^{1}=\left(v-a_{r}\right) \phi_{r}, v_{r}^{2}=\left(v-a_{r}\right)\left(1-\phi_{r}\right)+a_{r},
$$

with

$$
\phi_{r}(y)=\phi\left(\frac{y-y_{0}}{r}\right)
$$

and

$$
a_{r}=\frac{1}{\operatorname{vol}\left(A_{r}\left(y_{0}\right)\right)} \int_{A_{r}\left(y_{0}\right)} v(x, y) d x d y, \quad A_{r}\left(y_{0}\right)=R_{2 r, k}\left(y_{0}\right) \backslash R_{r, k}\left(y_{0}\right) .
$$

We note that the decomposition of v is non standard and reflects the nature of the space \mathcal{V}_{k}. As a consequence of the coming result we will obtain that dichotomy is not possible.

Lemma 3.4. Let $r_{m}>0$ and $\left\{y_{m}\right\}$ in \mathbb{R} be sequences. Define $A(m)=A_{r_{m}}\left(y_{m}\right)$ and $\phi_{m}(y)=$ $\phi\left(\frac{y-y_{m}}{r_{m}}\right)$. If

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left(\int_{A(m)} d v_{m}\right)=0 \tag{3.8}
\end{equation*}
$$

Then we have that

$$
\begin{align*}
\lim _{m \rightarrow \infty}\left[I_{k}\left(u_{m}, v_{m}\right)-I_{k}\left(u_{m}^{1}, v_{m}^{1}\right)-I_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right] & =0, \tag{3.9}\\
\lim _{m \rightarrow \infty}\left[G_{k}\left(u_{m}, v_{m}\right)-G_{k}\left(u_{m}^{1}, v_{m}^{1}\right)-G_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right] & =0 . \tag{3.10}
\end{align*}
$$

For the proof, we see details in the work [12] in the case of solitary wave solutions. Using this result, we have that

Lemma 3.5. Let $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ be a minimizing sequence for $\mathcal{I}_{k}(\omega)$. Then dichotomy is not possible.

Proof. Assume that dichotomy occurs, then we can choose sequences $\gamma_{m} \rightarrow 0$ and $r_{m} \rightarrow \infty$ such that

$$
\begin{equation*}
\operatorname{supp}\left(v_{m}^{1}\right) \subset R_{r_{m}, k}\left(y_{m}\right), \quad \operatorname{supp}\left(v_{m}^{2}\right) \subset Q_{k} \backslash R_{2 r_{m}, k}\left(y_{m}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left(\left|\theta-\int_{Q_{k}} d v_{m}^{1}\right|+\left|\left(I_{k}-\theta\right)-\int_{Q_{k}} d v_{m}^{2}\right|\right)=0 \tag{3.12}
\end{equation*}
$$

Using these facts, we see that

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left(\int_{A(m)} d v_{m}\right)=0 \tag{3.13}
\end{equation*}
$$

Now, from (3.13) and Lemma 3.4 we have that the splitting limits (3.9) and (3.10) hold and conclude that

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left[I_{k}\left(u_{m}, v_{m}\right)-I_{k}\left(u_{m}^{1}, v_{m}^{1}\right)-I_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right] & =0 \\
\lim _{m \rightarrow \infty}\left[G_{k}\left(u_{m}, v_{m}\right)-G_{k}\left(u_{m}^{1}, v_{m}^{1}\right)-G_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right] & =0
\end{aligned}
$$

Now, let $\lambda_{m, i}=G_{k}\left(u_{m}^{i}, v_{m}^{i}\right)$, for $i=1,2$. Passing to a subsequence, if necessary, we have that $\lambda_{i}:=\lim _{m \rightarrow \infty} \lambda_{m, i}$ exists. We claim that $\lambda_{i} \neq 0$. To see this, suppose that $\lim _{m \rightarrow \infty} \lambda_{m, 1}=0$, then $\lim _{m \rightarrow \infty} \lambda_{m, 2}=(-1)^{p+1}$ (we proceed in a similar way in the other case). Then we conclude that $\lambda_{m, 2} \neq 0$, for m large enough. Now, if we define

$$
\left(w_{m}, z_{m}\right)=(-1)^{\frac{p+1}{p+2}} \lambda_{m, 2}^{-\frac{1}{p+2}}\left(u_{m}^{2}, v_{m}^{2}\right)
$$

then, we have that

$$
\left(w_{m}, z_{m}\right) \in \mathbb{X}_{k}, \quad G_{k}\left(w_{m}, z_{m}\right)=(-1)^{p+1}
$$

On the other hand, using the characterization $I_{k}(\omega)$,

$$
\begin{aligned}
\mathcal{I}_{k}(\omega) & =\lim _{m \rightarrow \infty}\left(I_{k}\left(u_{m}^{1}, v_{m}^{1}\right)+I_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right) \\
& \geq \lim _{m \rightarrow \infty}\left(\int_{R_{r_{m}, k}\left(y_{m}\right)} d v_{m}^{1}+\lambda_{m, 2}^{\frac{2}{p+2}} I_{k}\left(w_{m}, z_{m}\right)\right) \\
& \geq \lim _{m \rightarrow \infty}\left(\int_{Q_{k}} d v_{m}^{1}+\lambda_{m, 2}^{\frac{2}{p+2}} I_{k}(\omega)\right) \\
& =\theta+I_{k}(\omega)
\end{aligned}
$$

In other words, $\left|\lambda_{m, i}\right|>0$ for m large enough and $i=1,2$. Then we are allowed to define

$$
\left(w_{m, i}, z_{m, i}\right)=(-1)^{\frac{p+1}{p+2}} \lambda_{m, i}^{-\frac{1}{p+2}}\left(u_{m}^{i}, v_{m}^{i}\right), \quad i=1,2
$$

As above, we also have that $\left(w_{m, i}, z_{m, i}\right) \in \mathbb{X}_{k}$ and $G_{k}\left(w_{m, i}, z_{m, i}\right)=(-1)^{p+1}$. Then using the same argument as above, we conclude that

$$
\begin{aligned}
\mathcal{I}_{k}(\omega) & =\lim _{m \rightarrow \infty}\left(I_{k}\left(u_{m}^{1}, v_{m}^{1}\right)+I_{k}\left(u_{m}^{2}, v_{m}^{2}\right)\right) \\
& =\lim _{m \rightarrow \infty}\left(\left|\lambda_{m, 1}\right|^{\frac{2}{p+2}} I_{k}\left(w_{m, 1}, z_{m, 1}\right)+\left|\lambda_{m, 2}\right|^{\frac{2}{p+2}} I_{k}\left(w_{m, 2}, z_{m, 2}\right)\right) \\
& \geq\left(\left|\lambda_{1}\right|^{\frac{2}{p+2}}+\left|\lambda_{2}\right|^{\frac{2}{p+2}}\right) I_{k}(\omega) .
\end{aligned}
$$

From this fact, we conclude that

$$
1 \geq\left|\lambda_{1}\right|^{\frac{2}{p+2}}+\left|\lambda_{2}\right|^{\frac{2}{p+2}} \geq\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|\right)^{\frac{2}{p+2}} \geq\left|\lambda_{1}+\lambda_{2}\right|^{\frac{2}{p+2}}=1
$$

Hence, $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=1$, and also that

$$
\begin{equation*}
\left|\lambda_{1}\right|^{\frac{2}{p+2}}+\left|\lambda_{2}\right|^{\frac{2}{p+2}}=\left(\left|\lambda_{1}\right|+\left.\left|\lambda_{2}\right|\right|^{\frac{2}{p+2}}\right. \tag{3.14}
\end{equation*}
$$

which is a contradiction, since the function $f(t)=t^{\frac{2}{p+2}}$ is strictly concave on \mathbb{R}^{+}. In other words, we have ruled out dichotomy.

Now we will show the main result in this section: the existence of a minimizer for $\mathcal{I}_{k}(\omega)$, which implies the existence of solutions for the system (3.1) in the space \mathbb{X}_{k}.

Theorem 3.6. If $\left\{\left(u_{m}, v_{m}\right)\right\}$ is a minimizing sequence for $\mathcal{I}_{k}(\omega)$, then there is a subsequence (which we denote by the same symbol), a sequence of points $\left\{y_{m}\right\}$ in \mathbb{R}, and a minimizer $\left(u_{0}, v_{0}\right) \in \mathbb{X}_{k}$ for $I_{k}(\omega)$, such that the translated functions

$$
\left(\tilde{u}_{m}(x, y), \tilde{v}_{m}(x, y)\right)=\left(u_{m}\left(x, y+y_{m}\right), v_{m}\left(x, y+y_{m}\right)\right)
$$

converge to $\left(u_{0}, v_{0}\right)$ strongly in \mathbb{X}_{k}.
Proof. Let $\left\{\left(u_{m}, v_{m}\right)\right\}$ be a minimizing sequence for $\mathcal{I}_{k}(\omega)$. This is,

$$
\lim _{m \rightarrow \infty} I_{k}\left(u_{m}, v_{m}\right)=I_{k}(\omega) \quad \text { and } \quad G_{k}\left(u_{m}, v_{m}\right)=(-1)^{p+1}
$$

Since we ruled out vanishing and dichotomy above for a minimizing sequence of $\mathcal{I}_{k}(\omega)$, then by P. L. Lion's Concentration-Compactness Theorem, there exists a subsequence of $\left\{v_{m}\right\}$ (which we denote by the same symbol) satisfying compactness. Then, there exists a sequence $\left\{y_{m}\right\}$ in \mathbb{R} such that for a given $\gamma>0$, there exists $r>0$ with the following property,

$$
\begin{equation*}
\int_{R_{r, k}\left(y_{m}\right)} d v_{m} \geq I_{k}(\omega)-\gamma, \text { for all } m \in \mathbb{Z}^{+} \tag{3.15}
\end{equation*}
$$

Using this we may localize the minimizing sequence $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ around the origin by defining the translation in the y variable

$$
\tilde{\rho}_{m}(x, y)=\rho_{m}\left(x, y+y_{m}\right), \quad\left(\tilde{u}_{m}, \tilde{v}_{m}\right)(x, y)=\left(u_{m}, v_{m}\right)\left(x, y+y_{m}\right)
$$

Thus, we have the following localized inequality

$$
\begin{equation*}
\int_{R_{r, k}(0)} \tilde{\rho}_{m} d x d y=\int_{R_{r, k}\left(y_{m}\right)} d v_{m} \geq \mathcal{I}_{k}(\omega)-\gamma, \quad \text { for all } m \in \mathbb{Z}^{+} \tag{3.16}
\end{equation*}
$$

and also that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} I_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)=\lim _{m \rightarrow \infty} I_{k}\left(u_{m}, v_{m}\right)=I_{k}(\omega), G_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)=G_{k}\left(u_{m}, v_{m}\right)=(-1)^{p+1} \tag{3.17}
\end{equation*}
$$

From previous fact and by (3.5), we note that $\left\{\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right\}_{m}$ is a bounded sequence in \mathbb{X}_{k}. On the other hand, since $\tilde{u}_{m}, \nabla \tilde{v}_{m} \in H^{1}(U)$ for any bounded open set $U \subset Q_{k}$ and the embedding $H^{1}(U) \hookrightarrow L^{q}(U)$ is compact for $q \geq 2$, then there exist a subsequence of $\left\{\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right\}_{m}$ (which we denote the same) and ($\left.u_{0}, v_{0}\right) \in \mathbb{X}_{k}$ such that for $i=1,2$,

$$
\begin{gathered}
\tilde{u}_{m} \rightharpoonup u_{0} \quad \text { in } \quad H^{1}\left(Q_{k}\right), \tilde{u}_{m} \rightarrow u_{0} \quad \text { in } \\
L^{2}\left(Q_{k}\right), \\
\tilde{v}_{m} \rightharpoonup v_{0}
\end{gathered} \text { in } \quad \mathcal{V}_{k}, \partial_{i} \tilde{v}_{m} \rightharpoonup v_{0} \quad \text { in } \quad L^{2}\left(Q_{k}\right), ~ \$
$$

and we also have that

$$
\tilde{u}_{m} \rightarrow u_{0} \quad \text { in } \quad L_{l o c}^{2}\left(Q_{k}\right), \partial_{i} \tilde{v}_{m} \rightarrow \partial_{i} v_{0} \quad \text { in } \quad L_{l o c}^{2}\left(Q_{k}\right) .
$$

Moreover,

$$
\tilde{u}_{m} \rightarrow u_{0} \text { a.e. in } Q_{k}, \partial_{i} \tilde{v}_{m} \rightarrow \partial_{i} v_{0} \text { a.e in } Q_{k} \text { for } i=1,2
$$

Using these facts we will show that some subsequence of $\left\{\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right\}_{m}$ (which we denote in the same way) converges strongly in \mathbb{X}_{k} to a nontrivial minimizer (u_{0}, v_{0}) of (3.4). We first see that

$$
\begin{equation*}
\tilde{u}_{m} \rightarrow u_{0}, \quad \partial_{i} \tilde{v}_{m} \rightarrow \partial_{i} v_{0} \text { in } L^{2}\left(Q_{k}\right) \tag{3.18}
\end{equation*}
$$

In fact, using (3.16), (3.17) and the definition of I_{k} we have that for $\gamma>0$, there exists $r>0$ such that for m large enough,

$$
\int_{R_{r, k}(0)}\left|\tilde{u}_{m}\right|^{2} d x d y \geq \int_{Q_{k}}\left|\tilde{u}_{m}\right|^{2} d x d y-2 \gamma
$$

Then we have that

$$
\begin{aligned}
\int_{Q_{k}}\left|u_{0}\right|^{2} d x d y & \leq \liminf _{m \rightarrow \infty} \int_{Q_{k}}\left|\tilde{u}_{m}\right|^{2} d x d y \\
& \leq \liminf _{m \rightarrow \infty} \int_{R_{r k}(0)}\left|\tilde{u}_{m}\right|^{2} d x d y+2 \gamma \\
& =\int_{R_{r, k}(0)}\left|u_{0}\right|^{2} d x d y+2 \gamma \\
& \leq \int_{Q_{k}}\left|u_{0}\right|^{2} d x d y+2 \gamma
\end{aligned}
$$

Therefore

$$
\liminf _{m \rightarrow \infty} \int_{Q_{k}}\left|\tilde{u}_{m}\right|^{2} d x d y=\int_{Q_{k}}\left|u_{0}\right|^{2} d x d y .
$$

Thus, there exist a subsequence of $\left\{\tilde{u}_{m}\right\}$ such that $\tilde{u}_{m} \rightarrow u_{0}$ in $L^{2}\left(Q_{k}\right)$. Using a similar argument we prove the other part of (3.18). Moreover, also we can see that

$$
\begin{equation*}
\partial_{i} \tilde{u}_{m} \rightarrow \partial_{i} u_{0}, \quad \partial_{i j} \tilde{v}_{m} \rightarrow \partial_{i j} v_{0} \quad \text { in } \quad L^{2}\left(Q_{k}\right) \tag{3.19}
\end{equation*}
$$

Now, using (3.18)-(3.19) and that the inclusion $H^{1}\left(Q_{k}\right) \hookrightarrow L^{q}\left(Q_{k}\right)$ is continuous for $q \geq 2$, we have that

$$
\begin{equation*}
G_{k}\left(u_{0}, v_{0}\right)=\lim _{m \rightarrow \infty} G_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)=(-1)^{p+1} . \tag{3.20}
\end{equation*}
$$

In fact, for $j=1,2$, we have that

$$
\begin{aligned}
& \int_{Q_{k}}\left(\tilde{u}_{m}\left(\partial_{j} \tilde{v}_{m}\right)^{p+1}-u_{0}\left(\partial_{j} v_{0}\right)^{p+1}\right) d x d y \\
&=\int_{Q_{k}}\left[\left(\tilde{u}_{m}-u_{0}\right)\left(\partial_{j} \tilde{v}_{m}\right)^{p+1}+u_{0}\left(\left(\partial_{j} \tilde{v}_{m}\right)^{p+1}-\left(\partial_{j} v_{0}\right)^{p+1}\right)\right] d x d y
\end{aligned}
$$

Now, we have that

$$
\begin{aligned}
\int_{Q_{k}}\left(\tilde{u}_{m}-u_{0}\right)\left(\partial_{j} \tilde{v}_{m}\right)^{p+1} d x d y & \leq\left\|\tilde{u}_{m}-u_{0}\right\|_{L^{2}\left(Q_{k}\right)}\left\|\partial_{j} \tilde{v}_{m}\right\|_{L^{2(p+1)}}^{p+1} \\
& \leq C\left\|\tilde{u}_{m}-u_{0}\right\|_{L^{2}\left(Q_{k}\right)}\left(I_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right)^{\frac{p+1}{2}}
\end{aligned}
$$

On the other hand we also have, after using Hölder inequality, that

$$
\begin{aligned}
\int_{Q_{k}}\left|u_{0}\left(\left(\partial_{j} \tilde{v}_{m}\right)^{p+1}-\left(\partial_{j} v_{0}\right)^{p+1}\right)\right| d x d y & \leq C \int_{Q_{k}}\left|u_{0}\right|\left|\partial_{j} \tilde{v}_{m}-\partial_{j} v_{0}\right|\left(\left|\partial_{j} \tilde{v}_{m}\right|^{p}+\left|\partial_{j} v_{0}\right|^{p}\right) d x d y \\
& \leq C\left\|\partial_{j}\left(\tilde{v}_{m}-v_{0}\right)\right\|_{L^{2}\left(Q_{k}\right)}\left\|\partial_{j}\left(\tilde{v}_{m}+v_{0}\right)\right\|_{L^{4 p}\left(Q_{k}\right)}^{p}\left\|u_{0}\right\|_{L^{4}\left(Q_{k}\right)} \\
& \leq C\left\|\partial_{j}\left(\tilde{v}_{m}-v_{0}\right)\right\|_{L^{2}\left(Q_{k}\right)}\left\|\partial_{j}\left(\tilde{v}_{m}+v_{0}\right)\right\|_{H^{1}\left(Q_{k}\right)}^{p}\left\|u_{0}\right\|_{H^{1}\left(Q_{k}\right)} \\
& \leq C\left\|\partial_{j}\left(\tilde{v}_{m}-v_{0}\right)\right\|_{L^{2}\left(Q_{k}\right)}\left(I_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)+I_{k}\left(u_{0}, v_{0}\right)\right)^{p+1}{ }^{\frac{p 1}{2}}
\end{aligned}
$$

Then we conclude that (3.20) holds, which implies that $\left(u_{0}, v_{0}\right) \neq(0,0)$. On the other hand, from (3.18)-(3.19), we can see that

$$
\lim _{m \rightarrow \infty} I_{k}\left(\tilde{u}_{m}, \tilde{v}_{m}\right)=I_{k}\left(u_{0}, v_{0}\right)=I_{k}(\omega), \quad \lim _{m \rightarrow \infty} I_{k}\left(\tilde{u}_{m}-u_{0}, \tilde{v}_{m}-v_{0}\right)=0 .
$$

Moreover, the sequence $\left\{\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right\}_{m}$ converges to $\left(u_{0}, v_{0}\right)$ in \mathbb{X}_{k}, since

$$
\left\|\left(\tilde{u}_{m}-u_{0}, \tilde{v}_{m}-v_{0}\right)\right\|_{\mathbb{X}_{k}} \leq C_{1} I_{k}\left(u_{m}-u_{0}, v_{m}-v_{0}\right)
$$

Then we concluded that $\left\{\left(\tilde{u}_{m}, \tilde{v}_{m}\right)\right\}$ converges to $\left(u_{0}, v_{0}\right)$ in \mathbb{X}_{k} and $\left(u_{0}, v_{0}\right)$ is a minimizer for $I_{k}(\omega)$.

Combining Lemma 3.2 and Theorem 3.6 we obtain the following corollary.
Corollary 3.7. Let $k>0$ and $0<\omega<\min \left\{1, \frac{a}{b}, \frac{c}{b}\right\}$. Then the abc-Boussinesq system (1.1) has a nontrivial x-periodic travelling wave solution of period k in the space \mathbb{X}_{k}.

4 Inter-relation between periodic travelling waves and solitons

In this section we will show that a special sequence of x-periodic travelling wave solutions parameterized by the period k converges to a solitary wave in a appropriate sense as the $k \rightarrow \infty$. This result in particular shows that the shape of x-periodic travelling wave solutions are "similar" to the shape of solitons, as the period $k \rightarrow \infty$.

Before we go further, we discuss the results for solitary wave solutions,

On the solitons for the $a b c$-Boussinesq system

Recently in [12] for the case $a=\sigma, b=\frac{1}{2}$ and $c=\frac{2}{3}$, J. Quintero and A. Montes showed the existence of solitary wave solutions (solitons) in the energy space $\mathbb{X}=H^{1}\left(\mathbb{R}^{2}\right) \times \mathcal{V}$ via the Concentration-Compactness Principle by P. Lions (see [3], [4]). By following the same approach, it is possible to prove the existence of solitons for the $a b c$-Boussinesq system in the energy space $\mathbb{X}=H^{1}\left(\mathbb{R}^{2}\right) \times \mathcal{V}$ by considering the following minimization problem

$$
\begin{equation*}
\mathcal{I}(\omega):=\inf \left\{I(u, v):(u, v) \in \mathbb{X} \text { with } G(u, v)=(-1)^{p+1}\right\}, \tag{4.1}
\end{equation*}
$$

where the energy I and the constraint G are functionals defined in \mathbb{X} given by

$$
\begin{align*}
I(u, v) & =\int_{\mathbb{R}^{2}}\left(u^{2}+a|\nabla u|^{2}+|\nabla v|^{2}+c(\Delta v)^{2}-2 \omega u v_{x}-2 b \omega u_{x} \Delta v\right) d x d y, \tag{4.2}\\
G(u, v) & =\int_{\mathbb{R}^{2}} u\left(v_{x}^{p+1}+v_{y}^{p+1}\right) d x d y . \tag{4.3}
\end{align*}
$$

The existence of solitons for the $a b c$-Boussinesq system is obtained by adapting the results in [12]. In particular, we have the following results,

Lemma 4.1. If $\left(u_{0}, v_{0}\right)$ is a minimizer for the problem (4.1), then $(u, v)=\beta\left(u_{0}, v_{0}\right)$ is a nontrivial solution of (3.1) for $(-\beta)^{p}=\left(\frac{p+1}{p+2}\right) \mathcal{I}(\omega)$.

Lemma 4.2. Let $0<\omega<\min \left\{1, \frac{a}{b}, \frac{c}{b}\right\}$. Then the functional I is nonnegative and there are positive constants $C_{1}(a, b, c, \omega)<C_{2}(a, b, c, \omega)$ such that

$$
\begin{equation*}
C_{1}(a, b, c, \omega) I(u, v) \leq\|(u, v)\|_{\mathbb{X}}^{2} \leq C_{2}(a, b, c, \omega) I(u, v) . \tag{4.4}
\end{equation*}
$$

Furthermore, $\mathcal{I}(\omega)$ is finite and positive.
Lemma 4.3. Let $0<\omega<\min \left\{1, \frac{a}{b}, \frac{c}{b}\right\}$. If $\left\{\left(u_{m}, v_{m}\right)\right\}$ is a minimizing sequence for (4.1), then there is a subsequence (which we denote by the same symbol), a sequence of points $\left(x_{m}, y_{m}\right) \in \mathbb{R}^{2}$, and a minimizer $\left(u_{0}, v_{0}\right) \in \mathbb{X}$ of (4.1), such that the translated functions

$$
\left(\tilde{u}_{m}(x, y), \tilde{v}_{m}(x, y)\right)=\left(u_{m}\left(x+x_{m}, y+y_{m}\right), v_{m}\left(x+x_{m}, y+y_{m}\right)\right)
$$

converge to $\left(u_{0}, v_{0}\right)$ strongly in \mathbb{X}.

A variational approach

We will consider ground state travelling waves, meaning x-periodic travelling waves $\left(u_{k}, v_{k}\right)$ of period k for the $a b c$-Boussinesq system (1.1) which minimize the problem

$$
\begin{equation*}
\mathbb{J}_{k}(\omega)=J_{\omega, k}\left(u_{k}, v_{k}\right)=\inf \left\{J_{\omega, k}(u, v):(u, v) \in \mathbb{X}_{k} \text { with } \Lambda_{k}(u, v)=0\right\}, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{k}(u, v)=\left\langle J_{\omega, k}^{\prime}(u, v),(u, v)\right\rangle=2 I_{k}(u, v)+\frac{2(p+2)}{p+1} G_{k}(u, v) \tag{4.6}
\end{equation*}
$$

Note that the condition $\Lambda_{k}(u, v)=0$ is just a "artificial constraint" for minimizing the functional $J_{\omega, k}$ on \mathbb{X}_{k}. It is important to observe that the infimum in (4.5) is being taken in a
nonempty class. To see this, we choose $\phi, \psi \in C_{0}^{\infty}\left(Q_{1}\right)$ such that $G_{1}(\phi, \psi) \neq 0$ (if p_{1} is even, $\left.G_{1}(\phi, \psi)<0\right)$. Then the x-periodic extension of (ϕ, ψ), denoted by $\left(\phi_{k}, \psi_{k}\right)$, belongs to \mathbb{X}_{k} and satisfies that $G_{k}\left(\phi_{k}, \psi_{k}\right)=G_{1}(\phi, \psi)$. If we define α by

$$
\alpha^{p}=-\frac{(p+1) I_{k}\left(\phi_{k}, \psi_{k}\right)}{(p+2) G_{k}\left(\phi_{k}, \psi_{k}\right)}
$$

we have that

$$
\Lambda_{k}\left(\alpha\left(\phi_{k}, \psi_{k}\right)\right)=2 \alpha^{2}\left(I_{k}\left(\phi_{k}, \psi_{k}\right)+\frac{(p+2) \alpha^{p}}{p+1} G_{k}\left(\phi_{k}, \psi_{k}\right)\right)=0
$$

We also note that a minimizer for $\mathbb{J}_{k}(\omega)$ corresponds to a x-periodic solution of period k for the system (3.1). More exactly,

Theorem 4.4. If $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k}$ is a minimizer for (4.5), then $\left(u_{k}, v_{k}\right)$ is a solution of the system (3.1).

We also have the following results.
Theorem 4.5. Let $k \geq 1$ be fixed and $0<\omega<\min \left\{1, \frac{a}{b}, \frac{c}{b}\right\}$. If $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ is a minimizing sequence for $\mathbb{J}_{k}(\omega)$, then there is a sequence of points $\left\{y_{m}\right\}$ in \mathbb{R}, a subsequence of $\left\{\left(u_{m}, v_{m}\right)\right\}_{m}$ (which we denote by the same symbol) and a minimizer $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k}$ for $\mathbb{J}_{k}(\omega)$ such that the translated functions

$$
\left(\tilde{u}_{m}(x, y), \tilde{v}_{m}(x, y)\right)=\left(u_{m}\left(x, y+y_{m}\right), v_{m}\left(x, y+y_{m}\right)\right)
$$

converge strongly to $\left(u_{k}, v_{k}\right)$ in \mathbb{X}_{k} and $\left(u_{k}, v_{k}\right)$ is a nontrivial solution of the system (3.1). Moreover,

$$
\begin{equation*}
\mathbb{J}_{k}(\omega)=\frac{p}{p+2}\left(\frac{p+1}{p+2}\right)^{\frac{2}{p}}\left[I_{k}(\omega)\right]^{\frac{p+2}{p}} \tag{4.7}
\end{equation*}
$$

Proof. This result is a consequence of the Lemma 3.2, Theorem 3.6, and the following $\operatorname{argument}$. Let $(u, v) \in \mathbb{X}_{k} \backslash\{0\}$ be such $\mathbb{J}_{k}(\omega)=J_{\omega, k}(u, v)$ and that $\Lambda_{k}(u, v)=0$, then

$$
I_{k}(u, v)=-\frac{p+2}{p+1} G_{k}(u, v)=\frac{p+2}{p+1}\left|G_{k}(u, v)\right|=\frac{p+2}{p} J_{\omega, k}(u, v) .
$$

Now consider the couple

$$
(z, w)=(-1)^{\frac{p+1}{p+2}}\left[G_{k}(u, v)\right]^{-\frac{1}{p+2}}(u, v) .
$$

Then $G_{k}(z, w)=(-1)^{p+1}$. Thus,

$$
\begin{aligned}
\mathcal{I}_{k}(\omega) & \leq I_{k}(z, w)=\left[G_{k}(u, v)\right]^{-\frac{2}{p+2}} I_{k}(u, v) \\
& =\left(\frac{p+2}{p+1}\right)^{\frac{2}{p+2}}\left[I_{k}(u, v)\right]^{\frac{p}{p+2}} \\
& =\left(\frac{p+2}{p+1}\right)^{\frac{2}{p+2}}\left[\frac{p+2}{p} J_{\omega, k}(u, v)\right]^{\frac{p}{p+2}} .
\end{aligned}
$$

We concluded from this that

$$
\frac{p}{p+2}\left(\frac{p+1}{p+2}\right)^{\frac{2}{p}}\left[\mathcal{I}_{k}(\omega)\right]^{\frac{p+2}{p}} \leq \mathbb{J}_{k}(\omega)
$$

Now, let $(u, v) \neq 0$ such that $I_{k}(\omega)=I_{k}(u, v)$ and that $G_{k}(u, v)=(-1)^{p+1}$. If we define t by

$$
t^{p}=-\frac{(p+1) I_{k}(u, v)}{(-1)^{p+1}(p+2)}
$$

we have that

$$
\Lambda_{k}(t(u, v))=2 t^{2}\left(I_{k}(u, v)+\frac{(p+2) t^{p}}{p+1} G_{k}(u, v)\right)=0
$$

In this case,

$$
t^{2}=\left(\left(\frac{p+1}{p+2}\right) I_{k}(u, v)\right)^{\frac{2}{p}}
$$

Then we see that

$$
\mathbb{J}_{k}(\omega) \leq J_{\omega, k}(t u, t v)=t^{2}\left(I_{k}(u, v)+\frac{2 t^{p}}{p+1} G_{k}(u, v)\right)=\frac{p}{p+2}\left(\frac{p+1}{p+2}\right)^{\frac{2}{p}}\left[\mathcal{I}_{k}(\omega)\right]^{\frac{p+2}{p}}
$$

Hence, as desired (4.7) holds. Now, the first part follows by noting that if $\left(u_{m}, v_{m}\right) \in \mathcal{X}_{k}$ is such that $\mathbb{J}_{k}(\omega)=\lim _{m \rightarrow \infty} J_{\omega, k}\left(u_{m}, v_{m}\right)$ with $\Lambda_{k}\left(u_{m}, v_{m}\right)=0$, then

$$
I_{k}\left(u_{m}, v_{m}\right)=-\frac{p+2}{p+1} G_{k}\left(u_{m}, v_{m}\right)=\frac{p+2}{p} J_{\omega, k}\left(u_{m}, v_{m}\right)
$$

Moreover, we also have that

$$
\left(z_{m}, w_{m}\right)=(-1)^{\frac{p+1}{p+2}}\left[G_{k}\left(u_{m}, v_{m}\right)\right]^{-\frac{1}{p+2}}\left(u_{m}, v_{m}\right) .
$$

is such that $G_{k}\left(z_{m}, w_{m}\right)=(-1)^{p+1}$ and $I_{k}(\omega)=\lim _{m \rightarrow \infty} I_{k}\left(z_{m}, w_{m}\right)$, which follows by using formula (4.7). In other words, $\left(u_{m}, v_{m}\right) \in \mathbb{X}_{k}$ is a minimizing sequence for $\mathcal{I}_{k}(\omega)$. So, the conclusion follows by Theorem 3.6, after going back to the minimizing sequence $\left(u_{m}, v_{m}\right) \in$ X_{k} for $\mathbb{J}_{k}(\omega)$.

Theorem 4.6. For $k \geq 1$, we have that the family $\left\{\mathbb{J}_{k}(\omega)\right\}_{k \geq 1}$ is bounded below and above for positive constants independent of k.

Proof. Let $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k}$ be a family such that

$$
J_{\omega, k}\left(u_{k}, v_{k}\right)=\mathbb{J}_{k}(\omega), \quad \Lambda_{k}\left(u_{k}, v_{k}\right)=0
$$

Then, using (3.3)-(3.5) and (4.6), we have that

$$
I_{k}\left(u_{k}, v_{k}\right)=-\frac{p+2}{p+1} G_{k}\left(u_{k}, v_{k}\right) \leq C(p)\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}}^{p+2} \leq C(p)\left[I_{k}\left(u_{k}, v_{k}\right)\right]^{\frac{p+2}{2}} .
$$

This implies that there is $C_{3}=C_{3}(p)>0$ such that

$$
\mathbb{J}_{k}(\omega)=J_{\omega, k}\left(u_{k}, v_{k}\right)=\frac{p}{p+2} I_{k}\left(u_{k}, v_{k}\right) \geq C_{3} .
$$

On the other hand, for $k \geq 1$ we can choose $\phi \in C_{0}^{\infty}\left(Q_{1}\right)$ such that $G_{1}(\phi, \phi) \neq 0$ (if p_{1} is even, $\left.G_{1}(\phi, \phi)<0\right)$. Since supp $\phi \subset Q_{1} \subset Q_{k}$, then we can define a periodic extension of ϕ as follows

$$
\begin{aligned}
\phi_{k}(x, y) & =\phi(x, y), & & (x, y) \in Q_{1} \\
\phi_{k}(x, y) & =0, & & (x, y) \in Q_{k} \backslash Q_{1} .
\end{aligned}
$$

Then $\left(\phi_{k}, \phi_{k}\right)$ belongs to \mathbb{X}_{k} and satisfies that $G_{k}\left(\phi_{k}, \phi_{k}\right)=G_{1}(\phi, \phi) \neq 0$ (if p_{1} is even, $\left.G_{1}(\phi, \phi)<0\right)$. If we set α by

$$
\alpha^{p}=-\frac{(p+1) I_{k}\left(\phi_{k}, \phi_{k}\right)}{(p+2) G_{k}\left(\phi_{k}, \phi_{k}\right)},
$$

then a direct computation shows that

$$
\Lambda_{k}\left(\alpha\left(\phi_{k}, \phi_{k}\right)\right)=2 \alpha^{2}\left(I_{k}\left(\phi_{k}, \phi_{k}\right)+\frac{(p+2) \alpha^{p}}{p+1} G_{k}\left(\phi_{k}, \phi_{k}\right)\right)=0 .
$$

Hence, we conclude that

$$
\mathbb{J}_{k}(\omega) \leq J_{\omega, k}\left(\alpha\left(\phi_{k}, \phi_{k}\right)\right)=J_{1}(\alpha(\phi, \phi))=C_{4}(\phi) .
$$

This implies that there are positive constants C_{3}, C_{4} (not depending on k) such that

$$
\begin{equation*}
C_{3} \leq \mathbb{J}_{k}(c) \leq C_{4}, \quad k \geq 1 . \tag{4.8}
\end{equation*}
$$

Now we establish some technical results. The first one is related with the characterization of "vanishing sequences" in \mathbb{X}_{k}. Define ρ on \mathbb{X}_{k} be defined as

$$
\begin{equation*}
\rho(u, v)=u^{2}+a|\nabla u|^{2}+|\nabla v|^{2}+c(\Delta v)^{2}-2 \omega u v_{x}-2 \omega b u_{x} \Delta v, \tag{4.9}
\end{equation*}
$$

and for $r>0$ denote by $R_{r}(\zeta)$ the closed square centered at the point $\zeta \in \mathbb{R}^{2}$.
Lemma 4.7. Let $k \geq 1$ and assume that $\left\{\left(u_{k}, v_{k}\right)\right\}_{k \geq 1}$ is a sequence of x-periodic functions such that $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k}$ and $\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}} \leq C$ for all k. If there exist $r>0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{\zeta \in \mathbb{R}^{2}} \int_{R_{r}(\zeta)} \rho\left(u_{k}, v_{k}\right) d x d y=0 \tag{4.10}
\end{equation*}
$$

Then, for $q \geq 2$ we have that

$$
\lim _{k \rightarrow \infty}\left\|v_{k}\right\|_{\mathcal{M}^{q}\left(Q_{k}\right)}=\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{L^{q}\left(Q_{k}\right)}=0
$$

Proof. First suppose that $\left\{w_{k}\right\}_{k}$ is a sequence such that $w_{k} \in H^{1}\left(Q_{k}\right)$ and $\left\|w_{k}\right\|_{H^{1}\left(Q_{k}\right)} \leq C$. Assume that there is a positive constant $r>0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{\zeta \in \mathbb{R}^{2}} \int_{R_{r}(\zeta)} w_{k}^{2} d x d y=0 \tag{4.11}
\end{equation*}
$$

We will see that $\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{L^{q}\left(Q_{k}\right)}=0$. In fact, if $q \geq 2$ we have that

$$
\left\|w_{k}\right\|_{L^{q}\left(R_{r}(\zeta)\right)}^{q} \leq\left\|w_{k}\right\|_{L^{2}\left(R_{r}(\zeta)\right)}\left\|w_{k}\right\|_{L^{2(q-1)}\left(R_{r}(\zeta)\right)}^{q-1} \leq\left\|w_{k}\right\|_{L^{2}\left(R_{r}(\zeta)\right)}\left\|w_{k}\right\|_{H^{1}\left(Q_{k}\right)}^{q-1} .
$$

Covering Q_{k} by a countable number of squares such that every point in Q_{k} is contained in at most three squares $R_{r}(\zeta)$, we obtain that

$$
\left\|w_{k}\right\|_{L^{q}\left(Q_{k}\right)}^{q} \leq 3 \sup _{\zeta \in \mathbb{R}^{2}}\left\|w_{k}\right\|_{L^{2}\left(R_{r}(\zeta)\right)}\left\|w_{k}\right\|_{H^{1}\left(Q_{k}\right)}^{q-1}
$$

Using (4.11) and that there is $C>0$ such that $\left\|w_{k}\right\|_{H^{1}\left(Q_{k}\right)} \leq C$, we conclude that

$$
\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{L^{q}\left(Q_{k}\right)}=0
$$

Now suppose that $\left\|\left(u_{k}, v_{k}\right)\right\|_{X_{k}} \leq C$ and that (4.10) holds. Then $u_{k}, \partial_{x} v_{k}, \partial_{y} v_{k} \in H^{1}\left(Q_{k}\right)$. Hence, for w_{k} being defined as either $u_{k}, \partial_{x} v_{k}$, or $\partial_{y} v_{k}$, we see that w_{k} satisfies in each case the condition (4.11). By the previous observation, we conclude for $q \geq 2$ that

$$
\lim _{k \rightarrow \infty}\left\|w_{k}\right\|_{L^{q}\left(Q_{k}\right)}=0
$$

In other words, we have for $q \geq 2$ that

$$
\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{L^{q}\left(Q_{k}\right)}=\lim _{k \rightarrow \infty}\|v\|_{\mathcal{M}^{q}\left(Q_{k}\right)}=0
$$

Now we prove a result related with the behavior of the bounded sequence $\left\{\left(u_{k}, v_{k}\right)\right\}_{k}$ of critical points for $J_{\omega, k}^{\prime}$.

Lemma 4.8. Let $k \geq 1$ and assume that $\left\{\left(u_{k}, v_{k}\right)\right\}_{k \geq 1}$ is a sequence of x-periodic functions such that $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k},\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}} \leq C$ and $J_{\omega, k}^{\prime}\left(u_{k}, v_{k}\right)=0$. Then

1. $\lim _{k \rightarrow \infty}\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}}=0$, or
2. There are positive constants r, η and a sequence $\zeta_{k} \in \mathbb{R}^{2}$ such that

$$
\lim _{k \rightarrow \infty} \int_{R_{r}\left(\zeta_{k}\right)} \rho\left(u_{k}, v_{k}\right) d x d y>\eta
$$

Proof. Note that

$$
I_{k}\left(u_{k}, v_{k}\right)+\frac{p+2}{p+1} G_{k}\left(u_{k}, v_{k}\right)=0
$$

Then from (3.3)-(3.5) we conclude that

$$
\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}}^{2} \leq C I_{k}\left(u_{k}, v_{k}\right) \leq C(p)\left|G_{k}\left(u_{k}, v_{k}\right)\right| \leq C(p)\left(\left\|u_{k}\right\|_{L^{3}\left(Q_{k}\right)}^{3}+\left\|v_{k}\right\|_{\mathcal{M}^{3}\left(Q_{k}\right)}^{3}\right)
$$

If condition (2) does not hold, then from previous result we conclude that the right hand side tends to zero, which implies that the condition (1) holds.

Finally we establish the main result in this section. We define J_{w} in the space \mathbb{X} with values in \mathbb{R} as

$$
J_{\omega}(u, v)=I(u, v)+\frac{2}{p+1} G(u, v),
$$

and denote with Λ to

$$
\Lambda(u, v)=\left\langle J_{\omega}^{\prime}(u, v),(u, v)\right\rangle .
$$

Theorem 4.9. Let $k \geq 1$ and let $\left(u_{k}, v_{k}\right) \in \mathbb{X}_{k}$ be a minimizer for $\mathbb{J}_{k}(\omega)$. Then there exists a sequence $\zeta_{k} \in \mathbb{R}^{2}$ and a function $\left(u_{0}, v_{0}\right) \in \mathbb{X}$ such that $S_{k}\left(u_{k}\left(\cdot+\zeta_{k}\right), v_{k}\left(\cdot+\zeta_{k}\right)\right)$ converges weakly to $\left(u_{0}, v_{0}\right) \in \mathbb{X}$ along a subsequence. We also have that $\left(u_{0}, v_{0}\right)$ is a nontrivial solution of the system (3.1) and a minimizer for $\mathbb{J}(\omega)$, where

$$
\mathbb{J}(\omega)=J_{\omega}\left(u_{0}, v_{0}\right)=\inf \left\{J_{\omega}(u, v):(u, v) \in \mathbb{X} \text { with } \Lambda(u, v)=0\right\},
$$

Moreover,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(u_{k}, v_{k}\right)-\left(u_{0}\left(\cdot+\zeta_{k}\right), v_{0}\left(\cdot+\zeta_{k}\right)\right)\right\|_{\mathbb{X}_{k}}=0 . \tag{4.12}
\end{equation*}
$$

Proof. Using (3.5), (4.8) and the equality $J_{\omega, k}\left(u_{k}, v_{k}\right)=\frac{p}{p+2} I_{k}\left(u_{k}, v_{k}\right)$ we can conclude that

$$
0<C_{3} \leq\left\|\left(u_{k}, v_{k}\right)\right\|_{\mathbb{X}_{k}} \leq C_{4},
$$

implying that the condition (1) in Lemma 4.8 does not hold. In other words, there exists a sequence $\zeta_{k} \in \mathbb{R}^{2}$ such that the shifted sequence $\left(\tilde{u}_{k}, \tilde{v}_{k}\right)=\left(u_{k}\left(\cdot+\zeta_{k}\right), v_{k}\left(\cdot+\zeta_{k}\right)\right.$), for appropriate choice of $r, \eta>0$, satisfies

$$
\int_{R_{r}(0)} \rho\left(\tilde{u}_{k}, \tilde{v}_{k}\right) d x d y=\int_{R_{r}\left(\tilde{S k}_{k}\right)} \rho\left(u_{k}, v_{k}\right) d x d y>\frac{\eta}{2} .
$$

Clearly $\left(\tilde{u}_{k}, \tilde{v}_{k}\right)$ is also a minimizing sequence for $\mathbb{J}_{k}(\omega)$. Now observe that the sequence $E_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right) \in \mathbb{X}$ is bounded since

$$
\left\|E_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)\right\|_{\mathbb{X}} \leq C_{5}\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)\right\|_{\mathbb{X}_{k}} .
$$

Thus, there exists a subsequence of $\left\{E_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)\right\}$ (denoted by the same symbol) and $\left(u_{0}, v_{0}\right) \in$ \mathbb{X} such that

$$
E_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right) \rightharpoonup\left(u_{0}, v_{0}\right), \text { as } k \rightarrow \infty \quad(\text { weakly in } \mathbb{X}) .
$$

We claim that $\left(u_{0}, v_{0}\right)$ is a non trivial solitary wave for the system (3.1). Let $Z=(U, V) \in$ $C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \times C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Then, for sufficiently large k we have that $K=\operatorname{supp} Z \subset Q_{k} \times Q_{k}$. Hence, Z can be considered as an element of \mathbb{X}_{k} for a large k just by defining its periodic extension.

Thus, we see that

$$
\begin{aligned}
& \left\langle I^{\prime}\left(u_{0}, v_{0}\right), Z\right\rangle \\
& =2 \int_{K}\left(u_{0} U+a \nabla u_{0} \cdot \nabla U+\nabla v_{0} \cdot \nabla V+c \Delta v_{0} \Delta V\right) d x d y \\
& -\omega \int_{K}\left(2 u_{0} V_{x}+2\left(v_{0}\right)_{x} U+2 b\left(u_{0}\right)_{x} \Delta V+2 b \Delta v_{0} U_{x}\right) d x d y \\
& =2 \lim _{k \rightarrow \infty} \int_{Q_{k}}\left(F_{k}\left(\tilde{u}_{k}\right) U+a \nabla F_{k}\left(\tilde{u}_{k}\right) \cdot \nabla U+\nabla S_{k}\left(\tilde{v}_{k}\right) \cdot \nabla V+c \Delta S_{k}\left(\tilde{v}_{k}\right) \Delta V\right) d x d y \\
& -\omega \lim _{k \rightarrow \infty} \int_{Q_{k}}\left(2 F_{k}\left(\tilde{u}_{k}\right) V_{x}+2\left(S_{k}\left(\tilde{v}_{k}\right)\right)_{x} U+2 b\left(F_{k}\left(\tilde{u}_{k}\right)\right)_{x} \Delta V+2 b \Delta S_{k}\left(\tilde{v}_{k}\right) U_{x}\right) d x d y \\
& =2 \lim _{k \rightarrow \infty} \int_{Q_{k}}\left(\tilde{u}_{k} U+a \nabla \tilde{u}_{k} \cdot \nabla U+\nabla \tilde{v}_{k} \cdot \nabla V+c \Delta \tilde{v}_{k} \Delta V\right) d x d y \\
& -\omega \lim _{k \rightarrow \infty} \int_{Q_{k}}\left(2 \tilde{u}_{k} V_{x}+2\left(\tilde{v}_{k}\right)_{x} U+2 b\left(\tilde{u}_{k}\right)_{x} \Delta V+2 b \Delta \tilde{v}_{k} U\right)_{x} d x d y \\
& =\lim _{k \rightarrow \infty}\left\langle I_{k}^{\prime}\left(\tilde{u}_{k}, \tilde{v}_{k}\right), Z\right\rangle .
\end{aligned}
$$

In a similar way, noting that the sequences $\left\{\left(\partial_{i} S_{k}\left(\tilde{v}_{k}\right)\right)^{p+1}\right\}_{k}$ and $\left\{F_{k}\left(\tilde{u}_{k}\right)\left(\partial_{i} S_{k}\left(\tilde{v}_{k}\right)\right)^{p}\right\}_{k}$ are bounded in $L^{2}\left(\mathbb{R}^{2}\right)$ (taking a subsequence, if necessary), we have that

$$
\left\langle G^{\prime}\left(u_{0}, v_{0}\right), Z\right\rangle=\lim _{k \rightarrow \infty}\left\langle G_{k}^{\prime}\left(\tilde{u}_{k}, \tilde{v}_{k}\right), Z\right\rangle
$$

In other words, we have shown that

$$
\left\langle J_{\omega}^{\prime}\left(u_{0}, v_{0}\right), Z\right\rangle=\lim _{n \rightarrow \infty}\left\langle J_{\omega, k}^{\prime}\left(\tilde{u}_{k}, \tilde{v}_{k}\right), Z\right\rangle=0
$$

Then, by a using a density argument, we conclude that

$$
J_{\omega}^{\prime}\left(u_{0}, v_{0}\right)=0
$$

In other words, $\left(u_{0}, v_{0}\right)$ is a non trivial soliton (a travelling wave solution in the energy space \mathbb{X}) of the system (1.1). Finally we want to establish that

$$
J_{\omega}\left(u_{0}, v_{0}\right)=\mathbb{J}_{\omega}=\inf \left\{J_{\omega}(u, v) \in \mathbb{X}: \Lambda(u, v)=0\right\}, \quad \lim _{k \rightarrow \infty}\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(u_{0}, v_{0}\right)\right\|_{\mathbb{X}_{k}}=0
$$

First we notice that if $(w, z) \in \mathbb{X}$ and $\Lambda(w, z)=0$, then there exists a sequence $\left\{\left(w_{k}, z_{k}\right)\right\}_{k}$ such that $\left(w_{k}, z_{k}\right) \in C_{0}\left(Q_{k}\right) \times C_{0}\left(Q_{k}\right)$ such that

$$
\lim _{k \rightarrow \infty}\left\|\left(w_{k}, z_{k}\right)-(w, z)\right\|_{\mathbb{X}}=0
$$

By the assumption on (w, z) we have that $I(w, z)+\frac{p+2}{p+1} G(w, z)=0$. Then, it follows that $G(w, z)<0$. Hence, for k large enough we have that $G\left(w_{k}, z_{k}\right)<0$. Moreover, $\Lambda\left(t_{k} w_{k}, t_{k} z_{k}\right)=$ 0 for $t_{k} \in(0,1)$ given by $t_{k}^{p}=-\frac{(p+1) I\left(w_{k}, z_{k}\right)}{(p+2) G\left(w_{k}, z_{k}\right)}$. Note that the continuity of functionals I and G and that $\Lambda(w, z)=0$ imply that

$$
t_{k}=\left(-\frac{(p+1) I\left(w_{k}, z_{k}\right)}{(p+2) G\left(w_{k}, z_{k}\right)}\right)^{\frac{1}{p}} \rightarrow\left(-\frac{(p+1) I(w, z)}{(p+2) G(w, z)}\right)^{\frac{1}{p}}=1, \text { as } k \rightarrow \infty
$$

On the other hand, $t_{k}\left(w_{k}, z_{k}\right) \rightarrow(w, z)$ in \mathbb{X}. Then the continuity of the functional J_{ω} implies that

$$
\left.J_{\omega}\left(t_{k} w_{k}, t_{k} z_{k}\right)\right) \rightarrow J_{\omega}(z, w), \text { as } \quad k \rightarrow \infty
$$

Thus, given $\epsilon>0$, there exists k_{ϵ} such that if $k>k_{\epsilon}$,

$$
J_{\omega}\left(t_{k} w_{k}, t_{k} z_{k}\right) \leq J_{\omega}(w, z)+\epsilon
$$

This implies that $\limsup _{k \rightarrow \infty} \mathbb{J}_{k}(\omega) \leq J_{\omega}(w, z)+\epsilon$ for any $(w, z) \in \mathbb{X}$ with $\Lambda(w, z)=0$ and any $\epsilon>0$. Therefore

$$
\limsup _{k \rightarrow \infty} \mathbb{J}_{k}(\omega) \leq \mathbb{J}(\omega)
$$

Now, we recall that

$$
\mathbb{J}_{k}(\omega)=J_{\omega, k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)=\frac{p}{p+2} I_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)=\frac{p}{p+2} \int_{Q_{k}} \rho\left(\tilde{u}_{k}, \tilde{v}_{k}\right) d x d y
$$

Note that for a given bounded domain $\Omega \subset \mathbb{R}^{2}$, we have that $\Omega \subset Q_{k}$ for k large enough. Then

$$
\mathbb{J}_{k}(\omega)=J_{\omega, k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right) \geq \frac{p}{p+2} \int_{\Omega} \rho\left(\tilde{u}_{k}, \tilde{v}_{k}\right) d x d y
$$

Hence, due to the local compactness result, we get that

$$
\liminf _{k \rightarrow \infty} \mathbb{J}_{k}(\omega) \geq \liminf _{k \rightarrow \infty}\left(\frac{p}{p+2} \int_{\Omega} \rho\left(\tilde{u}_{k}, \tilde{v}_{k}\right) d x d y\right)=\frac{p}{p+2} \int_{\Omega} \rho\left(u_{0}, v_{0}\right) d x d y
$$

Thus, since Ω is arbitrary, we have shown that

$$
\liminf _{k \rightarrow \infty} \mathbb{J}_{k}(\omega) \geq \frac{p}{p+2} \int_{\mathbb{R}^{2}} \rho\left(u_{0}, v_{0}\right) d x d y=\frac{p}{p+2} I\left(u_{0}, v_{0}\right)
$$

Since $\left\langle J_{\omega}^{\prime}\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right\rangle=0$. Then $J_{c}\left(u_{0}, v_{0}\right)=\frac{p}{p+2} I\left(u_{0}, v_{0}\right)$. So that

$$
\liminf _{k \rightarrow \infty} \mathbb{J}_{k}(\omega) \geq \mathbb{J}(\omega)
$$

In other words,

$$
\liminf _{k \rightarrow \infty} \mathbb{J}_{k}(\omega)=\mathbb{J}(\omega)=\frac{p}{p+2} I\left(u_{0}, v_{0}\right)=J_{\omega}\left(u_{0}, v_{0}\right)
$$

which is equivalent to say that $\left(u_{0}, v_{0}\right)$ is a ground state solution. It was also proved that

$$
\lim _{k \rightarrow \infty} I_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)=I\left(u_{0}, v_{0}\right)
$$

It remains to prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(u_{0}, v_{0}\right)\right\|_{\mathbb{X}_{k}}=0 \tag{4.13}
\end{equation*}
$$

To see this, let $\left(w_{k}, z_{k}\right) \in C_{0}^{\infty}\left(Q_{k}\right) \times C_{0}^{\infty}\left(Q_{k}\right)$ such that $\left(w_{k}, z_{k}\right) \rightarrow\left(u_{0}, v_{0}\right)$ in \mathbb{X}. We will show that

$$
\lim _{k \rightarrow \infty}\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(w_{k}, z_{k}\right)\right\|_{X_{k}}=0
$$

This implies that the limit (4.13) holds. We consider the operators A and A_{k} defined by

$$
A((u, v), \cdot)=\left\langle I^{\prime}(u, v), \cdot\right\rangle,(u, v) \in \mathbb{X} ; \quad A_{k}((u, v), \cdot)=\left\langle I_{k}^{\prime}(u, v), \cdot\right\rangle,(u, v) \in \mathbb{X}_{k}
$$

Then we have that

$$
\begin{aligned}
& I_{k}\left[\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(w_{k}, z_{k}\right)\right] \\
& =I_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)+I_{k}\left(w_{k}, z_{k}\right)-A_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right),\left(w_{k}, z_{k}\right)\right) \\
& =I_{k}\left(\tilde{u}_{k}, \tilde{v}_{k}\right)+I_{k}\left(w_{k}, z_{k}\right)-A_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right),\left(u_{0}, v_{0}\right)\right)-A_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right),\left(w_{k}-u_{0}, z_{k}-v_{0}\right)\right) .
\end{aligned}
$$

Since $\left(w_{k}, z_{k}\right)$ converges strongly to $\left(u_{0}, v_{0}\right)$ in \mathbb{X} and $\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)\right\|_{X_{k}}$ is bounded, we conclude as $k \rightarrow \infty$ that

$$
\left|A_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right),\left(w_{k}, z_{k}\right)-\left(u_{0}, v_{0}\right)\right)\right| \leq C\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)\right\|_{\mathbb{X}_{k}}\left\|\left(w_{k}, z_{k}\right)-\left(u_{0}, v_{0}\right)\right\|_{\mathbb{X}} \rightarrow 0
$$

But, we have that

$$
A_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right),\left(u_{0}, v_{0}\right)\right) \rightarrow A\left(\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right)\right)=2 I\left(u_{0}, v_{0}\right)
$$

So, taking limit as $k \rightarrow \infty$,

$$
\left\|\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(w_{k}, z_{k}\right)\right\|_{\mathbb{X}_{k}}^{2} \leq C I_{k}\left(\left(\tilde{u}_{k}, \tilde{v}_{k}\right)-\left(w_{k}, w_{k}\right)\right) \rightarrow 0
$$

Then, as desired

$$
\left\|\left(u_{k}, v_{k}\right)-\left(u_{0}\left(\cdot+\zeta_{k}\right), v_{0}\left(\cdot+\zeta_{k}\right)\right)\right\|_{\mathbb{X}_{k}} \rightarrow 0
$$

Acknowledgments. J. R. Quintero was supported by the Mathematics Department at Universidad del Valle (Colombia) under the project C.I. 71007. A. M. Montes was supported by the Universidad del Cauca (Colombia) under the project I.D. 3982. J. Q. and A. M. are supported by Colciencias grant N. 42878.

References

[1] J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems. Matemática contemporánea 27 (2004), pp 189-223.
[2] J. Angulo Nonlinear Dispersive Equations; Existence and stability of solitary and periodic travelling waves solutions. Mathematical Surveys and Monographs AMS, 156 (2009).
[3] L. P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), pp 109145.
[4] L. P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), pp 223-283.
[5] P. A. Milewski and J. B. Keller, Three dimensional water waves. Studies Appl. Math. 37 (1996), pp 149-166.
[6] A. M. Montes, Boussinesq-Benney-Luke type systems related with water waves models. Doctoral Thesis, Universidad del Valle (Colombia) (2013).
[7] A. M. Montes and J. R. Quintero, Orbital stability of solitary waves for a 2D-Boussinesq-Benney-Luke. Electronic Journal of Differential Equations 176 (2015), pp 1-17.
[8] A. Pankov and K. Pflüger, Periodic and Solitary Wave Solutions for the Generalized Kadomtsev-Petviashvili Equation. Mathematical Methods in the Applied Sciences 22 (1999), pp 733-752.
[9] J. R. Quintero and J. Angulo, Existence and orbital stability of cnoidal waves for a 1D Boussinesq equation. International Journal of Mathematics and Mathematical Sciences 2007 (2007), pp 1-36.
[10] J. R. Quintero, Solitons and periodic travelling waves for the 2D- generalized BenneyLuke equation. Journal of Applicable Analysis, 9-10 (2007), pp 859-890.
[11] J. R. Quintero and A. M. Montes, Strichartz estimates for some 2D water wave models. Appl. Math. Inf. Sci. 7 (2013), pp 2159-2173.
[12] J. R. Quintero and A. M. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke System. Dynamics of Partial Differential Equations. 10 (2013), pp 313-342.
[13] J. R. Quintero and A. M. Montes, On the nonlinear scattering and well-posedness for a 2D-Boussinesq-Benney-Luke type system. Journal of Differential Equations. 260 (2016), pp 6057-6083.

[^0]: *E-mail address: jose.quintero@correounivalle.edu.co
 †E-mail address: amontes@unicauca.edu.co

