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Abstract

The Egoroff theorem for measurable X-valued functions and operator-valued measures
m: X — L(X,Y) is proved, where X is a o-algebra of subsets of 7 # ) and X, Y are
both locally convex spaces.
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1 Introduction

The classical Egoroff theorem states that almost everywhere convergent sequences of mea-
surable functions on a finite measure space converge almost uniformly, i.e., for every € > 0
the convergence is uniform on a set whose complement has measure less than &, cf. [1].
When generalizing to functions taking values in more general spaces, some further prob-
lems appear arising from the fact that the classical relationship between the pointwise con-
vergence and the convergence in measure is not saved. It is also well-known that the Ego-
roff theorem cannot hold for arbitrary nets of measurable functions without some restric-
tions on measure, net convergence of functions, or class of measurable functions. In [2,

*E-mail address: jhaluska@saske.sk
TE-mail address: ondrej.hutnik@upjs.sk



Egoroff Theorem in Locally Convex Setting 107

Definition 1.2] the first author introduced the so-called Condition (GB) under which every-
where convergence of net of measurable functions implies convergence of these functions
in semivariation on a set of finite variation of measure in locally convex setting, cf. [3,
Theorem 3.3]. This condition concerns families of submeasures and enables to work with
nets of measurable functions instead of sequences. Recall that Condition (GB) is fulfilled
in the case of atomic operator-valued measures, cf. [3]. Atomic measures are not of a great
interest in the classical theory of measure and integral, because they lead only to consider-
ations of absolutely convergent series. But when we consider measures with very general
range space, e.g. a locally convex space, the situation changes. Thus, in this paper we
prove the following Egoroff theorem for atomic operator-valued measures in locally convex
topological vector spaces.

Theorem 1.1 (Egoroff). Lerm : X — L(X,Y) be a purely atomic operator-valued measure,
and let E € X be a set of finite variation of the measure m. If f: T — X is a measurable
function, and (£; : T — X);¢j is a net of measurable functions, such that

l_il}lp(f,'(t) —f(t))=0 forevery te Eand peP, (1.1
e

then the net (£,);c; of functions m-almost uniformly converges to f on E € %.

2 Preliminaries

By a net (with values in a set §) we mean a function from [ to S, where [ is a directed
partially ordered set. Throughout this paper [ is a directed index set representing direction
of a net. Let X be a o-algebra of subsets of T # 0, and X, Y be two Hausdorff locally
convex topological vector spaces over the field K of all real R or complex numbers C, with
two families of seminorms P and Q defining the topologies on X and Y, respectively. Then
L(X,Y) denotes the space of all continuous linear operators L : X — Y. In this paper m
always means an operator-valued measure m : £ — L(X,Y) o-additive in the strong operator
topology of the space L(X,Y), i.e., m(-)x : £ — Y is a Y-valued vector measure for every
x € X. Let (p,q) € Px Q. For the measure m we introduce the following quantities:
(a) the (p,q)-semivariation !, , : ¥ — [0, +oo] defined as follows

N
Iilp,q(E) ‘= Ssupg [Z m(En N E)Xn] s

n=1
where the supremum is taken over all finite disjoint partitions

N

{EneE;E: En,EnnEm:Q),n;ém,m,n:1,2,...,N} 2.1

n=1

of E € ¥ and all finite sets {x, € X; p(x,) < 1,n=1,2,...,N}, where N € N;
(b) the (p,q)-variation var, ,(m,-) : £ — [0, +oco] defined by the equality

N
var, ,(m,E) := supz qp(m(E, NE)),

n=1
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where the supremum is taken over all finite disjoint partitions (2.1) of E € ¥ with

qp(m(F)) := ?U)pl gm(F)x), FeX.
p)<

Clearly, the (p, g)-variation of m is a monotone and o-additive set function, whereas the
the (p,g)-semivariation of m is a monotone and o-subadditive set function with m,, ,(0) =
var, ,(m,0) = 0 for every (p,q) € Px Q. Also, m, ,(E) < var, ,(m, E) for every (p,q) €
PxQand E €X.

In this paper we consider the sets E € X of positive variation of the measure m, i.e.,
there exist (p,q) € P x Q, such that var, ,(m, E) > 0, and of finite variation of the measure
m, i.e., if for every g € Q there exists p € P, such that var, ,(m, E) < +oco. We will denote
this relation shortly Q —g P, or, g —g p for (p,q) € Px Q.

Definition 2.1. We say that a set £ € X of positive semivariation of the measure m is an
m-atom if every proper subset A of E is either ) or A ¢ X. We say that the measure m is
purely atomic if each E € X can be expressed in the form E = [ J;7 | Ax, where Ay, k € N, are
m-atoms.

In what follows we consider only measurable functions in the following sense: a func-
tion f: T — X is measurable if the set {t € T'; p(£(¢)) > n} belongs to X for every n > 0 and
pEP.

Definition 2.2. A net (f;),c; of measurable functions is said to be m-almost uniformly con-
vergent to a measurable function f on E € X if for every € > 0 and every (p,q) € PxX Q
with g =g p there exist measurable sets F' = E(g, p,q), such that lim;e; [|f; — f||g\ 7, = 0 and

m,, ,(F) <&, where ||gll,p := sup,cg p(&(D).

The concept of generalized strong continuity of semivariation of a measure is intro-
duced in [4]. This notion enables development of the concept of an integral with respect
to the L(X,Y)-valued measure based on the net convergence of simple functions. For this
purpose the notion of inner semivariation is used for this generalization. Recall that for
(p,q) € P x Q the set function Ifl;q 12T [0, +00] given by

t (E)= sup 1, (F), Ee2’,
FCE Fex

is said to be the inner (p,q)-semivariation of the measure m.

Definition 2.3. We say that the semivariation of the measure m is generalized strongly
continuous (GS-continuous, for short) if for every set E € X of finite variation of the measure
m and every monotone net of sets (E;)ie; C T, E; C E, i € I, the following equality

B0 =, ()

holds for every couple (p,q) € Px Q, such that g =g p.

Theorem 2.4. If m is a (countable) purely atomic measure, then its semivariation is GS-
continuous.



Egoroft Theorem in Locally Convex Setting 109

Proof. Let E € X be a set of finite and positive variation of the measure m, and (E;);e;
be an arbitrary decreasing net of sets from X. Recall that E; \, G(€ 2°) if and only if
i<j=E;DEj, and ;e E; = G. It is clear that it is enough to consider the case G = 0,
because E; \\G © G C E;, E;\ G\, 0. First, in the case E; € X, i € I, we have

ll.ignfl}‘,,q(Ei) = limh,, 4(E)), (2.2)

and since the family of atoms is at most a countable set, there is lim;e; E; = ( ;¢ Ei € X, and
therefore

i, (11_131 Ei) =t (11_131 E,-) 2.3)
for every (p,q) € P X Q, such that g —g p.

Denote by (A the set of all m-atoms, and put £(i,E) = (ANE)\ E;, i € I. Clearly for
i,jel wegeti<j= {(iFE)cC{(jE), and there exist atoms A, € A, n € N, such that
(i, E)={A1,A2,...,A,,...}. Since for every (p,q) € PX Q the (p, g)-variation of the measure
m is o-additive, then

var, ,(m,E) = var, ,(m,E;) + Z var,,(m,A,),
An€l(i,E)

fori €I, and (p,q) € Px Q. The inequality t, ,(E;) < var, ,(m, E;) for i € I and (p,q) €
P x Q implies
m, (E;) < var,,(m,E)— Z var, ,(m,A,).
An€l(i,E)

Since var, ,(m,EN-) : X — [0,+00) is a finite real measure for every (p,q) € Px Q with
q —E p, then for every € > 0 and (p,q) € PX Q with g —g p there exists an index iy :=
io(e, p,q,E) € 1, such that

m, (E)<e 2.4)

holds for every i > ip, i € I. Combining (2.2), (2.3), (2.4) and Definition 2.3 we see that the
assertion is proved for the case when (E;);c; is a decreasing net of sets from X. The other
cases of monotone nets of sets may be proved analogously.

Let now G C T be an arbitrary set. Then there is exactly one (countable) set F* = ANG
with the property

ﬁ‘l;’q(G) = Ssup Ii‘lp,q(F) = ﬁlp,q(F*)a (p,q) € PXQ.
FcG,Fex

The proof for the inner measure and the arbitrary net of subsets (E;);c; goes by the same
procedure as in the previous part of proof concerning the set system X. O

3 Proof of Theorem 1.1

We have to prove that for a given £ > 0 and every g € Q, p € P, such that g — g p there exist
measurable sets F = E(g, p,q) € Z, such that lim;¢; ||f; — fl|g\r, = 0, and 1, ,(F) < &.
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Suppose that (1.1) holds. For every me N, p € P, and j € I, put
|
Bﬁw’ =EN {t eT; pf(n)—£(1) < e i> ]}

_Emﬂ{zeT p(Ei(t) - f(t))<—, zel}

i>j

Since there are countable many of atoms, Bp Cc X and #Bp - No. Clearly, if i, j € I such
thati < j, then B . c Bp for every m e N and p € P. Put

Wll

P P
Ep:=|_JB) .
jel
The net (E},\ BZ Dier clearly tends to void set for every m € N and p € P. Since m is a
purely atomic operator-valued measure, then according to Theorem 2.4 its semivariation is

GS-continuous, and therefore

hmm (EP\BP D=0, (p,q) € PXQ, suchthat g —g p.

Let £ > 0 be given. For each p € P and m € N there exists an index j(m, p) € I, such
that for g — £ p the inequality ﬁlp’q(EZ \ Bf; ’l.) < é&-ap- By holds for every i > j(m, p), where
{ap; p € P} is a summable system of positive numbers in the sense of Moore—Smith and
{Bm; m € N} is an absolutely convergent series of positive numbers. Putting

kS U U Ep \ij(mp)

meN peP

we have

m;,q(F) [U U EZ\Bm »J(m, p) J

meN peP

P
kepm mM[ZZE mj(mp)]

""" m=1pek

K={py.... pm}zzmpqE \BMJ(mp)) &

m=1pek

IA
5

Let us show that the convergence of net of functions (f;);c; is uniform on E \ F. Note that
U1 EP = E for every p € P. For a given > 0 choose an mj € N, such that - - <1 Then

E\F=FE\ U U Ep \Bm j(m, p) m ﬂ Bm Lj(m, p) Zo,j(mo,li)

meN peP meN peP

for every p € P. By definition of the set Bp o.jmo.p) W€ have that if 7 € Bp , then p(f;(¢) —
f(r)) < n for every i > j(mg,p). So, (1.1) 1mphes that for every n > 0 and p € P there
exists an index j(n, p), such that for every i > j(n,p), i € I, there is p(f;(¢+) — £(¢)) < n for
teE\ BZOJ D E\ F,i.e., the net (f;);c; converges uniformly on E \ F. O
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