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Abstract

In this paper, we give many refinements and generalizations of Hardy-type inequalities
on time scales for convex functions, nonnegative convex functions, monotone convex
functions and nonnegative monotone convex functions. Further we give refinements
for power and exponential functions. Finally we present several examples of these
inequalities on different time scales.
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1 Introduction

The well-known Hardy inequality is presented in [10]. Some generalizations of this in-
equality are investigated in [9, 12, 13, 14]. Alsoin [1, 11, 15], Hardy-type inequalities are
studied in refined forms. Some of Hardy-type inequalities are extended on time scales (see
[17, 18, 16]). Recently, some Hardy-type inequalities with general kernels on time scales
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(via convexity) are proved in [8]. In this paper we give refinements of inequalities given in
[8] in more general setting.

The theory of time scales is studied in [4, 5, 6, 7]. We start with some notions of time
scales. Any nonempty closed subset of R is called a time scale T. A time scale T may or
may not be connected, keeping in mind the disconnection of time scales the forward and
backward jump operators o,p : T — T are defined by

o(@)=inf{feT: i>t}and p(t) =sup{fe T: < t}.

In general, o (¢) > t and p(¢) < t.
Let us set
Y,={a=(a1,as,...,a,):a; €T;,i€{l,...,n}}.

We call T, an n-dimensional time scale.
LetS c T, be A-measurable set and f: S — R is A-measurable function, then we denote
A-integral of f over S by

ff(tl,tz,...,tn)AtlAtz---Atn or ff(t)At.
S S

In particular, if the interval [a,b) C T contains only isolated points, then
b
[ roni= Y, @o-nso.
a t€[a,b)

In the following theorems we recall Fubini’s theorem and integral Minkowski inequality
on time scales (see [3]), which are used in the proof of our main results.

Theorem 1.1. Let (X, M,up) and (Y, L,vp) be two finite-dimensional time scale measure
spaces. If f : X XY — R is a A-integrable function and if we define the functions

o(y) = fx S, y)dua(x)  forae yeyY

and

;b(x)=f;f(x,y)dvA(y) forae xe€X,

then ¢ is A-integrable on Y and s is A-integrable on X and

f daa(x) f FC6dva() = f dva() f Oy )dua ().
X Y Y X

Theorem 1.2. Let (X, M,up) and (Y, L,vp) be two finite dimensional time scale measure
spaces and let u, v, and f be nonnegative functions on X, Y, and X XY, respectively. If
p =1, then

’ ;
[

< fy ( fx FP Oy u(x)dua(x) pv(y)dvA(y) (1.1)

1
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holds provided all integrals in (1.1) exist. [f 0 < p <1 and

p
f ( f fvdvA) udpa > 0, f Fvdva >0 (1.2)
X Y Y

holds, then (1.1) is reversed. For p <0, in addition with (1.2), if

f FPudpa >0, (1.3)
X

holds, then again (1.1) is reversed.

For further properties including the concept of delta integrals, we refer the readers to
(4, 5].

2 Main Results

Let us consider the following hypothesis.
HI1: (X, M,ua) and (Y, L,v,) be two finite dimensional time scales measure spaces.

H2: k: XxY — R, is such that

K(x)=fk(x,y)Ay<oo, xeX.
Y

H3: 0<p<g<oor—-oco<g<p<O0andé¢: X — Ry issuch that

k
T() = [ff( )([(;Ey))) Ax] <o, yevr.

H4: ®© € C(I,R) is a nonnegative convex function, where / C R and ¢ : I — R is such that
@(x) € 00(x) = [P, (x), D (x)] for all x € Int I.

Throughout the paper, we consider that / is an interval in R.

Theorem 2.1. Assume H1, H2, H3 and H4 hold. Then

( fY @(f(y))ﬂy)Ay)" - fX ) (A ())Ax

&)

O (AL ) f k)R )AYAx (2.1)
x K(x) %

holds for va-integrable function f on Y such that f(Y) C I, where
1
Af ) =5 [ Kenfoay, vex. 22)
K(x) Jy

and

Ri(x,y) = 1D(f () = (A S = le( A f CDIf ) = A f (0l - (2.3)
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If @ is a nonnegative monotone convex function on I in H4 and f(y) > Arf(x) for y €
Y (Y CY), then

( fY d)(f(y))T(y)Ay)p - fX D (AS())Ax

&)
x K(x)

>4

p

07 (AS () fY sgn(f(y) = Arf (Dk(x, y)Si(x, y)AyAx|  (2.4)
holds, where
Si(x,y) = O(f () = (A S (%)) = le(Ar f DI () = A f (). (2.5)
Proof. Since @ is a convex function on I and ¢(x) € dd(x) for all x € Int I, we have
DO(s)—DO(r)—(r)(s—r)=>0
for all r € Int I and s € I. Now

O(s) = D(r) —p(r)(s = 1) = |D(s) = D(r) = @(r)(s = 1)l (2.6)
2 [|D(s) = ()| = le(r)l|s = rll.

Since Ay f(x) € I for all x € X, let Af(x) € Int I, then by substituting r = A f(x) and
s = f(y)in (2.6) we get

O(f () = P(ALS () = (A f (O)(f () = Arf (X))
2 | () = D(ALS DN = (A fCDNf () = A f (Ol = Ree(x, y). (2.7)

If Ax f(x) is an end point of 1, then (2.7) holds with value zero on both sides of the inequality
for vp-a.e. y € Y. Multiplying (2.7) by kl((g)) > 0, then integrating it over Y with respect to
the measure v5 we obtain

1 1
m fyk(x,y)d)(f(y))Ay - m Yk(x,y)(D(ﬂkf(x))Ay (2.8)

1
——— | k(x,y)o(ArfC))(f () — Arf(x)Ay
K(x) Jy

1
> 2 fy K(x.y)Re(x,1)AY.

The second integral on the left-hand side of (2.8) becomes

O(Arf(x))

1
) j; k(x, y)O(Ar f(x)Ay = K

. k(x, y)Ay = O(Arf(x)).

For the third integral we have,

1
L f KA D)) — A ) Ay = 0.
K(x) Jy
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Hence (2.8) takes the form

1 1
O(Akf(x)) + X Jy k(x, y)Ri(x, y)Ay < X0 Jy k(x, y)D(f(»)Ay.

Since ® is nonnegative, for 1 > 1, we have

’ 1 ’
(CD(ﬂkf () +—— k(X’Y)Rk(x,)’)A)’) < (— f k(x, y)O(f (y))Ay) :
( ) K(x) Jy
By applying the Bernoulli’s inequality on the left-hand side of the above inequality, we get
A
O} (A () + L %ﬂx» K3 Re(x. DAY 2.9)
(cb(ﬂkﬂx» o k(x,ymk(x,ymy)"

1 3
< (m fY k(x,y>d><f<y>>Ay) .

Multiplying (2.9) by &(x), integrating it over X with respect to the measure pa and applying
the integral Minkowski inequality on time scales, we have

f EOOH (A () + 2 I"’;(( ))

L YOFONAY| A
< fx g(n( - fy K ) D(FO)) y) x

1 s

- { fX f(x)(m fy k(x,y)d)(f(y))Ay) Ax] ]
e\ ) )
< [ d)(f(y))( [ 2] Ax} Ay] .

LetY ={yeY: f(y) > Arf(x)} for a fixed x € X, if ® is nondecreasing on the interval
1, then

O (AF) fy K(x,y)Re(x, ) AYAX

| Heioton- oy 210
- [ Kpieon- oy
o[ M- ooy
- [ kenogonsy- [ kenogonay
Y’ Y\Y’
A | Ky @AS) [ ke

= j; sgn(f(y) = A f Nk, MICf () — P(Ak f(x))]Ay
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Similarly, we can write
| eeiror-ascoiny
= f; sgn(f(y) = Arf CNk(x, N(f ) = Arf()Ay.  (2.11)

From (2.1), (2.10) and (2.11), we get (2.4). The case when @ is non increasing can be
discussed in a similar way. O

Remark 2.2. (i) Let ® be a concave function (that is —® is convex) in H4. Then for all
r€ Int I and s € I we have

O(r)—O(s) —p(r)(r—s) =0
and (2.6) leads
O(r) — D(s) — p(r)(r = 5) = |D(r) — O(s) — p(r)(r — s)|
2 [|®(s) — ()] = le(r)l].-

Hence, in this setting (2.1) takes the form

fX f(x)(bg(ﬂkf(x))AX—( fy CD(f(y))‘T(y)Ay)P

&)

4 OF N (AL ) f k()R () AyAX
x K(x) Y

(i1) If @ is nonnegative monotone concave in H4, then the order of terms on the left-hand
side of (2.4) is reversed.

Corollary 2.3. Assume H1, H2, H3 and H4 hold with0 < p < g < oo and f is a vp-integrable

function on Y such that f(Y) C I, then
q

- fx DN ALS (x)Ax

[ f O (FO)T (A
Y

Ii((x))ﬂbq P(AS() f k(x.y)

I(D” (f3) = QP (A f D] = (A fF DI () = A f Ol AyAx.

holds. Moreover, if ® is a nonnegative monotone convex function on I and f(y) > A f(x)
foryeY' (Y CY), then

q

f O (FONT A | fX DA f(0)Ax

Y

I{;((x)) oI~ P(ﬂkf(x))fsgn(f(y) Arf (X)k(x,y)

[(Dp (fO)) = OP (A f () = (s f N () = A f ()] AyAx]

holds.
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Proof. The result follows from Theorem 2.1 by replacing ® with ®7. O

Corollary 2.4. Assume H1, H2 and H3 hold. Suppose f is a nonnegative vp-integrable
function (positive for p <0) on Y and Ay f is defined in (2.2).

() Ifl<p<g<oo, or—oco<qg<p<0,then

( fy f”(y)fr(y)Ay)p - f ECO( AL () Ax

£ oy f K Roi () AyAx (2.12)
x K(x) y
holds, where
Rpi(x,¥) = || f70) = AL £(0)| = P AP F ) - A f ) (2.13)
If pe(0,1) and p < g < oo, the order of terms on the left-hand side of (2.12) is

reversed.

(@) Let f(y) > Arf(x)foryeY (Y CY). Ifl<p<g<oo,or—oc0<q=<p<0,then

( f fPOT @)Ay)p - f EQO)( AL (X)) Ax
Y X

£(x)
x K(x)

(A f(x)TF f; sgn(f(y) = Arf()k(x,)Sp k(x, y)AyAx| (2.14)
holds, where

Spi(x,y) = fP(0) = AL () = Ipl( A f Y (f ) = Ap f(x)). (2.15)

If pe(0,1) and p < q < o, the order of terms on the left-hand side of (2.14) is
reversed.

Proof. Use ®©(x) = xP, x > 0 in Theorem 2.1, which is nonnegative and monotone convex
function for p e R\ [0, 1), concave for p € (0, 1], and affine, that is, both convex and concave
for p = 1. Obviously, in this case @(x) = ®’(x) = pxP~!. O

Corollary 2.5. Assume H1, H2 and H3 hold with 0 < p < g < oo and g is a positive va-
integrable function on Y. Then

( fY g”(y)‘r(y)Ay)p - fX £00G! (x)Ax

£(x)

[ £2617 0 [ Kon@uutrymax

holds, where
1
gk<x>=exp(m fY k(x,y)lng(y>Ay) 2.16)
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and

|87 - 67 ()| - pIGE (x 2.17)

Moreover, if g(y) > Gi(x) forye Y (Y’ CY), then

Qp,k(-x’y) =

111%”.

( fY gP@)T@Ay)p - f EDG (A

£(x)
x K(x)

=—=G{ (0 f sgn(g(y) = Gr(x)k(x, y)Up k(x, y)AyAx

holds, where
8(y)

Ui (x,y) = g7 () - GP(x) - plGF (D)1 : 2.18
pk(x,) = 8" (y) -G, (x) — plG} ()| In G (2.18)
Proof. Use ®(x) =e*, x>0 and f(x) = plng(x) in Theorem 2.1, to obtain the required
result. Note that Gi(x) = exp(Ar(Ing(x))). |

For p = g, H3 becomes the following hypothesis:
H3: & : X — R, is such that

_ (SR,
w(y) = KO Ax<oo, yevY.

Theorem 2.6. Assume H1, H2, H3 and H4 hold and f is a vs-integrable function on Y
such that f(Y) C L

(1) If ® is a convex function (need not to be nonnegative) in H4, then

fy O ()W()AY - fx EOD(AF()Ax

&)

LK) k(x VRi(x,y)AyAx  (2.19)

holds, where Ry, is defined in (2.3).

If @ is a concave function, then the order of terms on the left-hand side of (2.19) is
reversed.

(ii) If ® is a monotone convex function and f(y) > Ay f(x) forye Y’ (Y’ CY), then

fy O ()W()AY - fx EOD(AF()Ax
“w
X

. sgn(f(y) = Arf ()k(x, y)Si(x, y)AyAx|.  (2.20)

holds, where Sy, is defined in (2.5).

If @ is monotone concave, then the order of terms on the left-hand side of (2.20) is
reversed.
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Proof. The proof is similar to the proof of Theorem 2.1, just use g = p in the proof of
Theorem 2.1. O

Remark 2.7. In Theorem 2.6, since the right-hand side of (2.19) is nonnegative, we get the
refinement of [8, Theorem 3.2].

Corollary 2.8. Assume H1, H2, H3 hold and f is a positive vs-integrable function on Y.
&) If p=1orp<Q0, then

fy FPOwmAy - fx E)A f(0)AX

&(x)
fom Yk(x,y)Rp,k(x,y)AyAx (2.21)

holds, where R, is defined in (2.13).
If p € (0,1), the order of terms on the left-hand side of (2.21) is reversed.

(iQ) Let f(y)> Arf(x)foryeY (Y CY). If p=1orp<0, then
fy FPOIwWO)Ay - fx EQOAL f(0)Ax

>

L % Ysgn(f@)—ﬂkf(x))k(x,y)sp,k(x,y)AyAx (2.22)

holds, where S, is defined in (2.15).

If p € (0,1), the order of terms on the left-hand side of (2.22) is reversed.
Proof. Use ®(x) = xP, x>0 in Theorem 2.6. O
Remark 2.9. (2.21) is the refinement of inequality in [8, Corollary 3.3].

Corollary 2.10. Assume H1, H2 and H3 hold. If g is a positive v-integrable function on
Y. Then

f SOy - f tw@wArz [ 22 [hep@urddr (223)
Y X x K(x) Jy

holds, where Gy is defined in (2.16) and Q. is defined in (2.17). Moreover if g(y) > Gk(x)
foryeY' (Y CY), then

fY SOy fx ENG! ()M

. % . sgn(g(y) — Gr(xX)k(x, y)Up k(x,y)AyAx| (2.24)

holds, where U, is defined in (2.18).

>

Proof. Use ®(x) =e*, x>0 and f(x) = plng(x) in Theorem 2.6. O

Remark 2.11. (2.23) is the refinement of inequality in [8, Corollary 3.4].
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3 Results using Special kernels

Let us define new hypothesis for next results.
Hl: X =Y in HI.
H2: m:Y — R, is such that me(y)Ay <oo, forall yeY.

Theorem 3.1. Assume H1, H2 and H4 hold. If0< p<g< o or —c0o < q< p<0and f is
a vp-integrable function on Y such that f(Y) C I. Then

fym(wcb(f@)my]z . g 1
—0F (A, <>>z——f MMAY Gl
( T m)y 0= Ty Jy OO
holds, where .
T )=—f YA (3.2)
S fym(y)Ay Ym(yfy y

and

MO) = 19 3)) = D fON| ~ k(Ao SO )~ Amf DI (3.3)

If the function © is nonnegative concave, the order of terms on the left-hand side of (3.1) is
reversed.

Moreover, if © is a nonnegative monotone convex function and f(y) > A, f(y) for y €
Y (Y CY), then

fymmcb(f@)my]z .
~ Oy (Anf(y)
( T mAy 1o
a1 f A NOYAY| (3.4
Zp fy o)Ay YSgn(f(y) mf ())mMOWN)Ay| (3.4)
holds, where
N©) = O(f(y) — O(Aunf () = lo(Anf O ) — A f)- (3.5)

If ® is nonnegative monotone concave, the order of terms on the left-hand side of (3.4) is
reversed.

Proof. The result follows from Theorem 2.1 by taking k(x,y) = £(x)m(y) for some positive
ua-integrable function & and positive va-integrable function m. O

Theorem 3.2. Assume H1, H2 and H4 hold. If f is a va-integrable function on Y such that
f(Y) I and ® is a convex function in H4, then

J, m)Of))AY 1
~ O(Anf() 2 ——— f IMG)A (3.6)
Jym)Ay o J,m)Ay OB

holds, where Ay f is defined in (3.2) and M is defined in (3.3).
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If the function @ is concave, the order of terms on the left-hand side of (3.6) is reversed.
Moreover, if ® is a monotone convex function on I and f(y) > A f(y) forye Y (Y CY),
then

[, mO)H@F)AY
J, m)Ay

—O(Anf(y)

=

sgn(f(y) = Anf MmN Ay|  (3.7)

e
J,m»Ay Jy

holds, where N is defined in (3.5).

If ® is monotone concave, the order of terms on the left-hand side of (3.7) is reversed.

Proof. The result follows from Theorem 2.6 by taking k(x,y) = £(x)m(y) for some positive
ua-integrable function & and positive va-integrable function m. ]

Remark 3.3. Since the right-hand side of (3.6) is nonnegative, therefore it gives the refine-
ment of Jensen’s inequality on time scales (see [2]).

Further our new hypothesis are:

Hl: X=Y= [a,b)T, where T is an arbitrary time scale.

H2: Let0<p<g<ooor—-oo<g<p<0,and

:
p
Ax| <oo, yevY
o(x)—a

Theorem 3.4. Assume H1, H2 and H4 hold and f is a vp-integrable function on Y such
that f(Y)C 1. Then

b
E:X—-Ryis suchthat%(y):(f f(x)(
y

b _ 7 b \
( f <I>(f(y))‘7(y)Ay) - f ECODF (ALF()AX

b 4 o (x)
>4 f Y pitaren [ RieyAvar (3.8)

pJa 0(x)=a a

holds, where
o (x)

Afx) = fAy, xeX (3.9

o(x)—a J,
and

Ri(x,y) = 1D(f (1)) = DALf )] = (AL f DI () = Arf (. (3.10)

If ® is a nonnegative monotone convex function and f(y) > A f(x) forye Y’ (Y’ CY),
then

b _ 7 b ,
( f <I>(f(y))T(y)Ay) - f ECODF (ALF()AX

>4

bW e
: f 0 gt ) f sen(f() — ALFONS (6 AYAY] (B.11)

o(x)—a
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holds, where

Si(x,y) = O(f () = O(Af(x)) = lp(ALf NI () = ALf (). (3.12)

Proof. The statement follows from Theorem 2.1 by using

1 if <y< <b,
k(x,y) = oasy<oto (3.13)
0 otherwise,
since in this case we have
T (x)
K(x) = f Ay = (o(x)—a).
a
O

For p =g, H? takes the following form

H2: £:X — R, is such that w(y) = b&Ax<oo, yeY.

ly o(x)-a

Theorem 3.5. Assume H1, H2 and H4 hold and f is a va-integrable function on Y such
that f(Y)C 1.

(1) If © is a convex function in H4, then

b b
f O ()T()AY - f ECODAf())Ax

b o (x)
Zf ﬂ Ri(x,y)AyAx (3.14)

ox)—aJ,

holds, where A, f and R, are defined in (3.9) and (3.10) respectively. If ® is a
concave function, then the order of terms on the left-hand side of (3.14) is reversed.

(ii) If ®© is a monotone convex function and f(y) > A f(x) forye Y (Y’ CY), then

b b
f O ()T )AY - f DA FAX
b E(x)

¢ 0(x)—a

@
fa sgn(f(y) = ALf())S1(x,y)AyAx|.  (3.15)

holds, where Sy is defined in (3.12).

If © is monotone concave, then the order of terms on the left-hand side of (3.15) is
reversed.

Proof. The statement follows from Theorem 2.6 with k defined as in (3.13). O

Corollary 3.6. Assume H1 and H?2 hold and f is a nonnegative v-integrable function on
Y such that f(Y) C L
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(@) Ifp=1orp<Q0, then

b b
f FPOw()Ay - f EQO)AT f(0)AX

b &)
Zf a(fx()xia fO Rp,1(x,)AyAx  (3.16)

holds, where A\ f is defined in (3.9) and
Rp1(x,y) = ||fP0) = AL £(0)| - plA FOP ) - AL f )|

If p € (0,1), the order of terms on the left-hand side of (3.16) is reversed.
(ii) Let f(y)>Af(x)foryeY (Y CcY). Ifp=1orp<Q0,then

b b
f FPOWmAY - f EQO)AT f(0)AX

>

b @
e f £ f sgn(f(y) = ALf())Sp1(x,y)AyAx|  (3.17)

ox)—a

holds, where
Sp.1(xy) = fP) = AL f(x) = pl(ALF )~ (F() - AL f(x).

While for p € (0, 1) the order of terms on the left-hand side of (3.17) is reversed.
Proof. Use ®(x) = xP, x> 0 in Theorem 3.5. O
Corollary 3.7. Assume H1 and H2 hold. If g is a positive va-integrable function on Y, then
RO NN

a O'(X)—Cl a

b b
f 8WMAy - f §0G1(x0)Ax > Qi(x,y)AyAx, (3.18)

holds, where

1 a(x)
610 =enp - [ g

2
Gi(x)

and
In

Qi(xy) = ]|g<y> G- 161(x)

Ifg) > G (x)foryeY (Y CY), then

b b
f SIT)AY f (G (MDAX

>

b o (x)
_f £) f san(g(y) — G1())Us (x,)AyAx

o(x)—a

(3.19)

holds, where

U (x,y) = g0) - G1(0) ~[G1 (0 In 2L
G1(x)

Proof. Use ®(x) =¢e*, x>0 and f(x) =Ing(x) in Theorem 3.5. O
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4 Examples

Example 4.1. In addition to the assumptions of Theorem 3.4, if T consists of only isolated
points with b = oo, then (3.8) takes the form

q
p

[ > cD(f(y»'f(ny(y)—y)] - Y EWOH A ) - x)

Y€la,o0)r x€la,00)r

>4 N L0l W) Y, Ri)e0) -y -,
P relaor T 71 yela.rty
where
A Y ‘
To=| > g(x)( )(a'(x)—x) , yeY and p,geR,
oy (TP =4
. 1
AfW= o= ), SOEM=y, xeX @.1)
yela,o(x))t
and

R1(x,y) = D)) — DA £ = (AL LD ) = AL f()ll;
(3.11) takes the form

LZ fONT MM -N| = D) &0 Af@)NT(x) -2

€[a,0)r x€la,o0)r
(x) 4 4
>4 S0t (A )
p x€la,o0)T ox a

> sen(f0) = A f NSy 0) = 3@ - 1)

yela.o(x)r

where

S1(x,y) = D) = O(A £(x)) = (A FONF ) = AL f(x)).

Example 4.2. In addition to the hypothesis of Corollary 3.6 if T consists of only isolated
points with b = oo, then following statements hold.

(i) If p=1orp<0,then

DT ORGEM -y - Y EDAL F)((x) - x)

Y€la,00)r x€la,o0)t

Z £(x) Z Ry1 (503 = Y)(o(xX)—x) (4.2)

o =a o

x€la,00)r
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holds, where A; f is defined in (4.1) and

=5 2 m-n, yer, 43)

xetyay, T —4

Ry (6,3) = | 170) = A0 £ 0| = 1l | ol | £ = A £

If p € (0, 1), the order of terms on the left-hand side of (4.2) is reversed.

(i) Let f(y)> A f(x)forye Y’ (Y cY).If p>1or p<0, then

DU ORGEM - - Y EDAL fx)(x) - x) (4.4)
ye€la,00)r x€la,00)r
£(x)
Xx€la,oo)T O-(x) —a

sgn(f() = A1 LS 1 (X)) = y)(o(x) = x)

yela.o(x))r

holds, where
Sp1(x.y) = fP(3) = AL £(x) = IplALL )P () = AL ().
While for p € (0,1) the order of terms on the left-hand side of (4.4) is reversed.

Example 4.3. In addition to the hypothesis of Corollary 3.7 if T consists of only isolated
points, then (3.18) becomes

D1 gIOEM - - D ENGIX)(x) )

Y€la,c0)r x€la,00)r

S DS Qom0 -, @5)

T =a o

x€la,0)T

where W is defined in (4.3) and

gl(x>=( [] (g(y»(“(”—”] :

YEla,o(x)r

In Ag )

Qi(x,y) =

s = G1(0)|-1G1 ()]

11X
If g(iy) > G1(x) forye Y’ (Y’ CY), then (3.19) becomes

D gROEm-N— D ENGIW((x) ) (4.6)
yela, o)t x€la,o0)T
&)
x€[a,oo)T O-(x) —a

’

> sang() - G () () ~ (e (x) - x)

yela.o(x0))r
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where
g(y)

1(X
Example 4.4. For T = hN = {hn : n € N} with A > 0, a = h, and

Ui (x,y) = ()~ G1(x) ~ G (x)|In ==—

1
&x) = %,
(4.2) takes the form
SEAGONRN e
Zl " Zn+1( Zf(mh)] Z pron +1) ZRpl(nh mh),
where

f{p,l(nh,mh) =

1 n P
fP(mh) —[;;f(mh))

p-1

Zf(mh)

m 1

1 n
“Ipl|~ f(mh) - Z;f(mh) ;

(4.4) takes the form

JP(mh)
Z . Z1n+1( Zf(mh))
in(nH)ZSgn( (mh)——Zf(mh)] S,.1(nh,mh)|,

where

n p
Sy nh,mh) = f2(mh) ~ (% Y f(mh)]
m=1

-1 .
|p|( Zf(mh)) [f(mh)—%Zf(mm].
m=1

m=1
Example 4.5. For T =N? = {n” : n € N} with a = 1 and
2(o(x)—1)
((x) = )2 Vx+3)

&(x) =

(4.2) takes the form

2(n(n+2)'7? (< )V

(o] 2 " A : 2
= 2 anr Dn+3) 2m+1
_;(2”+1)(2n+3)n;7€m(” ,m°)(2m+1),
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where

1 n P
SP(m®) - (n(n 2 2 Z(2m + 1)f(m2))

p-1

7 2 2
Rp1(n°,m”) =

Z<2m+ Dfen®)| | fmh)—

=|pl

n(n+2) n(n +2)

(4.4) takes the form

s 2(n+2))' 7 (& N
pr( )= Z Qn+ )2 +3) [;(2’“ Dytm ))

sgn [f<m2> -
=1

nn+2) —

where

Sp(n?,m?) = P (m?) - [ Z(2m+ 1)f(m2))

(n+2) £

p-1
—|p|{ o +2)Z(2m+1)f(m )) (f(mz)— o +2)Z<2m+1>f<m >].

Example 4.6. For T = ¢"' = {¢" : n € N} withg > 1,a = g and

£ = %
(4.2) takes the form
. - . p
; 1"~ Z] q"(qg- 1P =D (,; q’"‘#(q’")]
> % HZ 7 m;@p,l(q",q’")qm,
where

R1(q"q"™) =

-1 n P
1" - ("— > q’"‘%(q’"))
4 = 1 m=1

L]—l C m—1 m)
. 9 fq")
=D

p-1

=lpl fq

m=

Z(2m+ Do)

Zf<m2>]$p,1<n2,m2)(zm+ D,

" g™
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(4.4) takes the form

n P
Zf”(q’") Zq "(q-1)"(g" - )1‘P(Zq'"‘1f(q'">]

m=1 m=1

-1 ¢ .
[f(q )- qu‘lf@"“)]sp,l(q",qm)qm

m:l

where

R _1 n p
Spalg".q") = 17 (¢") - (qq,, 3 > q""lf(q’"))
m=1
q—l n p-1
_|p|(qn_1 qu—lf(qm)] [f(q
m=1

Example 4.7. For T, a and ¢ as in Example 4.4, (4.5) takes the form

Zg(mh) Z +1(l_lg(mh)) i pre +1)ZQ‘(”h mh),

m=1

m lf(qm)] )

m=

where
él (nh,mh) = ||g(mh) — (ﬂ g(mh)) ‘
m=1
oz
m=1 (ITs-, gGmi))"
(4.6) takes the form

= gmh) S 1 (f '

0
>

1 w1 d an
> —sgn| g(mh) —( g(mh)) ]ﬂl(nh,mh)
; nn+1) mZ:; m [ nl;[

>

where

flmh)
(T, gGmh))"

(ﬁ g(mh))n In
m=1

U, (nh,mh) = g(mh) - []_[ g(mh)] -

m=1
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Example 4.8. For T, a and ¢ as in Example 4.5, (4.5) takes the forms

2n(n+2) et |
Zg(m) Z(2n+1)(2n+3)(n(( R )
2 D Qi A em+ 1),

=L (2n+1)(2n+3) L

where
Qi(n,m?) = ||g(m?) - []‘l(g(m%)““]
m=1
n e 2
— (l_l(g(mz))ZmH) ln g(m ) 1 ’
m=l (Mg (glm2yy2ms 1)
(4.6) takes the form

2n(n+2) : il el
Zg( - Z(2n+1)(2n+3)(l:[(g(m ) )

2 n(n1+2) R
Cn+Dn+3) 2% [g<m> (ﬂ(g(m ))2"’”) ]ful(nz,mz)(zmm,

m=1

where

T (n?,m?) = g(m2>—(]_[(g(m2>>2m“]
m=1

n n(n+2)
_ (l_[(g(mZ))Zm+l]
m=1

g(m?) |
(H'Lzl (g(m?))2m+1 ) WD)

In

Example 4.9. For T, a and ¢ as in Example 4.6, (4.5) takes the form

gq-1

i 8(q") - i q"(q" =1 (ﬁ(g(qm))qml]qn_]
m=1 n=1 m=1
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where
Qiq".q" = g(q’")—(l_[(g(q’”))qm_lJ _
m=1
_(n(g(q’"))qml] - L ||’
m=1 (T (g™ )™
(4.6) takes the form

gq-1

2.8 = )" - 1)( (8(g"y""” ] _
m=1 n=1 m=1

g-1
q

gq-1

i % i o {g(qm) B [ﬁ(g(q’”))q"” )""1
m=1 11

>

>

n=1

]7:{1 q".d"q"

where

g-1

U(q".q") = 8" ~ (]—[(g(q’"))qm_l] _
m=1

gq-1

(ﬁ(g(q’"))qml ]ql
m=1

In

(Hzm (g(gm))a"™ )q‘{l—l
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