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Abstract

The transmission and reflection coefficients for the scattering of a particle on one-
dimensional potential are calculated by means of Spectral Parameter Power Series
(SPPS). The results were compared with known results.
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1 Introduction

We consider the scattering of a one-dimensional particle of complete energy E on the po-
tential barrier. The scattering process is described by a Schrödinger equation

Hψ(x) =
[
− ~

2

2m
d2

dx2 +V(x)
]
ψ(x) = Eψ (x) , x ∈ R (1.1)

where ~ is the Planck constant, m > 0 is an effective mass of the particle, V is an electric
potential of an external field, ψ is a wave function.
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Figure 1. (Potential barrier and input-output wave functions. a=3.85, b=6.73

We suppose that V is a real piecewise continuous function on R, such that

V(x) =
V1, x ∈ (−∞,a)
V0(x), x ∈ [a,b]
V2, x ∈ (b,+∞)

,

We suppose for the definiteness, that V1 ≤ V2. It yields that H is a self-adjoint operator in
L2(R) with a domain H2(R) with a continuous spectrum [V1,∞).

We rewrite equation (1.1) as

H1ψ(x) =
(
− d2

dx2 +q(x)
)
ψ(x) = λψ(x),λ ∈ R, x ∈ R, (1.2)

where

q(x) =
q1, x ∈ (−∞,a)
q0(x), x ∈ [a,b]
q2, x ∈ (b,+∞)

,

q0(x) =
2mV0(x)
~2 ,q j =

2mV j

~2 , j = 1,2,λ =
2mE
~2 .

Let the complete energy of the particle E ∈ (V2,∞). It implies that λ > q2 ≥ q1. We set

k j =
√
λ−q j > 0, j = 1,2

We define the solutions of the equation (1.2) of the form

ψ(x) =


eik1(x−a)+Re−ik1(x−a), x < a
c1ψ1(x)+ c2ψ2(x), x ∈ (a,b)

Teik2(x−b), x > b
, (1.3)
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where ψ1(x),ψ2(x) are linearly independent solutions of equation (1.2) on (a,b). The wave
function ψ(x) describes the process of the scattering of a particle with energy E >V2 moving
from the left to right. The complex number R = R(λ) is called the reflection coefficient, and
T = T (λ) is called the transmission coefficient. We will find the coefficients R and T using
the continuity of ψ and ψ′ on R. It is well known that the coefficients R and T satisfied the
relation

|R|2+ k1

k2
|T |2 = 1. (1.4)

Let ψ1,ψ2 be linear independent solutions of (1.1) on [a,b] satisfying the conditions of the
Cauchy problem

ψ1(a) = 1,ψ′1(a) = 0, (1.5)

ψ2(a) = 0,ψ′2(a) = 1. (1.6)

Applying (1.3),(1.5),(1.6) we obtain the equations

1+R = c1, (1.7)

ik1(1−R) = c2,

T = c1ψ1(b)+ c2ψ2(b),

ik2T = c1ψ
′
1(b)+ c2ψ

′
2(b).

Equations (1.7) imply that

(1+R)ψ1(b)+ ik1(1−R)ψ2(b) = T, (1.8)

(1+R)ψ′1(b)+ ik1(1−R)ψ′2(b) = ik2T,

and

R =
ψ′1 (b)+ k2k1ψ2 (b)+ i

[
k1ψ

′
2(b)− k2ψ1 (b)

]
k2k1ψ2 (b)−ψ′1 (b)+ i

[
k2ψ1 (b)+ k1ψ

′
2(b)

] , (1.9)

T =
[
(1+R)ψ1(b)+ ik1(1−R)ψ2(b)

]
. (1.10)

It is clear that k j = k j(λ) =
√
λ−q j > 0, j = 1,2,ψ j(b) = ψ j(b,λ), j = 1,2 and hence R =

R(λ),T = T (λ) depend on the spectral parameter λ = 2mE
~2 , and therefore from the energy E

of the particle.

Remark 1.1. As usual the reflection and transmission coefficients are defined for wave func-
tions ψ of the form

ψ(x) =
{

e−ik1 x+R1eik1 x, x < a,
T1eik2 x, x > b.

Hence
R1 = Re−2ik1a,T1 = e−ik2bT,

and |R| = |R1| , |T | = |T1| .
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There is an extensive literature devoted to finding the reflection and transmission coef-
ficients by analytical and numerical methods (see for instance [1],[6], [7], [8], [15], [14],
[16], [17], [18], etc.).

A numerical implementation of R and T are based on solutions of the Cauchy problem
for the equation (1.2) on the interval (a,b). Of course one can use the canonical Runge-
Kutta method or its improving for the numerical calculation of solutions ψ1,ψ2. But if we
are interesting in the behavior of R(λ),T (λ) on a large interval of the energy the Runge-Kutta
method demands big machinery resources. In this paper solutions of Cauchy problem (1.5),
(1.6) are sought of the form of a power series

ψ(z,λ) =
∞∑

k=0

ak(z)λk (1.11)

with respect to a spectral parameter λ ∈ C with coefficients ak defined by some recursive
formulas (Spectral parameter power series method, abbreviated SPPS method). The SPPS
method has been discovered by V.V. Kravchenko [11], [12] and has been successfully ap-
plied to different problems of Mathematical Physics which are reduced to spectral Sturm-
Liouville problems [4], [5], [10], [13]. In [3] the SPPS method was applied to the analysis
of electromagnetic waveguides.

The paper is organized as follows. In Section 2 we give some known analytical ex-
pressions for reflection and transmission coefficients R,T which will be used later for the
comparison with R,T obtained by the SPPS method. Section 3 is devoted to the numerical
calculations of R,T. We show that the results of calculations obtained by this method give
a good coincidence with results obtained from analytical formulas.

2 Analytical form of the transmission and reflection coefficient

10. Rectangular barrier. Let

V(x) =
{

U0 > 0, x ∈ [0,b]
0, x , [0,b]

,

and E > U0. We set

k1 =

√
2mE
~

,k2 =

√
2m(E−U0)
~

.

Then simple calculations taking into account the continuity of solutions and their derivatives
of equation (1.1) implies the formulas for T and R (see for instance [18])

T =

1+ 1
4

k2
1 + k2

2

k1k2

2

sinh2 (k2b)


−1

, (2.1)

R =
1
4

T
k2

1 + k2
2

k1k2

2

sinh2 (k2b) . (2.2)

20. Potential V(x)= U0

cosh2(αx)
,where U0 > 0,α > 0 are constants. A graph of this potential

is shown in Figure 2.
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Figure 2. Graph of the potential q(x) = U0

cosh2(αx)
with U0 = 1 eV and α = 1×109 nm−1 in the

interval x ∈ [−5,5]

This potential is not finite, but V(x) is exponentially decreasing at infinity, that is

V(x) ≤Ce−2α|x|,C > 0.

Then we can consider the solution ψ of the equation (1.1) with the asymptotics

ψ(x) ∼
{

eikx+Re−ikx, x→−∞
Teikx, x→ +∞ , k =

√
2mE
~

,

where R and T are transmission and reflection coefficients. In the classical book [14] the
solution ψ(x) of equation (1.1) with potential U0

cosh2(αx)
has been obtained as

ψ(x) = (1− ξ2)−ik/2αF
[
(−ik/α)− s, (−ik/α)+ s+1, (−ik/α)+1,

1
2

(1− ξ)
]

(2.3)

where F is a hypergeometric function, ξ = tanh(αx), k =
√

2mE
~ , and s= 1

2

(
−1+

√
1− 8mU0

α2~2

)
.

The asymptotics of the solution ψ(x) for x→−∞ is

ψ(x) ∼ e−ikxΓ (ik/α)Γ (1− (ik/α))
Γ (−s)Γ (1+ s)

+ eikx Γ (−ik/α)Γ (1− (ik/α))
Γ ((−ik/α)− s)Γ ((−ik/α)+ s+1)

. (2.4)

Taking into account that Γ(x)Γ(1− x) = π
sin xπ one can obtain

|R|2 =
cos2

(
1
2π

√
1− 8mV0

~2α2

)
[
sinh2 (πk/α)+ cos2

(
1
2π

√
1− 8mV0

~2α2

)] , (2.5)
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Figure 3. Graph of the potential q(x) = U0
1+e−αx with U0 = 1 eV and α = 1×109 nm−1 in the

interval x ∈ [−10,10]

if 8mV0
~2α2 < 1 and otherwise

|R|2 =
cos2

(
1
2π

√
1− 8mV0

~2α2

)
[
sinh2 (πk/α)+ cos2

(
1
2π

√
8mV0
~2α2 −1

)] . (2.6)

Applying formula |R|2+ |T |2 = 1 we obtain that

|T |2 = sinh2 (πk/α)

sinh2 (πk/α)+ cos2
(

1
2π

√
1− 8mV0

~2α2

) (2.7)

if 8mV0
~2α2 < 1. Otherwise

|T |2 = sinh2 (πk/α)

sinh2 (πk/α)+ cos2
(

1
2π

√
8mV0
~2α2 −1

) . (2.8)

30. Potential V(x) = U0
1+e−αx where U0 > 0, α > 0 are constants. A graph of an example of

this kind of potential is shown in Figure 3.

One can see that limx→−∞V(x) = 0 and limx→+∞V(x) = U0. As above we consider so-
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lutions of the equation (1.1) with the asymptotics

ψ(x) ∼
{

eik1 x+Re−ik1 x, x→−∞
Teik2 x, x→ +∞ ,

k1 =

√
2mE
~

,k2 =

√
2m (E−U0)
~

,E > U0.

Following to [14] the solution to the Schrödinger equation (1.1) with potential V(x)= U0
1+e−αx

is equal to

ψ(x) = F
[
i[k1− k2]/α,−i[k1+ k2]/α,

−2ik2

α
+1, ξ

]
where ξ = −e−αx, k1 =

√
2mE
~ and k2 =

√
2m(E−U0)
~ . The asymptotic form of the solution

(x→−∞) is

u(x) ≈ (−1)−ik2/α
[
C1eik1 x+C2e−ik1 x

]
where

C1 =
Γ(−2ik1/α)Γ(−2ik2/α+1)

Γ(−i (k1+ k2)/α)Γ(−i (k1+ k2)/α+1)

C2 =
Γ(2ik1/α)Γ(−2ik2/α+1)

Γ(i (k1− k2)/α)Γ(i (k1− k2)/α+1)

and applying the formula Γ (x)Γ (1− x)= π/sin(πx) one can find the module of the reflection
coefficient

|R|2 =
∣∣∣∣∣C2

C1

∣∣∣∣∣2 = sinh2 (π (k1− k2)/α)

sinh2 (π (k1+ k2)/α)
,k1 > k2. (2.9)

Applying the formula (1.4) we obtain the module of the transmission coefficient

|T |2 = k2

k1
(1− |R|2). (2.10)

3 Spectral parameter power series method (SPPS method)

We shortly describe here the SPPS method. Let

−ψ”+q(x)ψ = λψ, x ∈ (a,b) (3.1)

be a Schrödinger equation on the interval (a,b) with a piecewise continuous potential q(x)
on [a,b]. Since q ∈ L1([a,b]) every generalized solution ψ of the equation (3.1) belongs to
C(1)([a,b]). Following to the SPPS method the general solution ψ of (3.1) is equal to

ψ = c1ψ1+ c2ψ2,
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where C1,C2 are arbitrary complex constant, and

ψ1 = u0

∞∑
n=0

λnX̃(2n), (3.2)

ψ2 = u0

∞∑
n=0

λnX(2n+1),

where u0 is a particular solution of equation (3.1) such that u0 is a solution of the homoge-
neous equation

−u
′′
(x)+q (x)u(x) = 0, x ∈ (a,b), (3.3)

such that u−1
0 ∈C([a,b]). X̃(2n),X(2n+1) are found by the recursive formulas

X̃(0) ≡ 1,X(0) ≡ 1, (3.4)

X̃(n) (x) = (−1)n−1
∫ x

a
X̃(n−1) (s)

(
u2

0 (s)
)(−1)n−1

ds,

X(n) (x) = (−1)n
∫ x

a
X(n−1) (s)

(
u2

0 (s)
)(−1)n

ds.

The solution u0 can be find of the form

u0 = y1+ iy2

where y1 and y2 are given by

y1 =

∞∑
n=0

Ỹ (2n),y2 =

∞∑
n=0

Y (2n+1),

where

Ỹ (0) = 1,Y (0) = 1,

Ỹ (n) (x) =
∫ x

a
Ỹ (n−1) (s) (q (s))

1+(−1)n−1
2 ds,

Y (n) (x) =
∫ x

a
Y (n−1) (s) (q (s))

1+(−1)n
2 ds.

Applying particular solutions (3.2) of equation (3.1) we obtain the analytical expression for
the reflection and transmission coefficients given by formulas (1.9), (1.10) where ψ1,ψ2 are
defined by (3.2).
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4 Numerical Implementation

We show here the results obtained using the SPPS method. For the numerical calculation
of R and T we truncated the series in (3.2), that is

ψ1 = ψ0

N∑
n=0

λnX̃(2n), (4.1)

ψ2 = ψ0

N∑
n=0

λnX(2n+1).

The calculations were performed in MATLAB and spapi routines for the calculations of the
integrals in formulas (3.4).

In Figure 4 we present results for the reflection R and transmission T coefficients for a
rectangular potential barrier which are obtained numerically by SPPS (N = 120) and com-
pare with those obtained analytically. We considered a potential barrier V0 = 5 eV and
a = 2 nm. The effective electron mass m is the effective mass of GaAs (m = 0.067m0 =

6.1030×10−32kg). Note that this material is widely used in the optoelectronics [1], [2], [9].
Tunneling occurs in the part of the graph corresponding to E ∈ [0,5] eV .

In Figure 5 we show the graphic of absolute errors versus the analytical values for the
transmission and reflection coefficients of Figure 4.

In Figure 6 the results of the transmission coefficient T for the potential U0

cosh2(αx)
with

values U0 = 1 eV and α = 1×109 nm−1 obtained analytically and with SPPS are compared.
For applying the SPPS method we changed U0

cosh2(αx)
by its truncation on the segment [−5,5]

nm, because U0

cosh2(αx)
= 0 for |x| > 5 with the precision machinery . For the comparison of

the SPPS method and analytical method we apply formulas (2.5),(2.6),(2.7),(2.8) on the
energy interval [0,1] eV.

In Figure 7 we show the absolute error for transmission coefficient of Figure 6.
In Figure 8 the results for the reflection coefficient R of the potential U0

1+e−αx with values
U0 = 1 eV and α = 1× 109 nm−1 obtained analytically and with SPPS are compared. For
the application of the SPPS method we change the potential U0

1+e−αx by

V(x) =


0, x < −10
U0

1+e−αx , |x| ≤ 10
U0, x > 10

,

because U0
1+e−αx coincides with V(x) with the precision machinery.

In Figure 9 we show the absolute error for reflection coefficient of Figure 8.

In Table 1 we present the maximum absolute errors for the tranmission and reflection
coefficients that previously we showed.

Finally, we work with a double rectangular barrier potential with V0 = 5 eV and width
of the barriers b = 2 nm. The graphic of the potential is shown in Figure 10 and the trans-
mission coefficient T obtained with SPPS is shown in Figure 11.
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Figure 4. Comparison of the results for the reflection and transmission coefficients of a
rectangular barrier potential (V0 = 5 eV and b = 2 nm ) obtained analytically and with SPPS.

Figure 5. Absolute error for the SPPS results for coefficients of reflection R and tranmission
T of a rectangular barrier (V0 = 5 eV and b = 2 nm).
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Figure 6. Comparison of the results for the transmission coefficient T for the potential
V0(x) = U0

cosh2(αx)
where U0 = 1 eV and α = 1× 109 nm−1 obtained analytically and with

SPPS.

Figure 7. Absolute error for SPPS results for transmission coefficient T of the potential
V0(x) = U0

cosh2(αx)
where U0 = 1 eV and α = 1×109 nm−1.
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Figure 8. Comparison of the results for the reflection coefficient R for the potential V0(x) =
U0

1+e−αx where U0 = 1 eV and α = 1×109 nm−1 obtained analytically and with SPPS.

Figure 9. Absolute error of analytical and SPPS results for reflection coefficient R of the
potential V0(x) = U0

1+e−αx where U0 = 1 eV and α = 1×109 nm−1.
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Table 1. Absolute errors
q (x) Maximum absolute error

5 eV (Reflection coefficient) 1.4451×10−7

5 eV (Transmission coefficient) 1.4454×10−7

U0

cosh2(αx)
7.3972×10−6

U0
1+e−αx 4.7137×10−3

Figure 10. Graph of a double barrier potential with height V0 = 5 eV and width of the every
barrier b = 2 nm.
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Figure 11. Transmission coefficient T for a double barrier potential obtained by means of
SPPS.

5 Conclusions

We obtained the general formulas of transmission and reflection coefficients for a scattering
of a particle on a potential barrier applying the SPPS method. We give a comparison of nu-
merical results obtained by SPPS method with numerical results obtained from well known
analytical formulas. The comparisons reveals a satisfactory perfomance of SPPS method
for this kind of problems.
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