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Grešákova 6, 040 01 Košice, Slovakia
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Abstract

The Egoroff theorem for measurable X-valued functions and operator-valued measures
m : Σ→ L(X,Y) is proved, where Σ is a σ-algebra of subsets of T , ∅ and X, Y are
both locally convex spaces.
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1 Introduction

The classical Egoroff theorem states that almost everywhere convergent sequences of mea-
surable functions on a finite measure space converge almost uniformly, i.e., for every ε > 0
the convergence is uniform on a set whose complement has measure less than ε, cf. [1].
When generalizing to functions taking values in more general spaces, some further prob-
lems appear arising from the fact that the classical relationship between the pointwise con-
vergence and the convergence in measure is not saved. It is also well-known that the Ego-
roff theorem cannot hold for arbitrary nets of measurable functions without some restric-
tions on measure, net convergence of functions, or class of measurable functions. In [2,
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Definition 1.2] the first author introduced the so-called Condition (GB) under which every-
where convergence of net of measurable functions implies convergence of these functions
in semivariation on a set of finite variation of measure in locally convex setting, cf. [3,
Theorem 3.3]. This condition concerns families of submeasures and enables to work with
nets of measurable functions instead of sequences. Recall that Condition (GB) is fulfilled
in the case of atomic operator-valued measures, cf. [3]. Atomic measures are not of a great
interest in the classical theory of measure and integral, because they lead only to consider-
ations of absolutely convergent series. But when we consider measures with very general
range space, e.g. a locally convex space, the situation changes. Thus, in this paper we
prove the following Egoroff theorem for atomic operator-valued measures in locally convex
topological vector spaces.

Theorem 1.1 (Egoroff). Let m : Σ→ L(X,Y) be a purely atomic operator-valued measure,
and let E ∈ Σ be a set of finite variation of the measure m. If f : T → X is a measurable
function, and (fi : T → X)i∈I is a net of measurable functions, such that

lim
i∈I

p(fi(t)− f(t)) = 0 for every t ∈ E and p ∈ P, (1.1)

then the net (fi)i∈I of functions m-almost uniformly converges to f on E ∈ Σ.

2 Preliminaries

By a net (with values in a set S ) we mean a function from I to S , where I is a directed
partially ordered set. Throughout this paper I is a directed index set representing direction
of a net. Let Σ be a σ-algebra of subsets of T , ∅, and X, Y be two Hausdorff locally
convex topological vector spaces over the field K of all real R or complex numbers C, with
two families of seminorms P and Q defining the topologies on X and Y, respectively. Then
L(X,Y) denotes the space of all continuous linear operators L : X→ Y. In this paper m
always means an operator-valued measure m :Σ→ L(X,Y)σ-additive in the strong operator
topology of the space L(X,Y), i.e., m(·)x : Σ→ Y is a Y-valued vector measure for every
x ∈ X. Let (p,q) ∈ P×Q. For the measure m we introduce the following quantities:

(a) the (p,q)-semivariation m̂p,q : Σ→ [0,+∞] defined as follows

m̂p,q(E) := supq

 N∑
n=1

m(En∩E)xn

 ,
where the supremum is taken over all finite disjoint partitionsEn ∈ Σ; E =

N⋃
n=1

En, En∩Em = ∅, n , m, m,n = 1,2, . . . ,N

 (2.1)

of E ∈ Σ and all finite sets {xn ∈ X; p(xn) ≤ 1, n = 1,2, . . . ,N}, where N ∈ N;
(b) the (p,q)-variation varp,q(m, ·) : Σ→ [0,+∞] defined by the equality

varp,q(m,E) := sup
N∑

n=1

qp (m(En∩E)) ,
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where the supremum is taken over all finite disjoint partitions (2.1) of E ∈ Σ with

qp(m(F)) := sup
p(x)≤1

q(m(F)x), F ∈ Σ.

Clearly, the (p,q)-variation of m is a monotone and σ-additive set function, whereas the
the (p,q)-semivariation of m is a monotone and σ-subadditive set function with m̂p,q(∅) =
varp,q(m,∅) = 0 for every (p,q) ∈ P×Q. Also, m̂p,q(E) ≤ varp,q(m,E) for every (p,q) ∈
P×Q and E ∈ Σ.

In this paper we consider the sets E ∈ Σ of positive variation of the measure m, i.e.,
there exist (p,q) ∈ P×Q, such that varp,q(m,E) > 0, and of finite variation of the measure
m, i.e., if for every q ∈ Q there exists p ∈ P, such that varp,q(m,E) < +∞. We will denote
this relation shortly Q→E P, or, q 7→E p for (p,q) ∈ P×Q.

Definition 2.1. We say that a set E ∈ Σ of positive semivariation of the measure m is an
m̂-atom if every proper subset A of E is either ∅ or A < Σ. We say that the measure m is
purely atomic if each E ∈ Σ can be expressed in the form E =

⋃∞
k=1 Ak, where Ak,k ∈ N, are

m̂-atoms.

In what follows we consider only measurable functions in the following sense: a func-
tion f : T → X is measurable if the set {t ∈ T ; p(f(t)) ≥ η} belongs to Σ for every η > 0 and
p ∈ P.

Definition 2.2. A net (fi)i∈I of measurable functions is said to be m-almost uniformly con-
vergent to a measurable function f on E ∈ Σ if for every ε > 0 and every (p,q) ∈ P×Q
with q 7→E p there exist measurable sets F = E(ε, p,q), such that limi∈I ‖fi− f‖E\F,p = 0 and
m̂p,q(F) < ε, where ‖g‖G,p := supt∈G p(g(t)).

The concept of generalized strong continuity of semivariation of a measure is intro-
duced in [4]. This notion enables development of the concept of an integral with respect
to the L(X,Y)-valued measure based on the net convergence of simple functions. For this
purpose the notion of inner semivariation is used for this generalization. Recall that for
(p,q) ∈ P×Q the set function m̂∗p,q : 2T → [0,+∞] given by

m̂∗p,q(E) = sup
F⊂E,F∈Σ

m̂p,q(F), E ∈ 2T ,

is said to be the inner (p,q)-semivariation of the measure m.

Definition 2.3. We say that the semivariation of the measure m is generalized strongly
continuous (GS-continuous, for short) if for every set E ∈Σ of finite variation of the measure
m and every monotone net of sets (Ei)i∈I ⊂ T , Ei ⊂ E, i ∈ I, the following equality

lim
i∈I

m̂∗p,q(Ei) = m̂∗p,q
(
lim
i∈I

Ei

)
holds for every couple (p,q) ∈ P×Q, such that q 7→E p.

Theorem 2.4. If m is a (countable) purely atomic measure, then its semivariation is GS-
continuous.
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Proof. Let E ∈ Σ be a set of finite and positive variation of the measure m, and (Ei)i∈I

be an arbitrary decreasing net of sets from Σ. Recall that Ei ↘ G(∈ 2G) if and only if
i ≤ j⇒ Ei ⊃ E j, and

⋂
i∈I Ei = G. It is clear that it is enough to consider the case G = ∅,

because Ei↘G⇔G ⊂ Ei, Ei \G↘ ∅. First, in the case Ei ∈ Σ, i ∈ I, we have

lim
i∈I

m̂∗p,q(Ei) = lim
i∈I

m̂p,q(Ei), (2.2)

and since the family of atoms is at most a countable set, there is limi∈I Ei =
⋂

i∈I Ei ∈ Σ, and
therefore

m̂∗p,q
(
lim
i∈I

Ei

)
= m̂p,q

(
lim
i∈I

Ei

)
(2.3)

for every (p,q) ∈ P×Q, such that q 7→E p.
Denote by A the set of all m̂-atoms, and put `(i,E) = (A∩ E) \ Ei, i ∈ I. Clearly for

i, j ∈ I we get i ≤ j ⇒ `(i,E) ⊂ `( j,E), and there exist atoms An ∈ A, n ∈ N, such that
`(i,E)= {A1,A2, . . . ,An, . . . }. Since for every (p,q) ∈ P×Q the (p,q)-variation of the measure
m is σ-additive, then

varp,q(m,E) = varp,q(m,Ei)+
∑

An∈`(i,E)

varp,q(m,An),

for i ∈ I, and (p,q) ∈ P×Q. The inequality m̂p,q(Ei) ≤ varp,q(m,Ei) for i ∈ I and (p,q) ∈
P×Q implies

m̂p,q(Ei) ≤ varp,q(m,E)−
∑

An∈`(i,E)

varp,q(m,An).

Since varp,q(m,E ∩ ·) : Σ→ [0,+∞) is a finite real measure for every (p,q) ∈ P×Q with
q 7→E p, then for every ε > 0 and (p,q) ∈ P×Q with q 7→E p there exists an index i0 :=
i0(ε, p,q,E) ∈ I, such that

m̂p,q(Ei) < ε (2.4)

holds for every i ≥ i0, i ∈ I. Combining (2.2), (2.3), (2.4) and Definition 2.3 we see that the
assertion is proved for the case when (Ei)i∈I is a decreasing net of sets from Σ. The other
cases of monotone nets of sets may be proved analogously.

Let now G ⊂ T be an arbitrary set. Then there is exactly one (countable) set F∗ =A∩G
with the property

m̂∗p,q(G) = sup
F⊂G,F∈Σ

m̂p,q(F) = m̂p,q(F∗), (p,q) ∈ P×Q.

The proof for the inner measure and the arbitrary net of subsets (Ei)i∈I goes by the same
procedure as in the previous part of proof concerning the set system Σ. �

3 Proof of Theorem 1.1

We have to prove that for a given ε > 0 and every q ∈ Q, p ∈ P, such that q 7→E p there exist
measurable sets F = E(ε, p,q) ∈ Σ, such that limi∈I ‖fi− f‖E\F,p = 0, and m̂p,q(F) < ε.
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Suppose that (1.1) holds. For every m ∈ N, p ∈ P, and j ∈ I, put

Bp
m, j = E∩

{
t ∈ T ; p(fi(t)− f(t)) <

1
m
, i ≥ j

}
= E∩

⋂
i≥ j

{
t ∈ T ; p(fi(t)− f(t)) <

1
m
, i ∈ I

}
.

Since there are countable many of atoms, Bp
m, j ⊂ Σ and #Bp

m, j = ℵ0. Clearly, if i, j ∈ I such
that i ≤ j, then Bp

m,i ⊂ Bp
m, j for every m ∈ N and p ∈ P. Put

Ep
m :=
⋃
j∈I

Bp
m, j.

The net (Ep
m \ Bp

m,i)i∈I clearly tends to void set for every m ∈ N and p ∈ P. Since m is a
purely atomic operator-valued measure, then according to Theorem 2.4 its semivariation is
GS-continuous, and therefore

lim
i∈I

m̂∗p,q(Ep
m \Bp

m,i) = 0, (p,q) ∈ P×Q, such that q 7→E p.

Let ε > 0 be given. For each p ∈ P and m ∈ N there exists an index j(m, p) ∈ I, such
that for q 7→E p the inequality m̂p,q(Ep

m \Bp
m,i) < ε ·αp ·βm holds for every i ≥ j(m, p), where

{αp; p ∈ P} is a summable system of positive numbers in the sense of Moore–Smith and
{βm; m ∈ N} is an absolutely convergent series of positive numbers. Putting

F :=
⋃
m∈N

⋃
p∈P

(
Ep

m \Bp
m, j(m,p)

)
we have

m̂∗p,q(F) = m̂∗p,q

⋃
m∈N

⋃
p∈P

(
Ep

m \Bp
m, j(m,p)

)
= lim

K={p1,...,pm}
m̂p,q

 ∞∑
m=1

∑
p∈K

(
Ep

m \Bp
m, j(m,p)

)
≤ lim

K={p1,...,pm}

∞∑
m=1

∑
p∈K

m̂p,q
(
Ep

m \Bp
m, j(m,p)

)
< ε.

Let us show that the convergence of net of functions (fi)i∈I is uniform on E \F. Note that⋃∞
m=1 Ep

m = E for every p ∈ P. For a given η > 0 choose an m0 ∈ N, such that 1
m0
< η. Then

E \F = E \
⋃
m∈N

⋃
p∈P

(
Ep

m \Bp
m, j(m,p)

)
=
⋂
m∈N

⋂
p∈P

Bp
m, j(m,p) ⊂ Bp

m0, j(m0,p)

for every p ∈ P. By definition of the set Bp
m0, j(m0,p) we have that if t ∈ Bp

m0,i
, then p(fi(t)−

f(t)) < η for every i ≥ j(m0, p). So, (1.1) implies that for every η > 0 and p ∈ P there
exists an index j(η, p), such that for every i ≥ j(η, p), i ∈ I, there is p(fi(t)− f(t)) < η for
t ∈ E \Bp

m0,i
⊃ E \F, i.e., the net (fi)i∈I converges uniformly on E \F. �
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