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Abstract

We investigate the initial value problem for an inhomogeneous nonlinear Schrödinger
equation with a combined power nonlinearity. We prove global well-posedness in the
defocusing case. In the focusing case, we prove existence of ground state and nonlinear
instability of standing waves.
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1 Introduction

Consider the nonlinear Schrödinger equation with an inhomogeneous combined power non-
linearity

iut +∆u+ε(|x|b|u|p−1u+ |x|b|u|q−1u) = 0, (1.1)

with initial data
u(0, .) = u0. (1.2)

Here and hereafter ε ∈ {±1}, N ≥ 2, b > 0, 1 < p < q and u := u(t, x) is a complex-valued
function of the variable (t, x) ∈ R+×RN .

When b = 0, the equation (1.1) models the propagation of intense laser beams in an ho-
mogeneous bulk medium with a Kerr nonlinearity. It was suggested that stable high power
propagation can be achieved in plasma by sending a preliminary laser beam that creates a
channel with a reduced electron density, and thus reduces the nonlinearity inside the channel
[9]. Equation (1.1) describes the beam propagation in an inhomogeneous medium, where
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u is the electric field in laser optics and |x|b is proportional to the electric density [12]. A
basic physical question is when can the condensate be unstable to collapse or exist for all
time?
A solution u to (1.1) formally satisfies conservation of the mass and the energy

M(t) = M(u(t)) := ‖u(t)‖2L2(RN ) = M(0);

E(t) = E(u(t)) :=
1
2
‖∇u(t)‖2L2(RN )− ε

∫
RN
|x|b
( |u(t)|p+1

p+1
+
|u(t)|q+1

q+1

)
dx = E(0).

If ε = −1, the energy is always positive and we say that (1.1) is defocusing. Otherwise, (1.1)
is said to be focusing.
The Cauchy problem and the stability of standing waves for the inhomogeneous nonlinear
Schrödinger equation (INLS-equation) have been studied extensively, in particular Merle
[14] proved the existence and nonexistence of blow-up solutions to

iut +∆u+V(x)|u|p−2u = 0, x ∈ RN , (1.3)

in the case of critical power p = 2+ 4
N and where V is bounded. Later on Fibich, Liu and

Wang [7], proved the stability and instability of standing waves for (1.3) under the assump-
tions p ≥ 2+ 4

N , V(x) = V(ε |x|) with small ε > 0 and V ∈ C4 ∩ L∞. In the same context,
Fukuizumi and Ohta [8] obtained the instability of standing waves for the equation (1.3)
when the inhomogeneity V behaves like |x|−b at infinity with 0 < b < 2.

When V is unbounded, for example, V(|x|) = |x|b, b > 0 it seems that the standard
Gagliardo-Nirenberg inequality cannot be used any more. Recently, Chen and Guo [3, 4],
established a variant of interpolation inequality and used it to study (1.3).

In the present paper we study well-posedness issues of the inhomogeneous nonlinear
Schrödinger equation (1.1) with combined power-type nonlinearity. Our aim is to establish
local and global existence of solution, then we prove existence of ground state solution in
the focusing case and study the nonlinear instability of standing waves.

The plan of the paper is as follows. In the second section, we derive the main results
and some useful tools . Section three contains a proof of local and global existence of a
solution to the equation (1.1). Section four is devoted to establish existence of a ground
state. In the last section, we prove instability of standing waves.

Here and hereafter, we denote the Lebesgue space Lp := Lp(RN), the Sobolev space
H1 := H1(RN) and

∫
.dx :=

∫
RN .dx. If X is an abstract space, we denote Xrd := {u ∈

X, u(x) = u(|x|)},. We mention that C is an absolute positive constant which may vary from
line to line. If A and B are nonnegative real numbers, A . B means that A ≤ CB. Finally,
we denote pc := 1+ 2b+4

N ,p0 := max(1+ 2b
N−1 , pc) and

p̃ :=
{ N+2

N−2 +
2b

N−1 , i f N ≥ 3;
+∞, i f N = 2.
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2 Background and Main results

In this section we list the main results proved in this paper and some technical tools needed
in the sequel. First, let us give some notations. For φ ∈ H1

rd and (α,β) ∈ R2, we define the
quantities

J(φ) :=
1
2
‖φ‖2H1 −

1
p+1

∫
|x|b|φ|p+1 dx−

1
q+1

∫
|x|b|φ|q+1dx;

φλ := eαλφ(e−βλ), Lα,βJ(φ) := ∂λ(J(φλ))|λ=0, Kα,β :=Lα,βJ, Hα,β := J−
1

2α+Nβ
Kα,β.

With a direct computation, we have

Kα,β(φ) =
2α+ (N −2)β

2
‖∇φ‖2L2 +

2α+Nβ
2

‖φ‖2L2 −
α(p+1)+ (N +b)β

p+1

∫
|x|b|φ|p+1 dx

−
α(q+1)+ (N +b)β

q+1

∫
|x|b|φ|q+1 dx;

Hα,β(φ) =
β

2α+Nβ
‖∇φ‖2L2 +

α(p−1)+bβ
(p+1)(2α+Nβ)

∫
|x|b|φ|p+1 dx+

α(q−1)+bβ
(q+1)(2α+Nβ)

∫
|x|b|φ|q+1 dx.

We denote the quadratic and nonlinear parts of Kα,β,

KQ
α,β(φ) :=

2α+ (N −2)β
2

‖∇φ‖2L2 +
2α+Nβ

2
‖φ‖2L2 , KN

α,β := Kα,β−KQ
α,β.

Now, we list the main result proved in this paper.

2.1 Main results

Let us start with local well-posedness of the problem (1.1).

Theorem 2.1. Let N ≥ 2, b > 0 and 1+ 2b
N−1 +

4
N ≤ p < q < p̃. For any initial data u0 ∈ H1

rd,

there exists T > 0 and a unique solution u to the Cauchy problem (1.1)-(1.2) in the energy
space

C([0,T ],H1
rd).

Moreover,

1. u ∈ Lα((0,T ),W1,β), where (α,β) is an admissible pair in the meaning of Definition
2.9;

2. u satisfies conservation of the energy and the mass;

3. if q < pc, then u is global.

In order to study the focusing problem associated to (1.1), we consider the stationary
equation

∆φ−φ+ |x|bφ|φ|p−1+ |x|bφ|φ|q−1 = 0, 0 , φ ∈ H1
rd. (2.1)

We prove that the previous elliptic problem has a ground state in the meaning that it has a
nontrivial positive radial solution which minimizes the action J when Kα,β vanishes. Let
the minimizing problem

mα,β := inf
0,φ∈H1

rd

{
J(φ), s .t Kα,β = 0

}
. (2.2)
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Theorem 2.2. Take a couple of real numbers (α,β) ∈ R∗+ ×R
∗
+, b > 0 and N ≥ 2, such that

p0 < p < q < p̃. Then,

(1) m := mα,β is nonzero and independent of (α,β);

(2) there is a ground state solution to (1.1) in the following meaning

∆φ−φ+ |x|bφ|φ|p−1+ |x|bφ|φ|q−1 = 0, 0 , φ ∈ H1
rd, m = J(φ). (2.3)

The last result established in this paper is about nonlinear instability of standing waves.

Theorem 2.3. Take p0 < p < q < p̃, then the standing wave solution of (1.1) given by the
previous Theorem is nonlinearly unstable.

2.2 Technical tools

In what follows, we give some standard results needed in the sequel. Let us start some the
Sobolev injections [6].

Lemma 2.4. Let N ≥ 1 and 2 < p < 2N
N−2 when N ≥ 3, 2 < p <∞ when N ∈ {1,2}. Then, the

following embedding is compact
H1

rd ↪→ Lp. (2.4)

Recall the so-called Gagliardo-Nirenberg inequality [1].

Lemma 2.5. Let N ≥ 2 and 2 < q < q∗, where q∗ = 2N
N−2 when N ≥ 3 and q∗ = +∞ when

N = 2. Then there is a positive constant CN,q depending of N, q such that for any u ∈ H1
rd,∫

|u|q dx ≤CN,q(
∫
|∇u|2 dx)

N(q−2)
4 (
∫
|u|2 dx)

2q−N(q−2)
4 . (2.5)

The following Strauss’inequality [16], will be useful along this paper.

Lemma 2.6. Let N ≥ 2. There is a constant CN > 0 depending of N such that for any
u ∈ H1

rd,

|x|
N−1

2 |u(x)| ≤CN(
∫
|u|2 dx)

1
4 (
∫
|∇u|2 dx)

1
4 for almost any x ∈ RN . (2.6)

Using the previous inequalities, we have [4].

Proposition 2.7. Take N ≥ 2, b> 0 and 1+ 2b
(N−1) < p< p̃. Then there is a constant CN,p,b > 0

depending only on N, p and b such that for any u ∈ H1
rd,∫

|x|b|u|p+1 dx ≤CN,p,b(
∫
|∇u|2 dx)

N(p−1)−2b
4 (
∫
|u|2 dx)

2(p+1)−[N(p−1)−2b]
4 . (2.7)

Now, we give some estimates about solutions to semilinear Schrödinger equation. Let
us start with the so-called Virial identity [10].
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Proposition 2.8. Let u0 ∈ Σ := {u ∈ H1 s.t |x|u ∈ L2} and u be the solution of the equation

iut +∆xu = f (u), u(0, .) = u0.

Then u(t) ∈ Σ for all t ∈ [0,T ∗). Moreover, the function

h : t 7→
1
8
‖xu(t)‖22

is of class C2 and satisfies for 0 ≤ t < T ∗,

h′′(t) =
∫ [
|∇u(t)|2−

N(p−1)−2b
2(p+1)

|x|b|u(t)|p+1−
N(q−1)−2b

2(q+1)
|x|b|u(t)|q+1

]
dx. (2.8)

Definition 2.9. A couple of real numbers (q,r) is admissible if

q,r ≥ 2, (q,r,N) , (2,∞,2) and
2
q
+

N
r
=

N
2
.

Strichartz estimate [2] is a classical tool to study Schrödinger equation.

Proposition 2.10. Let T > 0 and (q,r), (α,β) two admissible couples. Then, there exists a
positive real number C such that

‖u‖Lq
T (Lr) ≤C

(
‖u(0, .)‖H1

rd
+ ‖iut +∆xu‖Lα′T (Lβ′ )

)
, (2.9)

where (α′,β′) is the Hölder conjugate of (α,β).

In particular we have the following energy estimate.

Proposition 2.11. For any T > 0 there exists C > 0 such that

sup
t∈[0,T ]

‖u(t, .)‖H1
rd
≤C
(
‖u(0, .)‖H1

rd
+ ‖iut +∆xu‖L1

T (H1
rd)

)
. (2.10)

We end this section with the following classical Pohozaev [15] result.

Proposition 2.12. Let φ ∈ H1
rd a solution to (2.1). Then

Kα,β(φ) = 0, for any α,β ∈ R.

3 Proof of Theorem 2.1

This section contains three parts, local existence, uniqueness and global existence in the
defocusing case.
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3.1 Local Existence

Using the fact that

1+
2b

N −1
+

4
N
< p < q < p̃,

there exist σ ∈ (0, 2
N−2 ) such that

2
p−1− 2b

N−1

<
N
2
< 1+

1
σ1

<
2N

(N −2)(q−1− 2b
N−1 )

.

For T > 0, we denote the space

ET := C([0,T ],H1
rd)∩ Lα([0,T ],W1,β)

endowed with the complete norm

‖u‖T = ‖u‖L∞T (L2)∩LαT (Lβ)+ ‖∇u‖L∞T (L2)∩LαT (Lβ),

where α := 4σ+4
Nσ and β := 2σ+2. We denote by BT (r) the closed ball in ET with center zero

and radius r > 0. Let w to be the solution of the free Schrödinger equation

i∂tw+∆w = 0, w(0, .) = u0.

We consider the map ψ defined on BT (1) by ψ(v) =: ṽ, where

i∂t̃v+∆̃v = f (w+ v), ṽ(0, .) = 0. (3.1)

The source term stands for f (u) := ε|x|b(u|u|p−1 + u|u|q−1). We prove that for T > 0 suffi-
ciently small, the map ψ is a contraction which leaves BT (1) stable.
Let u := v+w, applying Strichartz estimate (2.9), we get

‖̃v‖L∞T (L2)∩LαT (Lβ) . ‖ f (u)‖Lα′T (Lβ′ ).

Taking θ := 2σ(2σ+2)
2−(N−2)σ , yields

1
α′
=

2σ
θ
+

1
α
,

1
β′
=

2σ
β
+

1
β
.

Using Hölder inequality, we obtain

‖ f (u)‖Lα′T (Lβ′ ) ≤ ‖u‖LαT (Lβ)‖|x|
b|u|p−1+ |x|b|u|q−1‖

L
θ

2σ
T (L

β
2σ )

≤ ‖u‖LαT (Lβ)

(
‖|x|b|u|p−1‖

L
θ

2σ
T (L

β
2σ )
+ ‖|x|b|u|q−1‖

L
θ

2σ
T (L

β
2σ )

)
.

Applying Strauss inequality (2.6), we get

(|x|
N−1

2 |u|)
bβ

σ(N−1) . (‖∇u‖
1
2
L2‖u‖

1
2
L2)

bβ
σ(N−1) ,

. (1+ ‖u0‖H1
rd

)
bβ

σ(N−1) .
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In the other side, we have

2 <
β

2σ
(p−1−

2b
N −1

) = (1+
1
σ

)(p−1−
2b

N −1
) <

2N
N −2

.

Thus, using Gagliardo-Nirenberg inequality (2.5), we obtain

∫
RN
|u|

β
2σ (p−1− 2b

N−1 )dx . ‖∇u‖
N( β

2σ (p−1− 2b
N−1 )−2)

2
L2 ‖u‖

(2 β
2σ (p−1− 2b

N−1 )−N( β
2σ (p−1− 2b

N−1 )−2))
2

L2

. (1+ ‖u0‖H1
rd

)
β

2σ (p−1− 2b
N−1 ).

Writing

‖|x|b|u|p−1‖
β

2σ

L
β

2σ
=

∫
RN

(|x|
N−1

2 |u|)
bβ

σ(N−1) |u|
β

2σ (p−1− 2b
N−1 ) dx,

yields
‖|x|b|u|p−1‖

L
β

2σ
. (1+ ‖u0‖H1

rd
)p−1.

Then
‖|x|b|u|p−1‖

L
θ

2σ
T (L

β
2σ )
. T

2σ
θ (1+ ‖u0‖H1

rd
)p−1. (3.2)

With the same way, we get

‖|x|b|u|q−1‖
L

θ
2σ
T (L

β
2σ )
. T

2σ
θ (1+ ‖u0‖H1

rd
)q−1.

Thus, we obtain

‖ f (u)‖Lα′T (Lβ′ ) . T
2σ
θ

(
(1+ ‖u0‖H1

rd
)p−1+ (1+ ‖u0‖H1

rd
)q−1
)
‖u‖LαT (Lβ)

. T
2σ
θ (1+ ‖u0‖H1

rd
)q−1‖u‖LαT (Lβ).

Consequently
‖̃v‖L∞T (L2)∩LαT (Lβ) . T

2σ
θ (1+ ‖u0‖H1

rd
)q−1‖u‖LαT (Lβ).

On the other hand, since

1+
2b

N −1
+

4
N
+

2
N −1

< p < q < p̃,

there exist σ1 ∈ (0, 2
N−2 ) such that

2

p−1− 2(b−1)
N−1

<
N
2
< 1+

1
σ1

<
2N

(N −2)(q−1− 2(b−1)
N−1 )

.

We denote also

α1 :=
4σ1+4

Nσ1
, β1 := 2σ1+2, θ1 :=

2σ1(2σ1+2)
2− (N −2)σ1

.
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Applying Strichartz estimate (2.9) via Hölder inequality, we get

‖∇̃v‖L∞T (L2)∩LαT (Lβ) . ‖∇( f (u))‖Lα′T (Lβ′ )

. ‖∇u‖LαT (Lβ)

(
‖|x|b|u|p−1‖

L
θ

2σ
T (L

β
2σ )
+ ‖|x|b|u|q−1‖

L
θ

2σ
T (L

β
2σ )

)
+ ‖u‖Lα1

T (Lβ1 )

(
‖|x|b−1|u|p−1‖

L
θ1
2σ
T (L

β1
2σ1 )
+ ‖|x|b−1|u|q−1‖

L
θ1

2σ1
T (L

β1
2σ1 )

)
.

Arguing as previously, we obtain

‖|x|b|u|p−1‖
L

θ
2σ
T (L

β
2σ )
. T

2σ
θ (1+ ‖u0‖H1

rd
)p−1, ‖|x|b|u|q−1‖

L
θ

2σ
T (L

β
2σ )
. T

2σ
θ (1+ ‖u0‖H1

rd
)q−1;

‖|x|b−1|u|p−1‖
L

θ1
2σ1
T (L

β
2σ1 )
. T

2σ1
θ1 (1+ ‖u0‖H1

rd
)p−1, ‖|x|b−1|u|q−1‖

L
θ1

2σ1
T (L

β1
2σ1 )
. T

2σ1
θ1 (1+ ‖u0‖H1

rd
)q−1.

So,

‖∇( f (u))‖Lα′T (Lβ′ ) . T
2σ
θ

(
(1+ ‖u0‖H1

rd
)p−1+ (1+ ‖u0‖H1

rd
)q−1
)
‖∇u‖LαT (Lβ)

+ T
2σ1
θ1
+ 1
α1
(
(1+ ‖u0‖H1

rd
)p−1+ (1+ ‖u0‖H1

rd
)q−1
)
‖u‖L∞T (Lβ1 ).

Then, using Sobolev injection (2.4), via the fact that σ1 ∈ (0, 2
N−2 ), it follows that

‖∇̃v‖L∞T (L2)∩LαT (Lβ) . (T
2σ
θ +T

1
α′1 )(1+ ‖u0‖H1

rd
)q−1‖u‖T .

Finally,

‖̃v‖T . (T
2σ
θ +T

1
α′1 )(1+ ‖u0‖H1

rd
)q−1‖u‖T

. (T
2σ
θ +T

1
α′1 )(1+ ‖u0‖H1

rd
)q.

This implies that for T > 0 sufficiently small ψ maps ET (1) into itself.
Now we prove that ψ is a contraction. Let v1,v2 ∈ BT (1). Taking account of Strichartz
estimate, we get

‖ψ(v1)−ψ(v2)‖L∞T (L2)∩LαT (Lβ) . ‖ f (u1)− f (u2)‖Lα′T (Lβ′ ).

Compute

| f (u1)− f (u2)| ≤ |x|b
(
|u1|u1|

p−1−u2|u2|
p−1|+ |u1|u1|

q−1−u2|u2|
q−1|
)

. |x|b
(
|u1−u2|[|u1|

p−1+ |u2|
p−1]+ |u1−u2|[|u1|

q−1+ |u2|
q−1]
)

≤ |u1−u2|
(
|x|b|u1|

p−1+ |x|b|u1|
q−1+ |x|b|u2|

p−1+ |x|b|u2|
q−1
)
.

With Hölder inequality, yields

‖ f (u1)− f (u2)‖Lα′T (Lβ′ ) ≤ ‖v1− v2‖LαT (Lβ)‖|x|
b|u1|

p−1+ |x|b|u1|
q−1+ |x|b|u2|

p−1+ |x|b|u2|
q−1‖

L
θ

2σ
T (L

β
2σ )

≤ ‖v1− v2‖LαT (Lβ)

2∑
i=1

(
‖|x|b|ui|

p−1‖
L

θ
2σ
T (L

β
2σ )
+ ‖|x|b|ui|

q−1‖
L

θ
2σ
T (L

β
2σ )

)
.
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This implies via (3.2), that

‖ f (u1)− f (u2)‖Lα′T (Lβ′ ) . T
2σ
θ (1+ ‖u0‖H1

rd
)q−1‖v1− v2‖LαT (Lβ).

Then,
‖ψ(v1)−ψ(v2)‖L∞T (L2)∩LαT (Lβ) . T

2σ
θ (1+ ‖u0‖H1

rd
)q−1‖v1− v2‖LαT (Lβ).

It remains to estimate the quantity ‖∇(ψ(v1)−ψ(v2))‖L∞T (L2)∩LαT (Lβ). Applying Strichartz esti-
mate (2.9), we get

‖∇(ψ(v1)−ψ(v2))‖L∞T (L2)∩LαT (Lβ) . ‖|x|
b∇(g(u1)−g(u2))‖Lα′T (Lβ′ )+‖|x|

b−1(g(u1)−g(u2))‖
L
α′1
T (Lβ

′
1 )
,

where we denote the function g(u) := 1
|x|b f (u), we identify g with a real function on R2 and

Dg denotes the R2 derivative of the identified function. By Hölder inequality

‖|x|b∇(g(u1)−g(u2))‖Lα′T (Lβ′ ) .
2∑

i=1

‖∇u2(v1− v2)(|x|b|ui|
p−2+ |x|b|ui|

q−2)‖Lα′T (Lβ′ )+ ‖|x|
bDg(u1)∇(v1− v2)‖Lα′T (Lβ′ )

. ‖∇u2‖LαT (Lβ)

2∑
i=1

(
‖(v1− v2)|x|b|ui|

p−2‖
L

θ
2σ
T (L

β
2σ )
+ ‖(v1− v2)|x|b|ui|

q−2‖
L

θ
2σ
T (L

β
2σ )

)
+ ‖∇(v1− v2)‖LαT (Lβ)‖|x|

bDg(u1)‖
L

θ
2σ
T (L

β
2σ )
.

We have for i ∈ {1,2},

‖(v1− v2)|x|b|ui|
p−2‖

β
2σ

L
β

2σ
=

∫
(|x|

N−1
2 |v1− v2|)

β
2σ |x|

β(N−1)
4σ ( 2b

N−1−1)|ui|
β

2σ (p−2)

=

∫
(|x|

N−1
2 |v1− v2|)

β
2σ (|x|

N−1
2 |ui|)

β
2σ ( 2b

N−1−1)|ui|
β

2σ (p−1− 2b
N−1 )

Using Strauss inequality (2.6),

(|x|
N−1

2 |v1− v2|)
β

2σ . (‖∇v1− v2‖
1
2
L2‖v1− v2‖

1
2
L2)

β
2σ . ‖v1− v2‖

β
2σ
T .

With the same way

(|x|
N−1

2 |ui|)
β

2σ ( 2b
N−1−1) . (‖∇u‖

1
2
L2‖u‖

1
2
L2)

β
2σ ( 2b

N−1−1) . (1+ ‖u0‖H1
rd

)
β

2σ ( 2b
N−1−1).

Now, taking account of Gagliardo-Nirenberg inequality (2.5), we get∫
|ui|

β
2σ (p−1− 2b

N−1 ) . (1+ ‖u0‖H1
rd

)
β

2σ (p−1− 2b
N−1 ).

Consequently, for i ∈ {1,2} we have,

‖(v1− v2)|x|b|ui|
p−2‖

L
θ

2σ
T (L

β
2σ )
. T

2σ
θ ‖v1− v2‖T (1+ ‖u0‖H1

rd
)p−2.

Using previous computation,

‖Dg(ui)‖
L

θ
2σ
T (L

β
2σ )
. T

2σ
θ (1+ ‖u0‖H1

rd
)q−1, f or i ∈ {1,2}.
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Since we have ‖∇u2‖LαT (Lβ) . (1+ ‖u0‖H1
rd

), we obtain

‖|x|b∇(g(u1)−g(u2))‖Lα′T (Lβ′ ) . T
2σ
θ (1+ ‖u0‖H1

rd
)q−1‖v1− v2‖T .

Moreover, arguing as previously,

‖|x|b−1(g(u1)−g(u2))‖
L
α′1
T (Lβ

′
1 )
≤ ‖v1− v2‖Lα1

T (Lβ1 )‖|x|
b−1|u1|

p−1+ |x|b−1|u1|
q−1+ |x|b|u2|

p−1+ |x|b|u2|
q−1‖

L
θ1

2σ1
T (L

β1
2σ1 )

≤ ‖v1− v2‖Lα1
T (Lβ1 )

2∑
i=1

(
‖|x|b−1|ui|

p−1‖
L

θ1
2σ1
T (L

β1
2σ1 )
+ ‖|x|b−1|ui|

q−1‖
L

θ1
2σ1
T (L

β1
2σ1 )

)
≤ ‖v1− v2‖L∞T (H1)

(
(1+ ‖u0‖H1)p−1+ (1+ ‖u0‖H1)q−1

)
T

1
α1
+2σ1

θ1 .

This implies that

‖∇(ψ(v1)−ψ(v2))‖L∞T (L2)∩LαT (Lβ) . (T
2σ
θ +T

1
α1
+2σ1

θ1 )(1+ ‖u0‖H1
rd

)q−1‖v1− v2‖T .

Consequently, we obtain

‖ψ(v1)−ψ(v2)‖T . (T
2σ
θ +T

1
α1
+2σ1

θ1 )(1+ ‖u0‖H1
rd

)q−1‖v1− v2‖T .

Finally, for T > 0 sufficiently small ψ is a contraction. The existence of solution to (1.1)
follows with a standard Picard argument.

3.2 Uniqueness in the energy space

In what follows we prove uniqueness of solution to the Cauchy problem (1.1)-(1.2). Let
u1,u2 ∈ C([0,T ],H1

rd) two solutions of the Schrödinger equation (1.1), with the same data.
Take w = u1−u2, then

i∂tw+4w = f (u1)− f (u2) = 0, w(0, .) = 0.

With a continuity argument, take 0 < T < 1 such that

max
i={1,2}

‖ui‖L∞([0,T ],H1
rd) ≤ 1+ ‖u0‖H1

rd
.

With Strichartz estimate, we have

‖w‖L∞T (L2)∩LαT (Lβ) . ‖ f (u1)− f (u2)‖Lα′T (Lβ′ ).

With previous computation, we have

‖ f (u1)− f (u2)‖Lα′T (Lβ′ ) . T
2σ
θ (1+ ‖u0‖H1

rd
)q−1‖w‖LαT (Lβ).

So
‖w‖LαT (Lβ) . T

2σ
θ (1+ ‖u0‖H1

rd
)q−1‖w‖LαT (Lβ).

Then, for T > 0 sufficiently small we have

‖w‖LαT (Lβ) = 0.

The proof is closed via a standard time translation argument.
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3.3 Global existence in the defocusing case

Take ε = −1. Let u ∈ C([0,T ∗),H1
rd) to be the maximal solution to (1.1)-(1.2). By contra-

diction, assume that
T ∗ < +∞ and lim

t→T ∗
‖∇u(t)‖L2 = +∞.

Write the energy conservation∫
|∇u(t)|2 dx = 2E(u0)+

2
p+1

∫
|x|b|u(t)|p+1 dx+

2
q+1

∫
|x|b|u(t)|q+1 dx.

By the estimate (2.7), we get∫
|x|b|u(t)|p+1 dx . ‖∇u(t)‖

N(p−1)−2b
2

L2 ‖u(t)‖
2(p+1)−(N(p−1)−2b)

2
L2 ;∫

|x|b|u(t)|q+1 dx . ‖∇u(t)‖
N(q−1)−2b

2
L2 ‖u(t)‖

2(q+1)−(N(q−1)−2b)
2

L2 .

With the conservation of the mass, yields

‖∇u(t)‖2L2 ≤ 2E(u0)+C
[
‖∇u(t)‖

N(p−1)−2b
2

L2 + ‖∇u(t)‖
N(q−1)−2b

2
L2

]
.

Therefore,

‖∇u(t)‖2L2

(
1−C(‖∇u(t)‖

N(p−1)−2b−4
2

L2 + ‖∇u(t)‖
N(q−1)−2b−4

2
L2 )

)
≤ 2E(0).

Since q < pc, it yields N(q−1)−2b−4 < 0. Taking t→ T ∗ in the previous inequality, leads
to a contradiction and finishes the proof.

4 Proof of Theorem 2.2

In this section we prove the existence of a ground state solution to (2.3).

Remark 4.1. Note that, in this section

1) (α,β) ∈ R2
+ \ {(0,0)}.

2) The proof of the Theorem 2.3 is based on several lemmas.

3) We write, for easy notation, K = Kα,β, KQ = KQ
α,β, KN = KN

α,β, L =Lα,β and H = Hα,β.

Lemma 4.2. Let 0 , φ ∈ H1
rd, then

1) min(LH(φ),H(φ)) > 0;

2) λ 7→ H(φλ) is increasing.
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Proof. we have,

H(φ)=
β

2α+Nβ
‖∇φ‖2L2+

α(p−1)+bβ
(p+1)(2α+Nβ)

∫
|x|b|φ|p+1 dx+

α(q−1)+bβ
(q+1)(2α+Nβ)

∫
|x|b|φ|q+1 dx> 0.

Moreover, denoting µ := 2α+Nβ and a = 2α+(N−2)β
2 , we compute

L(H(φ)) = 2aH(φ)+
1
µ

(L−2a)(µ−L)J(φ)

≥
1
µ

(L−2a)(µ−L)J(φ).

Since (L−2a)‖∇φ‖2
L2 = 0 = (L−µ)‖φ‖2

L2 , we have (L−2a)(L−µ)‖φ‖2
H1

rd
= 0. Then, with a

direct computation

L(H(φ)) ≥
1
µ

(L−2a)(µ−L)J(φ)

=
1
µ

(α(p−1)+bβ)(α(p−1)+β(b+2))
p+1

∫
|x|b|u|p+1 dx

+
1
µ

(α(q−1)+bβ)(α(q−1)+β(b+2))
q+1

∫
|x|b|u|q+1 dx

> 0.

The second point is a consequence of the equality ∂λH(φλ) =LH(φλ) > 0. �

Lemma 4.3. Assume that 2α+ (N −2)β , 0 and take (φn) a bounded sequence of H1
rd −{0}

such that lim
n→+∞

KQ(φn) = 0. Then, there exists n0 ∈ N such that K(φn) > 0 for all n ≥ n0.

Proof. Since α,β ≥ 0 and 2α+ (N −2)β , 0,

KQ(φn) =
2α+ (N −2)β

2
‖∇φn‖

2
L2 +

(2α+Nβ)
2

‖φn‖
2
L2 ≥C‖∇φn‖

2
L2 .

Applying the estimate (2.7), via the facts that

sup
n
‖φn‖H1 . 1, ‖∇φn‖L2 → 0,

we have
KN(φn) . ‖∇φn‖

N(p−1)−2b
2

L2 + ‖∇φn‖
N(q−1)−2b

2
L2 . ‖∇φn‖

N(p−1)−2b
2

L2 .

Now, N(p−1)−2b
2 > 2 because p > p0, thus

K(φn) ' KQ(φn) > 0.

The proof is finished. �

Lemma 4.4. We have
mα,β = inf

0,φ∈H1
{H(φ), s. t K(φ) ≤ 0}. (4.1)
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Proof. It sufficient to prove that m ≤ m1, where m1 is the right hand side of the previous
inequality. Take φ ∈ H1

rd such that K(φ) < 0.
Assume that 2α+ (N −2)β , 0, then by the previous lemma, the facts that lim

λ→−∞
KQ(φλ) = 0

and λ 7→ H(φλ) is increasing, there exists λ < 0 such that

K(φλ) = 0 H(φλ) ≤ H(φ). (4.2)

Then, m ≤ H(φλ) ≤ H(φ). This ends the proof.
Assume now that α = 0 and N = 2. When as λ tends to zero

KN(λφ) = o(λ2KN(φ)) = o(λ2KQ(φ)).

So K(λφ) ' λ2KQ(φ) > 0. Then, with a continuity argument, there exists λ ∈ (0,1) such that
λφ satisfies (4.2). The proof is achieved similarly. �

Proof of Theorem 2.3. The proof contains four steps.
Step 1. We prove that a minimizing sequence is bounded in H1

rd.

let (φn) to be a minimizing sequence of (2.2), namely

0 , φn ∈ H1
rd, K(φn) = 0 and lim

n
H(φn) = lim

n
J(φn) = m. (4.3)

• First case β , 0. Since
β

2α+Nβ
‖∇φn‖

2
2 ≤ H(φn)→ m,

we get
sup

n
‖∇φn‖L2 . 1.

Assume that lim
n
‖φn‖L2 =∞. Using the estimate (2.7) via the equality K(φn) = 0, yields

‖φn‖
2
L2 .

2α+ (N −2)β
2

‖∇φn‖
2
L2 +

2α+Nβ
2
‖φn‖

2
L2

=
α(p+1)+ (N +b)β

p+1

∫
|x|b|φn|

p+1 dx+
α(q+1)+ (N +b)β

q+1

∫
|x|b|φn|

q+1 dx

. ‖∇φn‖
N(p+1)−2(N+b)

2
L2 ‖φn‖

2(N+b)+(p+1)(2−N)
2

L2 + ‖∇φn‖
N(q+1)−2(N+b)

2
L2 ‖φn‖

2(N+b)+(q+1)(2−N)
2

L2

. ‖φn‖
2(N+b)+(q+1)(2−N)

2
L2 .

The condition q > p0 implies that 2(N+b)+(q+1)(2−N)
2 < 2 and leads to a contradiction in the

last inequality if letting n 7→ +∞. Then (φn) is bounded in H1
rd.

• Second case β = 0.
In this case (φn) is bounded in H1

rd because

‖φn‖
2
H1 =

∫
|x|b
(
|φn|

p+1+ |φn|
q+1
)
dx . H(φn)→ m.

Step 2. We prove that the weak limit of (φn) is nonzero.
Using the first step, for a subsequence, still denoted by (φn), we have

φn ⇀φ weakly in H1
rd and φn→ φ in Lp, for any 2 < p <

2N
N −2

.
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We prove that φ , 0. Arguing by contradiction, assume that φ = 0. Since 2 < p+1− 2b
N−1 <

q+1− 2b
N−1 <

2N
N−2 then, due to the compact injection (2.4), we obtain∫

|x|b|φn|
p+1 dx ≤

∫ (
|x|

N−1
2 |φn|

) 2b
N−1 |φn|

p+1− 2b
N−1 dx ≤CN‖φn‖

p+1− 2b
N−1

p+1− 2b
N−1
−→ 0;∫

|x|b|φn|
q+1 dx ≤

∫ (
|x|

N−1
2 |φn|

) 2b
N−1 |φn|

q+1− 2b
N−1 dx ≤CN‖φn‖

q+1− 2b
N−1

q+1− 2b
N−1
−→ 0.

Thus
KQ(φn) = KN(φn)→0.

• First case 2α+ (N −2)β , 0.
Using lemma 4.3, there exists n0 such that K(φn) > 0, for all n > n0, which contradicts the
fact that K(φn) = 0. This implies that φ , 0.
• Second case α = 0 and N = 2.
Without loss of generality, we take β = 1. Now, 0 = K(φn) via the estimate (2.7) yield to the
absurdity

‖φn‖
2
L2 =

∫
|x|b
( |φn|

p+1

p+1
+
|φn|

q+1

q+1
)dx . ‖φn‖

b+2
L2 .

Thus φ , 0.
Step 3. We prove that φ is a minimizer and m > 0.
With the lower semi-continuity of H1

rd norm, via the convergence,
∫
|x|b|φn −φ|

p+1 dx→ 0
,we have

0 = liminf
n

K(φn) ≥
2α+ (N −2)β

2
liminf

n
‖∇φn‖

2
L2 +

2α+Nβ
2

liminf
n
‖φn‖

2
L2

−
α(p+1)+ (N +b)β

p+1
lim

n

∫
|x|b|φn|

p+1 dx−
α(q+1)+ (N +b)β

q+1
lim

n

∫
|x|b|φn|

q+1 dx

≥
2α+ (N −2)β

2
‖φ‖2L2 +

2α+ (N −2)β
2

‖∇φ‖2L2

−
α(p+1)+ (N +b)β

p+1

∫
|x|b|φ|p+1 dx−

α(q+1)+ (N +b)β
q+1

∫
|x|b|φ|q+1 dx

= K(φ).

Applying Fatou lemma, we obtain

m ≥ liminf
n

H(φn) ≥ liminf
n

β

2α+Nβ
‖∇φn‖

2
2+ liminf

n

α(p−1)+bβ
(p+1)(2α+Nβ)

∫
|x|b|φn|

p+1 dx

+ liminf
n

α(q−1)+bβ
(q+1)(2α+Nβ)

∫
|x|b|φn|

q+1 dx

≥
β

2α+Nβ
‖∇φ‖22+

α(p−1)+bβ
(p+1)(2α+Nβ)

∫
|φ|p+1 dx+

α(q−1)+bβ
(q+1)(2α+Nβ)

∫
|x|b|φ|q+1 dx

= H(φ).

Then H(φ) ≤ m and φ satisfies

0 , φ ∈ H1
rd, K(φ) ≤ 0 and J(φ) = H(φ) ≤ m.
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By (4.2), we can assume that φ is a minimizer satisfying

0 , φ ∈ H1
rd, K(φ) = 0 and J(φ) = H(φ) = m.

Moreover

H(φ) =
β

2α+Nβ
‖∇φ‖22+

α(p−1)+bβ
(p+1)(2α+Nβ)

∫
|x|b|φ|p+1+

α(q−1)+bβ
(q+1)(2α+Nβ)

∫
|x|b|φ|q+1 > 0.

Thus
m > 0.

Step 4. We prove that φ is a ground state solution of (2.2).
Since φ satisfies (2.3), there is a Lagrange multiplier η ∈ R such that J′(φ) = ηK′(φ). Recall
that L(φ) := (∂λφλα,β)|λ=0 and LJ(φ) := (∂λJ(φλα,β))|λ=0. Then

0 = K(φ) =LJ(φ) =< J′(φ),L(φ) >= η < K′(φ),L(φ) >= ηL2J(φ).

Moreover, with previous computation

−L2J(φ)−2aµJ(φ) = −(L−2a)(L−µ)J(φ)

=
(α(p−1)+bβ)(α(p−1)+β(b+2))

p+1

∫
|x|b|u|p+1 dx

+
(α(q−1)+bβ)(α(q−1)+β(b+2))

q+1

∫
|x|b|u|q+1 dx

≥ 0.

Because J(φ) > 0, it follows that η = 0 and J′(φ) = 0. Finally, φ is a ground state and m is
independent of α and β. �

5 Proof of Theorem 2.3

In this section, we prove that if φ is a ground state solution to (2.3), then the standing wave
eitφ of the Schrödinger equation (1.1) is nonlinearly unstable. Here and hereafter, we denote

P := K N
2 ,−1, I := K1,0 and φλ := λ

N
2 φ(λ. ).

Definition 5.1. For ε > 0, we define

1. the set
Uε(φ) := {v ∈ H1

rd, s. t inf
t∈R
‖v− eitφ‖H1 < ε}.

2. If u0 ∈ Uε(φ) and u is the solution to (1.1)-(1.2) given by Theorem 2.1,

Tε(u0) := sup{T > 0, s. t u(t) ∈ Uε(φ), for any t ∈ [0,T )}.

3. We say that eitφ is orbitally stable if, for any σ > 0 there exists ε > 0 such that if
u0 ∈Uε(φ) and u is the solution to (1.1)-(1.2) given by Theorem 2.1, then Tσ(u0)=∞.
Otherwise, the standing wave eitφ is said to be nonlinearly unstable.
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4. Define also the set

Πε(φ) := {v ∈ Uε(φ), s. t E(v) < E(φ), ‖v‖L2 = ‖φ‖L2 and P(v) < 0}.

The proof of Theorem 2.3 is based on several Lemmas.

Lemma 5.2. Let φ a ground state solution to (2.3). If ∂2
λE(φλ)|λ=1 < 0, then there exist

ε0 > 0, σ0 > 0 and a mapping

λ : Uε0(φ) −→ [1−σ0,1+σ0]

such that I(ξλ) = 0, for all ξ ∈ Uε0(φ).

Proof. If we assume that 〈I′(φ), (∂λφλ)|λ=1〉 = 0, then (∂λφλ)|λ=1 would be the tangent at φ
to the set

N := {0 , φ ∈ H1
rd, s. t I(φ) = 0}.

Therefore, 〈J′′(φ)(∂λφλ)|λ=1, (∂λφλ)|λ=1〉 ≥ 0 because φ is a minimizer. This implies the
contradiction

0 > ∂2
λE(φλ)|λ=1 = ∂

2
λJ(φλ)|λ=1 = 〈J′′(φ)(∂λφλ)|λ=1, (∂λφλ)|λ=1〉 ≥ 0.

Therefore

∂λI(ξλ)|λ=1,ξ=φ = 〈I′(φ), (∂λφλ)|λ=1〉 , 0 and I(ξλ)|λ=1,ξ=φ = I(φ) = 0.

The implicit function Theorem closes the proof. �

The next auxiliary result reads

Lemma 5.3. Let φ a ground state solution to (2.3). If ∂2
λE(φλ)|λ=1 < 0, then there exist two

real numbers ε1 > 0 and σ1 > 0 such that for any ξ ∈ Uε1(φ) satisfying ‖ξ‖L2 = ‖φ‖L2 , holds

E(φ) < E(ξ)+ (λ−1)P(ξ) for some λ ∈ [1−σ1,1+σ1].

Proof. Since ∂2
λE(φλ)|λ=1 < 0, with a continuity argument, there exist ε1 > 0 and σ1 > 0

such that
∂2
λE(ξλ) < 0, for any (λ,ξ) ∈ [1−σ1,1+σ1]×Uε1(φ).

Write the Taylor expansion of E(ξλ) at λ = 1 and ξ ∈ Uε1(φ),

E(ξλ) = E(ξλ)|λ=1+ (λ−1)∂λE(ξλ)|λ=1+
(λ−1)2

2
∂2
λE(ξλ)|λ∈[1−σ1,1+σ1].

With a simple calculation, we have ∂λE(ξλ)|λ=1 = P(ξ). Then

E(ξλ) < E(ξ)+P(ξ)(λ−1), for any (λ,ξ) ∈ [1−σ1,1+σ1]×Uε1(φ). (5.1)

By the previous lemma, we can take 0 < ε1 < ε0 and 0 < σ1 < σ0 such that

I(ξλ) = 0, for any λ ∈ [1−σ1,1+σ1]×Uε1(φ).
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The fact that ξλ ∈ N implies that

J(ξλ) ≥ J(φ), for any λ ∈ [1−σ1,1+σ1]×Uε1(φ). (5.2)

On the other hand, for any ξ ∈ Uε1(φ) satisfying ‖ξ‖L2 = ‖φ‖L2 , we have

‖ξλ‖L2 = ‖ξ‖L2 = ‖φ‖L2 . (5.3)

Therefore, by (5.2)-(5.3), denoting M(φ) the mass of φ, it follows that

E(ξλ) = J(ξλ)−M(ξλ)

≥ J(φ)−M(ξλ)

= J(φ)−M(ξ)

= J(φ)−M(φ)

= E(φ).

The proof is completed via (5.1). �

The last intermediary result is the following.

Lemma 5.4. Let φ a ground state solution to (2.3). If ∂2
λE(φλ)|λ=1 < 0, then for any u0 ∈Πε1

, there exists a real number σ0 = σ(u0) > 0 such that the solution u to (1.1)-(1.2) satisfies

P(u(t)) < −σ0, for all 0 ≤ t < Tε1(u0).

Proof. Let u0 ∈ Πε1 , so

E(u0) < E(φ), ‖u0‖L2 = ‖φ‖L2 and P(u0) < 0.

Put σ2 := E(φ)− E(u0) > 0. It follows from the previous lemma that there exists λ ∈ [1−
σ1,1+σ1] such that

P(u(t))(λ−1)+E(u(t)) > E(φ), for any 0 ≤ t < Tε1(u0).

By the energy conservation, we get

P(u(t))(λ−1) > E(φ)−E(u(t)) = E(φ)−E(u0) = σ2 > 0.

Thus
P(u(t)) , 0, for any (λ, t) ∈ (1−σ1,1+σ1)× [0,Tε1(u0)).

Now, with a continuity argument via the fact that P(u0) < 0, yields

P(u(t)) < 0, for any 0 ≤ t < Tε1(u0).

So, it follows that −σ1 < λ−1 < 0. Then

P(u(t)) < −
σ2

σ1
:= −σ0 < 0, for any 0 ≤ t < Tε1(u0).

The proof is completed. �
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Now, we are ready to prove nonlinear instability.

Proof of Theorem 2.3. Since φ is a ground state solution to (2.3) and P = K N
2 ,−1, it follows

from Proposition 2.12, that

P(φ) =
∫ [
|∇φ|2−

N(p−1)−2b
2(p+1)

|x|b|φ|p+1−
N(q−1)−2b

2(q+1)
|x|b|φ|q+1

]
dx = 0.

With a simple computation, we obtain that

E(φλ) =
λ2

2

∫
|∇φ|2 dx−

λ
N(p−1)−2b

2

p+1

∫
|x|b|φ|p+1 dx−

λ
N(q−1)−2b

2

q+1

∫
|x|b|φ|q+1 dx.

Take the derivative

∂λE(φλ)= λ‖∇φ‖2L2−(
N(p−1)−2b

2(p+1)
)λ

N(p−1)−2(b+1)
2

∫
|x|b|φ|p+1 dx−(

N(q−1)−2b
2(q+1)

)λ
N(q−1)−2(b+1)

2

∫
|x|b|φ|q+1 dx.

We conclude that

∂λE(φλ)|λ=1 = ‖∇φ‖
2
L2 − (

N(p−1)−2b
2(p+1)

)
∫
|x|b|u|p+1 dx− (

N(q−1)−2b
2(q+1)

)
∫
|x|b|u|q+1 dx.

Take the second derivative

∂2
λE(φλ) = ‖∇φ‖2L2 −

(N(p−1)−2b)(N(p−1)−2(b+1))
4(p+1)

λ
N(p−1)−2(b+2)

2

∫
|x|b|φ|p+1 dx

−
(N(q−1)−2b)(N(q−1)−2(b+1))

4(q+1)
λ

N(q−1)−2(b+2)
2

∫
|x|b|φ|q+1 dx.

Thus

∂2
λE(φλ)|λ=1 = ‖∇φ‖2L2 −

(N(p−1)−2b)(N(p−1)−2(b+1))
4(p+1)

∫
|x|b|φ|p+1 dx

−
(N(q−1)−2b)(N(q−1)−2(b+1))

4(q+1)

∫
|x|b|φ|q+1 dx.

Since P(φ) = 0 and p0 < p,

‖∇φ‖2L2 =

∫
RN

[N(p−1)−2b
2(p+1)

|x|b|φ|p+1−
N(q−1)−2b

2(q+1)
|x|b|φ|q+1

]
dx

<
(N(p−1)−2b)(N(p−1)−2(b+1))

4(p+1)

∫
|x|b|φ|p+1 dx

+
(N(q−1)−2b)(N(q−1)−2(b+1))

4(q+1)

∫
|x|b|φ|q+1 dx.

So, we get ∂2
λE(φλ)|λ=1 < 0 and with a continuity argument ∂2

λE(φλ) < 0 for λ near to one.
So ∂λE(φλ) is a decreasing function and

∂λE(φλ) < ∂λE(φλ)|λ=1 = P(φ) = 0, for every λ > 1 near to one.
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Arguing as previously,

E(φλ) < E(φ), for every λ < 1 near to one.

Moreover, with a direct computation, for every λ > 1 near to one

λ−1P(φλ) = λ

∫
|∇φ|2−

N(p−1)−2b
2(p+1)

λ
N(p−1)−2(b+1)

2

∫
|x|b|φ|p+1

−
N(q−1)−2b

2(q+1)
λ

N(q−1)−2(b+1)
2

∫
|x|b|φ|q+1

= ∂λE(φλ)

< 0.

Finally, for λ > 1 near to one

E(φλ) < E(φ), P(φλ) < 0 and ‖φλ‖L2 = ‖φ‖L2 .

Now we take the initial data u0 = φ
λ, for some λ −→ 1+. Then, there exists λ > 1 near to

one such that
u0 ∈ Πε1 .

By lemma 5.4, there exists σ0 =σ(u0) > 0 such that the solution u to the equation (1.1) with
the initial data u0 satisfies

P(u(t)) < −σ0, for any 0 ≤ t < Tε1(u0).

With the Virial identity (2.8), it follows that

1
8

(‖xu(t)‖2L2)′′ = P(u(t)) < −σ0 < 0.

Now if eitφ is orbitally stable, Tε1(u0) = +∞ and P(u) < −σ0 on R+. This implies that
‖xu(t)‖L2 becomes negative for long time. This absurdity finishes the proof. �
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