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Abstract
Neutral type systems considered in infinite-dimensional Hilbert space are analyzed
for exact controllability characterization. The approach is based on the problem of
moments using a Riesz basis of eigenvectors. The duality with observability is inves-
tigated. A criterion of exact observability is deduced.
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1 Introduction

In the present paper, we consider the problems of controllability and observability for a
large class of neutral type systems given by the following equation

d
dt

[z(t)−Kzt] = Lzt +Bu(t), t ≥ 0, z0(·) = f0(·), (1.1)
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where zt : [−1,0]→ Cn is the history of z defined by zt(s) = z(t+ s). The difference and
delay operators K and L, respectively, are defined by

K f = A−1 f (−1) and L f =
∫ 0

−1

[
A2(θ) f ′(θ)+A3(θ) f (θ)

]
dθ

for f ∈H1([−1,0],Cn), where A−1 is a constant n×n matrix, A2,A3 are n×n matrices whose
elements belong to L2(−1,0), B is a constant n×r matrix, and the control u is an L2-function.

Among many approaches to controllability problems for delay systems, a very fruitful
one is to consider a delay system as an abstract operator system in a functional space. We
consider the operator model of the neutral-type system (1.1) introduced by Burns, Herdman,
and Stech [3] in product spaces (see also [5, 25]).

The state space is M2(−1,0;Cn) = Cn×L2(−1,0;Cn), briefly M2, and (1.1) can be refor-
mulated as

ẋ(t) =A x(t)+Bu(t), x(t) =
(

v(t)
zt(·)

)
, B =

(
B
0

)
, A =

(
0 L
0 d

dθ

)
, (1.2)

with D(A ) = {(v,z(·)) ∈ M2 : z ∈ H1([−1,0];Cn),v = z(0) − A−1z(−1)}. If L = 0, i.e. if
A2(θ) = A2(θ) ≡ 0, the operator A is noted by Ã .

The problem of controllability is to find all the states xT that can be reached from a
fixed initial state (say 0) at a finite time T by the choice of the controls u(·) ∈ L2(0,T ;U),
where U is the Hilbert space of controls. Let us denote by RT ⊂ M2 the reachable subspace
of the system (1.2):

RT = ImRT =

{
RT u(·) =

∫ T

0
eA tBu(t) dt : u(t) ∈ L2(0,T ;Rr)

}
,

where RT : L2 7→M2 is a linear bounded operator. In contrast to finite-dimensional systems,
Kalman controllability concept (RT = X), does not hold generally for infinite-dimensional
systems. Moreover, for neutral type systems, it can be shown that RT ⊂D(A ) for all T > 0
(see [5]). Thus it may be possible to pose the problem of reaching the set D(A ), which
leads to the notion of exact controllability in this sense.

For neutral systems of the form (1.1), the semigroup is not explicitly known, in contrast
to the situation of several discrete delays (see [10, 6, 2, 19]). To study controllability, we use
the moment problem approach. Namely, the steering conditions of controllable states are
interpreted as a vector moment problem with respect to a special Riesz basis. We analyze
the resolvability of the non-Fourier trigonometric moment problem obtained using methods
developed by [1].

In the general case (an arbitrary matrix A−1) the procedure for the choice of a Riesz
basis is quite sophisticated. Moreover, due to the form of these bases, the moment problem
becomes more complicated, which makes further manipulations with it technically difficult.
However, for a class of systems (matrices A−1), there is a Riesz basis of the state space of
eigenvectors (but this is not the common situation, see [13, 14, 17]) and the expression of
the moment problem is simplified (see [16]).

The last remark gave us the idea that, by means of a change of control, it is possible
to pass to an equivalent controllability problem for a system with matrix A−1 of a simple
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structure. For such systems there is a Riesz basis of eigenvectors and the form of the cor-
responding moment problem is much simpler, which makes the proofs of the main results
more illustrative. Here, we give the proof of Theorem 2.2 for the system (1.1) with A−1 of a
special form and show that this fact leads to the proof for systems with an arbitrary matrix
A−1. Moreover, we found that the proof of the main theorem in the case of multivariable
control might also be simplified. Here, we give the proof of the fact that the system (1.1) is
uncontrollable when A−1 is singular and the pair (A−1,B) is uncontrollable (there is no clear
proof of this fact in [12]).

Our purpose is also to investigate the problem of observability of delay systems of
neutral type by duality with controllability. Usually the results on controllability are easily
reformulated in terms of observability. However in the case of delay systems, and specially
for neutral type systems, the situation is not so simple.

The question of observability consists of measuring some output y=C x(t),with a linear
bounded or A -bounded operator (in fact admissible in the sense that will be detailed later).
The system is said to be observable if one can determine the initial sate x0 by measuring
the output over a finite interval of time [0,T ]. It is said exactly to be observable if this
operation of determining the initial state is continuous. In the case of finite dimensional state
spaces, we have the following duality equivalence: The system (C ,A ,B) is controllable
(observable) if and only if the system (B∗,A ∗,C ∗) is observable (controllable). This is the
Kalman principle of duality (see for example [23]).

The notions of approximate and spectral controllability and observability for linear neu-
tral type systems were widely discussed in the book by Salamon [21]. The principle of
duality for such notions and systems is not so simple.

Here, we consider the relationship between exact controllability and exact observability.
The main part is devoted to the criterion of exact controllability, for which give a scheme of
proof. Although we refer to technical results obtained in the paper by two authors [12], the
main principle here is simpler. In the part concerning observability, we describe the dual
neutral type system corresponding to the adjoint state space operator. There is something
slightly different in the duality relationship, but the proof is not trivial.

The paper is organized as follows. In Section 3, for simplified systems, we expand the
steering condition using a spectral Riesz basis and consider the resolvability of a moment
problem. In Section 4 we give short proofs of our main results. In Section 5, we prove the
main result for arbitrary systems of the form (1.1). In Section 6, we consider the problem
of exact observability.

2 Preliminaries and formulation of main results

Let us now define the notions of exact controllability and observability and give the main
results.

Definition 2.1. The system (1.2) is exactly null-controllable by controls from L2 at the time
T if RT =D(A ).

To the best of our knowledge, the very important results concerning the characterization
of exact controllability were obtained in [2, 9, 7, 24] for systems with discrete delays. Our
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result concerns a large class of systems including distributed delays. In [12] the following
criterion of controllability is obtained by the coauthors of the present paper.

Theorem 2.2. The system (1.1) is exactly null-controllable if and only if the following
conditions are verified.

(i) There is no λ ∈ C and v ∈ Cn,v , 0, such that ∆∗A (λ)v = 0 and B∗v = 0, where

∆∗A (λ) = λI−λe−λA∗−1−λ
∫ 0

−1
eλsA∗2(s)ds−

∫ 0

−1
eλsA∗3(s)ds,

or equivalently rank(∆A (λ) B) = n for all λ ∈ C.

(ii) There is no µ ∈σ(A−1) and v ∈Cn,v, 0, such that A∗−1v= µ̄v and B∗v= 0, equivalently
rank(λI−A−1 B) = n for all λ ∈ C.

If conditions (i) and (ii) hold, then the system is controllable at the time T > n1 and not
controllable at the time T ≤ n1, where n1 is the controllability index of the pair (A−1,B).

If the delay is h instead of 1, then the exact time of controllability is n1h.

One of the important contributions of Theorem 2.2 consists in giving the precise time of
controllability, which may be very important in the minimal time problem and other related
problems of optimal control.

We consider the finite-dimensional observation

y(t) = C x(t) (2.1)

where C is a linear operator and y(t) ∈ Rp is a finite dimensional output. There are several
ways to design the output operator C [20, 21, 8]. One of our goals in this paper is to
investigate how to design a minimal output operator like

C x(t) =Cz(t) or C x(t) =Cz(t−1), (2.2)

where C is a p×n matrix. More general outputs, for example with several and/or distributed
delays are not considered in this paper. We want to use the results on exact controllability
in order to analyze, by duality, the exact observability property in the infinite dimensional
setting like, for example, in [22]. The operator C defined in (2.2) is linear but not bounded
in M2. However, in both cases it is admissible in the following sense:∫ T

0
∥C eA t x0∥2Rn dt ≤ κ2∥x0∥2M2 , ∀x0 ∈D(A ),

because it is bounded on D(A ). We recall that if x0 ∈D(A ) then eA t x0 ∈D(A ), t ≥ 0 (see
for example [11]). In fact, C is admissible in the resolvent norm: ∥x0∥−1 =

∥∥∥(λI−A )−1x0
∥∥∥=

∥R(λ,A )x0∥ , λ ∈ ρ(A ). This is because C is a closed operator and takes values in a finite
dimensional space (see [22, Definition 4.3.1] and comments on this definition).
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Definition 2.3. Let K be the output operator K : M2 −→ L2(0,T ;Rp) defined by x0 7−→
K x0 = C eA t x0. The system (1.1) is said to be observable (or approximately observable) if
KerK = {0} and exactly observable if∫ T

0

∥∥∥C eA t x0
∥∥∥2
Rp dt ≥ δ2 ∥x0∥2 , (2.3)

for some constant δ.

The main result about exact observability is the following precise characterization [18].
It is a non-trivial consequence of Theorem 2.2.

Theorem 2.4. Let ∆∗A (λ) = λI−λe−λA∗−1−λ
∫ 0
−1 eλsA∗2(s)ds−

∫ 0
−1 eλsA∗3(s)ds, then:

1. The system (1.1) with the output y =Cz(t−1) is exactly observable over [0,T ] iff

i) For all λ ∈ C, rank
(
∆∗A (λ) C∗

)
= n,

ii) For all λ ∈ C, rank
(
λI−A∗−1 C∗

)
= n,

iii) T > n1(A∗−1,C
∗), where n1 is the first index of controllability for the par (A∗−1,C

∗).

2. If det A−1 , 0, then assertion 1 is verified for the output y(t) =Cz(t).

3 Exact controllability and the problem of moments: the simple
case

Below, we assume that the spectrum of matrix A−1 satisfies the following constraints

σ(A−1) = {µ1, . . . ,µn} ⊂ R, µi , µ j, i , j, µi < {0,1}, i = 1, . . . ,n. (3.1)

Due to our assumption, the matrix A−1 is non-singular.

3.1 The Riesz basis of eigenvectors

The eigenvalues of the operator Ã (the state operator corresponding to the case A2 = A3 =

0) are the roots of the equation det∆Ã (λ) = det(λI − λe−λA−1) = 0, and, taking into ac-
count (3.1), we obtain

σ
(
Ã

)
=

{̃
λk

m = ln |µm|+2kπi, m = 1, . . . ,n; k ∈ Z
}
∪{0},

where {µ1, . . . ,µn} = σ(A−1). Due to the specific form of A−1 the operator Ã possesses
eigenvectors only (no root-vectors). These eigenvectors can be expressed using the eigen-
vectors of the matrix A−1 and the eigenvalues λ̃k

m.
Let us pass to the operator A . Its spectrum allows the following characterization

σ(A ) = {ln |µm|+2kπi+O(1/k), m = 1, . . . ,n; k ∈ Z}.

Due to [15, Theorem 4], an integer N ∈ N exists such that the total multiplicity of the
eigenvalues of A , contained in the circles Lk

m(rk), equals 1 for all m= 1, . . . ,n and k : |k|> N,
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where Lk
m(rk) = Lk

m are circles centered at λ̃k
m and their radii rk satisfy the relation

∑
k∈Z

(rk)2 <

∞. We denote these eigenvalues of the operator A as λk
m, m = 1, . . . ,n, |k| > N.

Moreover, the space M2 possesses a Riesz basis of A -invariant finite-dimensional sub-
spaces {V} = {Vk

m, |k| > N, m = 1, . . . ,n}∪ {V̂N}, where

Vk
m = Pk

mM2, Pk
m =

1
2πi

∫
Lk

m

R(λ,A )dλ,

and V̂N is the subspace spanned over all the generalized eigenvectors of A whose eigenval-
ues are located outside the circles Lk

m, |k| > N, m = 1, . . . ,n, with dim V̂N = 2(N +1)n. Since
the multiplicity of λk

m equals 1, then

Vk
m = Lin{φm,k}, A φm,k = λ

k
mφm,k, m = 1, . . . ,n; |k| > N.

We note also that φm,k =
(
(I− eλ

k
m A−1)xm,k, eλ

k
mθxm,k

)T
, where xm,k ∈ Ker∆A (λk

m).

The sequences of eigenvectors of A and Ã are quadratically close (after normalization
if needed):

∑
|k|>N

∑n
m=1 ∥φm,k − φ̃m,k∥2 <∞.

Let λ̂ j, j = 1, . . . ,2(N +1)n be the (non-distinct) eigenvalues of A∣∣∣∣V̂N
, and {φ̂ j} the cor-

responding Jordan basis of generalized eigenvectors of the operator A∣∣∣∣V̂N
. The family

{φ} = {φm,k}∪ {φ̂ j} forms a Riesz basis of the state space M2. The family {ψ} = {ψm,k}∪ {ψ̂ j},
biorthogonal to the family {φ} = {φm,k}∪ {φ̂ j}, is a Riesz basis of eigenvectors and general-
ized eigenvectors of the adjoint operator A ∗ for the space M2.

3.2 Expansion of the steering condition in the Riesz basis

Let us expand the steering condition xT =

(
vT

zT (·)

)
=

T∫
0

eA tBu(t) dt with respect to the basis

{φ} and to the biorthogonal basis {ψ} constructed above. A state xT ∈M2 is reachable at time
T if and only if

∑
φ∈{φ}
⟨xT ,ψ⟩φ =

∑
φ∈{φ}

∫ T

0

⟨
eA tBu(t),ψ

⟩
dt ·φ, u(·) ∈ L2(0,T ;Cr).

Then the steering condition can be substituted by the following system of equalities:

⟨xT ,ψ⟩ =
∫ T

0

⟨
eA tBu(t),ψ

⟩
dt, ψ ∈ {ψ}, u(·) ∈ L2(0,T ;Cr). (3.2)

Let {b1, . . . ,br} be an arbitrary basis in ImB, the image of the matrix B, and bd = (bd, 0)T ∈
M2, d = 1, . . . ,r (more details about the choice of this basis will be given below). Then, the
right-hand side of (3.2) takes the form∫ T

0

⟨
eA tBu(t),ψ

⟩
dt =

r∑
d=1

∫ T

0

⟨
eA tbd,ψ

⟩
ud(t) dt. (3.3)
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Let us transform the term
⟨
eA tbd,ψ

⟩
for ψ = ψm,k, m = 1, . . . ,n, |k| > N as follows:⟨

eA tbd, ψm,k
⟩

M2
=

⟨
bd,eA ∗tψm,k

⟩
M2
= eλ

k
mt ⟨bd,ψm,k

⟩
M2
= eλ

k
mt ⟨bd,ym,k

⟩
M2
, (3.4)

where ym,k ∈ Ker∆∗A (λk
m).

Let us introduce the notation: qd
m,k = k

⟨
bd,ψm,k

⟩
M2

.
Due to (3.3) and (3.4), the infinite part of the system (3.2) corresponding to {ψm,k, |k| >

N, m = 1, . . . ,n}, reads as

k
⟨
xT ,ψm,k

⟩
=

r∑
d=1

∫ T

0
eλ

k
mtqd

m,kud(t) dt. (3.5)

Next we observe that if ψ = ψ̂ j, j = 1, . . . ,2(N +1)n, then⟨
eA tbd,ψ

⟩
=

⟨
bd,eA ∗tψ

⟩
= q̂d

j (t)e
λ̂ jt,

where q̂d
j (t) are polynomials in t. Therefore, the finite part of the system (3.2) corresponding

to ψ ∈ {ψ̂ j} reads as ⟨
xT , ψ̂ j

⟩
=

r∑
d=1

∫ T

0
eλ̂mtq̂d

j (t)ud(t) dt. (3.6)

Thus, we conclude that the state xT ∈ M2 is reachable from 0 at the time T > 0 if and only
if the equalities (3.5) and (3.6) hold for some controls ud(·) ∈ L2(0,T ), d = 1, . . . ,r. These
equalities pose a kind of moment problem.

We complete this section with two estimates that play a significant role in our further
considerations. First, it is important to notice that the constants qd

m,k are uniformly bounded:
|qd

m,k| ≤C, C > 0. More precisely, one can prove that for some constant δ1, we have

∣∣∣⟨bd,ψm,k
⟩∣∣∣ ≤ δ1

|k| , m = 1, . . . ,n; |k| > N; d = 1, . . . ,r.

The second estimate is formulated as a lemma.

Lemma 3.1 ([12]). There is a sequence {αk},
∑
|k|>N

α2
k <∞, such that for all m = 1, . . . ,n and

d = 1, . . . ,r the following estimates hold:∣∣∣∣eλk
mt ⟨bd,ψm,k

⟩
M2
− eλ̃

k
mt

⟨
bd, ψ̃m,k

⟩
M2

∣∣∣∣ ≤ αk

|k| , |k| > N, t ∈ [0,T ]. (3.7)

This means that the projections of each vector bd on the eigenvectors of A and Ã are
dynamically and quadratically close.

3.3 The problem of moments and the Riesz basis property

Let us recall the general properties of the problem of moments that will be applied to the
analysis of the problem (3.5)–(3.6) given in the previous section.
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Consider a collection of functions {gk(t), t ∈ [0,∞[}k∈N assuming that for any k ∈ N,
T > 0: gk(·) ∈ L2(0,T ), and consider the following problem of moments:

sk =

∫ T

0
gk(t)u(t) dt, k ∈ N. (3.8)

The following well-known fact is a consequence of the Bari theorem (see [4, Chapter 6]
and [26, Chapter 4]).

Proposition 3.2. The following statements are equivalent:

(i) For the scalars sk, k ∈ N, the problem (3.8) has a solution u(·) ∈ L2(0,T ) if and only
if {sk} ∈ ℓ2, i.e.,

∑
k∈N

s2
k <∞;

(ii) the family {gk(t)}k∈N, t ∈ [0,T ] forms a Riesz basis in the closure of its linear span

L (0,T ) def
= ClLin{gk(t), k ∈ N} ⊂ L2(0,T ).

The following propositions are important steps in our consideration.

Proposition 3.3 ([12]). Let us suppose that for some T1 > 0, the functions {gk(t)}k∈N, t ∈
[0,T1], form a Riesz basis in L (0,T1) ⊂ L2(0,T1) and codimL (0,T1) <∞. Then for any
0 < T < T1, there is an infinite-dimensional subspace ℓT ⊂ ℓ2 such that the problem of
moments (3.8) is unsolvable for {sk} ∈ ℓT if {sk} , {0}.

Proposition 3.4 ([12]). Let us consider the moment problem

sk =

r∑
d=1

∫ T

0
gd

k (t)ud(t) dt, k ∈ N. (3.9)

If
∑

k∈N
∫ T

0 |g
d
k (t)|2 dt <∞, d = 1, . . . ,r, then the set S T of sequences {sk} for which problem

(3.9) is solvable is a non-trivial submanifold of ℓ2, i.e., S T , ℓ2.

In the following, our analysis will be based on the theory of families of exponentials
developed by S. Avdonin and S. Ivanov in [1]. We are particularly interested in the basis
properties of such families.

Let δ1, . . . , δn be different, modulus 2πi, complex numbers, let N be a natural integer and
let the set {εm,k, |k| > N,m = 1, . . . ,n} ⊂ Cn be such that

∑
m,k
|εm,k|2 <∞. Let us denote by ẼN

the family
ẼN =

{
e(δm+2πik+εm,k)t, |k| > N,m = 1, . . . ,n

}
.

Next, let ε1, . . . , εr be another collection of different complex numbers such that ε j , δm +

2πik+ εm,k, j = 1, . . . ,r, m = 1, . . . ,n, |k| > N, and let m′1, . . . ,m
′
r be positive integers. Let us

denote by E0 the collection

E0 =
{
eε jt, teε jt, . . . , tm′s−1eε jt

}
j=1,...,r

.

The following theorem, which is based on the results of [1], is the main tool of our
further analysis.
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Theorem 3.5. (i) If
r∑

j=1
m′j = (2N+1)n, then the family E = ẼN ∪E0 constitutes a Riesz basis

in L2(0,n).
(ii) If T > n, then independently of the number of elements in E0, the family E forms a

Riesz basis of the closure of its linear span in the space L2(0,T ).

Now we apply Theorem 3.5 to the collection of functions appearing in (3.5). Let us fix
d ∈ {1, . . . ,r} and choose an arbitrary subset L ⊂ {1, . . . ,n}.

Theorem 3.6 ([12]). For any choice of d, L, for any T ≥ n′ = |L| the collection of functions

Φ1 =
{
eλ

k
mtqd

m,k, |k| > N; m ∈ L
}

constitutes a Riesz basis of ClLinΦ1 in L2(0,T ).
If T = n′, the subspace ClLinΦ1 is of finite codimension (2N +1)n′ in L2(0,n′).

4 Exact controllability: the case of a simple matrix A−1

4.1 The necessary condition of controllability

Let us study the resolvability of the systems of equalities (3.5) and (3.6). Consider the
sequence of vectors {∫ T

0
eλ

k
mtqd

m,ku(t) dt, |k| > N
}

(4.1)

for any fixed d and u(·) ∈ L2(0,T ). It follows from Theorem 3.6 that all non-zero functions
of the collection

{
eλ

k
mtqd

m,k, |k| > N
}

form a Riesz basis of their linear span in L2(0,T ′) if T ′

is large enough. Therefore, by Proposition 3.2, the sequence (4.1) belongs to the class ℓ2.
This gives the following proposition.

Proposition 4.1 ([12]). If the state xT is reachable from 0 by the system (1.2), then it
satisfies the following equivalent conditions:

(C1)
∑
|k|>N

n∑
m=1

k2
∣∣∣⟨xT ,ψm,k

⟩∣∣∣2 <∞, (C2)
∑
|k|>N

n∑
m=1

k2∥Pk
mxT ∥2 <∞, (C3) xT ∈D(A ).

From Proposition 4.1 it follows (see also [5]), that the set RT of the states reachable
from 0 by virtue of the system (1.2) and controls from L2(0,T ) is always a subset of D(A ).
This also justifies Definition 2.1 given in the introduction. Next, we give the necessary
conditions of null-controllability.

Theorem 4.2 ([12]). If the system (1.2) is controllable by controls from L2(0,T ) for some
T > 0, then the conditions (i) and (ii) from Theorem 2.2 hold.

We note that Theorem 4.2 is proved in [12] under the assumption det A−1 , 0 which is
used in the proof of assertion (ii). Below, in Theorem 5.3, we prove that this assertion holds
also if det A−1 = 0.
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4.2 The sufficient condition of controllability

The following proposition for abstract systems was proved in [12].

Lemma 4.3 ([12]). Assume that for an abstract system ẋ =A x+Bu the following condi-
tions hold:

(a) RT ⊂D(A ) for all T > 0,

(b) for some T0 > 0 the set RT0 is a closed subspace of finite codimension in the space
XA =D(A ), with the standard graph norm ∥x∥A =

√
∥x∥2+ ∥A x∥2.

Then for all T ≥ T0 we have RT = L, where L is a subspace of D(A ) invariant by the
semigroup eAt and 0 ≤ codim L ≤ codimRT0 <∞.

In the following, we denote by XA the space D(A ) ⊂ M2 with the graph norm.

Theorem 4.4 ([12]). For the system (1.2), let us suppose that there is a natural N and T0 > 0
such that the moment problem (3.5) for T = T0 and |k| > N is solvable for all the vectors{
k
⟨
xT ,ψm,k

⟩}
|k|>N satisfying the condition (C1). Then, from condition (i) of Theorem 2.2, it

follows that RT =D(A ) as T > T0.

Now we are ready to prove the sufficient condition for systems with single control.

Theorem 4.5. Let the system (1.2) be of single control (r = 1) and let conditions (i) and (ii)
of Theorem 4.2 hold. Then

(1) the system (1.2) is null-controllable at the time T as T > n;

(2) the estimation of the time of controllability in (1) is exact, i.e., the system is not
controllable at time T = n.

Proof. First of all, let us observe that for any matrix A−1 conditions (i) and (ii) of Theo-
rem 4.2 imply, in the case of single control, that all the eigenspaces of A ∗ and Ã ∗ are
one-dimensional. Otherwise, there is an eigenvector g of A ∗ (or Ã ∗) such that ⟨b,g⟩M2 = 0.
We know that eigenvectors of the adjoint operator have the form g = (y, z(θ))T , where y is
nonzero and satisfies ∆∗A (λ0)y = 0 (or ∆∗

Ã
(λ0)y = 0) for some λ0. Since ⟨b,g⟩M2 = 0 gives

⟨b,y⟩Cn = 0 we arrive at a contradiction with the conditions of Theorem 4.2.
Thus, equalities (3.5) and (3.6) take, in our case, the form

k
⟨
xT ,ψm,k

⟩
=

∫ T

0
eλ

k
mtqm,ku(t) dt, (4.2)

where |k| > N, m = 1, . . . ,n, and⟨
xT , ψ̂

1
j

⟩
=

∫ T

0
eλ̂mtq̂1

j(t)u(t) dt, (4.3)

where j = 1, . . . ,2(N + 1)n. From condition (i) it follows that qm,k , 0 for all |k| > N, m =
1, . . . ,n, and, moreover, all polynomials {̂q1(t)} are nontrivial. Let us introduce the following
notation

Φ1 =
{
eλ

k
mtqm,k, |k| > N, m = 1, . . . ,n

}
,

Φ̂ =
{
eλ̂mtq̂1

j(t), j = 1, . . . ,2(N +1)n
}
.
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Applying Theorem 3.6, we find that for a large enough N, the collection

Φ = Φ1

∪
Φ̂

forms a Riesz basis in ClLinΦ ⊂ L2(0,T ). Then by Proposition 3.2 the moment problem
(4.2) is solvable if and only if (C1) holds. Due to Theorem 4.4, this yields RT =D(A ) for
T > n.

To prove the assertion (2) we first recall that the total number of elements of the family

Φ̂ equals
ℓ∑

m=1
p̂m,1 = (2N + 2)n. On the other hand, it follows from Theorem 3.6 that in

L2(0,n) we have
codimClLinΦ1 = (2N +1)n.

This means that the family Φ = Φ1∪ Φ̂ contains at least n functions, which are presented as
linear combinations of the others. As a consequence, the set of reachability RT for T = n
cannot be equal to D(A ). More precisely, the codimension of RT in D(A ) satisfies the
estimation n ≤ codimRT <∞. The theorem is proved. �

Remark 4.6. It is clear that the system (1.2) is also uncontrollable at time T < n. Moreover,
it follows from Proposition 3.3 that, in this case, the set ClRT is of infinite codimension in
XA .

Let us now consider the multivariable case dim B = r > 1. Let us recall that the Kalman
matrix

(
B A−1B · · · An−1

−1 B
)

plays an important role in the controllability theory and
that its rank equals n iff rank(λI−A−1 B) = n for all λ ∈ C.

Let {b1, . . . ,br} be an arbitrary basis noted β. Let us introduce a set of integers. We
denote Bi = (bi+1, . . . ,br), i = 0,1, . . . ,r−1, which gives in particular B0 = B and Br−1 = (br)
and we formally put Br = 0. In the following, we need the integers

mβ
i = rank(Bi−1 A−1Bi−1 · · · An−1

−1 Bi−1)− rank(Bi A−1Bi · · · An−1
−1 Bi) (4.4)

corresponding to the basis β. Let us denote

m1 =max
β

mβ
1, m =min

β
max

i
mβ

i , (4.5)

for all possible choices of basis β. It is easy to show that for all β, there is i such that mβ
i ≥m1

and then m ≥ m1. Indeed, assume that m1 is realized on the basis β = {b1, . . . ,br}, and
consider an arbitrary basis β0 = {b0

1, . . . ,b
0
r }. Then there exists i such that Lin {b0

i , . . . ,b
0
r } 1

Lin {b2, . . . ,br} but Lin {b0
i+1, . . . ,b

0
r } ⊂ Lin {b2, . . . ,br}. For this integer i we have mβ0

i ≥ m1.
Now we can formulate the main result of this section.

Theorem 4.7. Let conditions (i) and (ii) of Theorem 4.2 hold. Then

(1) the system (1.2) is null-controllable at the time T > m;

(2) the system (1.2) is not null-controllable at the time T < m1.
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Proof. The proof is based on the reorganization of the system of equations (3.5) into a new
system where the first set of equations contains only the control u1, the second the controls
u1 and u2, etc. The solutions are then obtained step by step. The interval of resolvability
of corresponding moment problems then depends on the integers mβ

i , introduced above.
Finally, this gives a general interval of resolvability [0,T ] verifying the assessment i) and
ii) of the theorem (see the detailed proof in [12]).

�

To complete our analysis, we next obtain the precise time of controllability. From The-
orem 4.7 it is not clear what happens if the time T is such that m1 ≤ T ≤ m even if the
conditions of controllability are satisfied. In order to give the exact time of controllabil-
ity, we need the classical concept of the controllability indices. Recall that the first index
n1 may be defined as the minimal integer ν such that (see, for example, [23, Chapter 5])
rank(B, A−1B, . . . , A−1

ν−1B) = n.

Lemma 4.8. Assume that the pair (A−1,B) is controllable. Let n1 be the index of controlla-
bility of the couple (A−1,B) and let m,m1 be defined by (4.5). Then m1 ≤ n1 ≤ m.

It is well known that in contrast to indices m1, m, the controllability index n1 is invariant
under feedback. This means that n1 is the same for all couples (A−1+BP,B), where P is an
r×n matrix. Then one can choose a feedback matrix P and a basis in Cn such that A−1+BP
take the following form (see [23, Theorem 5.10 and Corollary 5.3]): F = diag{F1, . . . ,Fr},
where Fi are Frobenius blocks and B becomes G = diag{g1, . . . ,gr}, where gi = (0, 0, . . . ,1)T,
the dimension being ni ×1. It is easy to check that m(F,G) = m1(F,G) = n1. Moreover, the
spectrum of F may be chosen arbitrarily by means of an appropriate choice of P.

5 Controllability of systems with an arbitrary matrix A−1

We have proved the main result for systems with a specific matrix A−1. Now we consider
the general case.

Proposition 5.1. [23] If the pair (A−1,B) is controllable, i.e. rank(B A−1B · · · An−1
−1 B)= n,

then for any set {µm}nm=1 there is a matrix P ∈ Cp×n such that

σ(A−1+BP) = {µm}nm=1.

Let us now consider the following system

ż(t) = (A−1+BP)ż(t−1)+
∫ 0

−1
A2(θ)ż(t+ θ)dθ+

∫ 0

−1
A3(θ)z(t+ θ)dθ+Bu. (5.1)

It is easy to prove the following Lemma.

Lemma 5.2. The system (1.1) is exactly null-controllable at the time T if and only if the
perturbed system (5.1) is exactly null-controllable at the same time T .



Exact Controllability and Observability of Neutral Systems 291

Let us observe that, in the conditions of controllability (i) and (ii) of Theorem 2.2, the
matrix A−1 may be substituted by the matrix A−1+BP for any P.

Indeed, let us denote by Â the operator corresponding to the system (5.1). Then,
the relations ∆∗A (λ)v = 0 and B∗v = 0 are equivalent to the relations ∆∗

Â
(λ)v = [∆∗A (λ)−

λe−λP∗B∗]v = 0 and B∗v = 0 with the same v and λ. This fact is the same as the equiva-
lency of the conditions rank(B A−1B · · · An−1

−1 B) = n and rank(B (A−1+BP)B · · · (A−1+

BP)n−1B) = n, which is a well-known classic result (see e.g. [23]).
Now let us consider the situation when the pair (A−1,B) is uncontrollable.

Theorem 5.3. Assume that det A−1 = 0 and the pair (A−1,B) is uncontrollable, i.e. there
exists µ ∈ σ(A−1) and v ∈ Cn\{0} such that A∗−1v = µv and B∗v = 0. Then, the system (1.1) is
not exactly controllable.

Proof. First we consider the situation when the uncontrollable eigenvalue of A−1 is µ = 0,
i.e. there exists v0 ∈ Cn\{0} such that

A∗−1v0 = 0 and B∗v0 = 0. (5.2)

Multiplying the system (1.1) by v∗0 we obtain

v∗0ż(t) = v∗0A−1ż(t−1)+
∫ 0

−1

[
v∗0A2(θ)ż(t+ θ)+ v∗0A3(θ)z(t+ θ)

]
dθ+ v∗0Bu.

Taking into account (5.2) we have

v∗0ż(t) =
∫ 0

−1

[
v∗0A2(θ)ż(t+ θ)+ v∗0A3(θ)z(t+ θ)

]
dθ. (5.3)

If we assume that the system (1.1) is exactly null-controllable at time T > 0, then the set of
solutions of (1.1) coincides with H1([T −1,T ];Cn). The latter means that the set

{v∗0ż(t), t ∈ [T −1,T ]}
coincides with L2([T −1,T ];C).

On the other hand, the operator Q(z)=
∫ 0
−1

[
v∗0A2(θ)ż(t+ θ)+ v∗0A3(θ)z(t+ θ)

]
dθ is a Fred-

holm operator from H1([T − 2,T ];Cn) to L2([T − 1,T ];C). Indeed, if we change the time
τ = t+ θ we obtain

Q(z) =
∫ t

t−1

[
v∗0A2(τ− t)ż(τ)+ v∗0A3(τ− t)z(τ)

]
dτ.

Thus, the operator Q(z) is compact and then its image cannot coincide with L2([T −1,T ];C).
We obtain the contradiction that proves the theorem in the case µ = 0.

Now let us suppose that the uncontrollable eigenvalues of A−1 are nonzero and that
0 is a controllable eigenvalue. This means that rank(A−1 B) = n and then, by spectral
assignment [23], there is a matrix P such that 0 < σ(A−1 + BP), that is this matrix is not
singular and, obviously, (A−1 + BP,B) remains uncontrollable. Using now the result of
Theorem 4.2 which was obtained in [12] under the assumption of a non-singular matrix
A−1 + BP, we obtain that the system (5.1) is not exactly controllable and this implies that
the original system (1.1) is not exactly controllable. �

All the considerations of this section mean that Theorem 2.2 is verified for the case of
an arbitrary matrix A−1.
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6 Exact observability and duality with controllability

We give here a short description of the proof of the main result on observability. For more
details see the paper [18]. It is based on the expression of the adjoint operator A ∗, on
the neutral type system corresponding to this operator and on the relationship between this
adjoint neutral type system and a dual neutral type system.

Theorem 6.1. The adjoint operator A ∗ is given by

A ∗
(

w
ψ(·)

)
=

 (A∗2(0)w+ψ(0)
− d[ψ(θ)+A∗2(θ)w]

dθ +A∗3(θ)w

 , (6.1)

with the domain

D(A ∗) =
{
(w,ψ(·)) : ψ(θ)+A∗2(θ)w ∈ H1,A∗−1

(
A∗2(0)w+ψ(0)

)
= ψ(−1)+A∗2(−1)w

}
.

As we can see, the expression of the adjoint operator A ∗ is different (in its form) from
that of the operator A . It is natural to expect a difference for the “system” for which A ∗ is
the generator.

Theorem 6.2. Let x be a solution of the abstract equation

ẋ =A ∗x, x(t) =
(

w(t)
ψt(θ)

)
. (6.2)

Then the function w(t) is the solution of the neutral type equation

ẇ(t+1) = A∗−1ẇ(t)+
∫ 0

−1

[
A∗2(τ)ẇ(t+1+τ)+A∗3(τ)w(t+1+τ)

]
dτ.

Let us recall that, for the original system (1.2), the relation between the abstract state
x(t) and the current state z(t) is x(t) = (v(t),z(t+ θ)). In other words, there is a shift in
time, and a “castling” between components. This transformation can be represented by a
linear operator F acting on the initial conditions of the neutral type systems, from XA to
M2. It is important that this operator is bounded and bounded invertible [18] and this gives
the relation needed for the to conclusion: the observability operator K is related to the
reachability operator RT by the relation

K F−1 =

 R†∗T if C x(t) =Cz(t−1),
eA †∗

R†∗T if C x(t) =Cz(t),
(6.3)

where the dag † represents the original system (1.1) with the matrices A∗−1,A
∗
2,A
∗
3 and C∗

instead of B. This last relation (6.3) allows Theorem 2.4 to be proved.

7 Conclusion

We think that this description of the main result on exact controllability without technical
details but with a sufficiently rigorous approach, explains our main contribution to the exact
controllability of neutral type systems. The result on observability, which usually seems a
simple application of the controllability result is, in this case less trivial. However, we have
obtained a new illustration of the duality principle in this case. The technical proofs have
also been omitted here to show the main result.
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