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Abstract

The purpose of this paper is to search for periodic solutions to a system of nonlinear
difference equations of the form

Ax(t) = f(e, 1, x(1)).

The corresponding linear homogeneous system has an n-dimensional kernel, i.e. the
system is at full resonance. We provide sufficient conditions for the existence of peri-
odic solutions based on asymptotic properties of the nonlinearity f when € = 0. To this
end, we employ a projection method using the Lyapunov-Schmidt procedure together
with Brouwer’s fixed point theorem.
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1 Introduction

In this paper, we study the solvability of nonlinear discrete systems of the form

Ax(?) = f(e,t,x(2)). (1.1
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In particular, we are interested in finding N-periodic solutions of the above system,
where we assume f(e,t,x) = f(e,t+N, x). Here, f = (f1, f,..., f,)T where f; : RxRxR" —
R for i =1,2,...,n. Note that the solution space of the corresponding linear homogeneous
system is n-dimensional, i.e. the system is at full resonance. Our approach in providing
sufficient conditions for the existence of periodic solutions to (1.1) depends significantly on
this resonance along with asymptotic properties of the nonlinear function f(0, ¢, x).

Since the solution space of the associated linear homogeneous equation is non-trivial,
we will use a projection scheme (Lyapunov-Schmidt procedure) together with the Brouwer
fixed point theorem to analyze the nonlinear problem (1.1). A similar approach has often
been used in the study of both continuous and discrete dynamical systems (see, for instance,
[1-7,9-13,15-21]). Our results complement previous work in the study of periodic discrete
dynamical systems. We allow for higher-dimensional solution spaces of the associated
linear problem as well as for more general asymptotic behavior of the nonlinear function f.

2 Preliminaries

For each natural number N > 2, let Xy be the set of all sequences x from {0, 1,2,3,...} into
R" that are N-periodic; that is, x({ + N) = x(I) for every [ € {0,1,2,3,...}.

For x € Xy, let ||x||co = sup{|x())|:1=0,1,2,3,...}.

We define L : Xy — Xy by

Lx(t) = Ax(t) = x(t+1)—x(¢) fort=0,1,2,3, ...,
and define F¢ : RX Xy — Xy by

fl (67 z, )C(t))

fa(€,1,x(1))

Fe(x)(@®) = forr=0,1,2,3,....

Ju(€, 1, x(1))

We assume each f; is a continuous map from R X R XR" into R fori =1,2,...,n. It follows
that F¢ is continuous. It is assumed that for some m € R, |f;(0,t,x)| <m fori=1,2,...,n.
Hence, for all x € Xy, [|[Fo(X)|]|c0 < m.

Our problem, finding periodic solutions to the system

Ax(t) = f(e,t,x(1))

is equivalent to solving
Lx = F(x).

Since L is not invertible, we cannot apply the Brouwer Fixed Point Theorem directly. We
shall decompose Xy using the methods described in [5]. We find projections, P, of Xy
onto ker(L), and E, of Xy onto Im(L), so that we may write Xy = ker(L)® Im(I — P) and
Xy =Im(L)®Im(I — E). The projections we use are those devised by Rodriguez [14].

Let
N-1

(I - E)x(t) = Zx(l) forr=0,1,2,3,...
=0
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Let
N-1

Px(t) = Z x() fort=0,1,2,3,....
=0

Remark 2.1. If L is the restriction of L to Im(I — P) then Im(L) = Im(L). L, viewed as a map
from Im(I — P) into Im(L) is invertible. We denote (L)™' by M. One may then verify:

i. M is bounded and linear,

ii. MLx=(I- P)x forall xe D(L),
iii. LMh = hfor all h € Im(L),
iv. EL=Land (/-E)L=0,

v. PM=0.

Proposition 2.2. Lx = F.x is equivalent to

{ Xx=Px+MEF.(x) @1

(I-E)F(Px+ MEFx))=0.
Proof. We have Lx = F.x if and only if

E(Lx—Fcx)=0
(I-E)Lx—Fx)=0

if and only if
Lx=EF.x)
(I-E)Fe(x)=0

if and only if
(I-P)x=MEF.(x)
(I-E)F(x)=0

if and only if
x=Px+MEF(x)
(I-E)F(Px+MEFx))=0.

3 Main Results

Since ker(L) = span{ey,e,...,e,}, Where e; is the ith standard unit basis vector, we may
rewrite (2.1) of Proposition 2.2 as the equivalent system of n + 1 equations

x=aje1+azer+...+aye, + MEF (x)

N-1
0= Zf,-(e,l,aq +[MEF ()1 (),...,an+[MEF(x)],(D), i=1,...,n.
=0

The proof of Theorem 3.1 relies on techniques that appear in [2,3,4,8,12,13,15,17].
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Theorem 3.1. Suppose that

(i) fi : RXRXR" > R fori=1,2,...,n is continuous, and for some m € R, |fi(0,t,x)| <m
fori=1,2,...,n.

(ii) For each i = 1,2,...,n, there exist constants L;, P;,N; > 0 such that for all x; > L;,
£i0,t, %1505 X4y oy Xn) = Pyoand f:(0,t,x1,...,—Xiy..., X)) < =N; for all t =0,1,2,... and
all x1,...,Xi_1,Xix1,..., X, ER.
Then, there exists an €y > 0 such that for € € [0, €], there exists at least one periodic solution
of

Ax(t) = f(e,t, x(2)).

Proof. We define mappings
H,: RXXNXRn - Xy,

H;, :RXXNXRH - R,

and
H:RxXyxR"— Xy xR"

by
Hi(e,x,aq,...,ay) =aje; +...+ape, + MEF (x),

and fori=1,...,n,

N-1
Hipi(e,x,a1,...,0p0) = ;i = Zfi(f, Lai +[MEF(x0)]i(D,...,an+[MEF(x)](]).
=0
H is then given by
H(G,x,a’l, L >a'n) = (Hl(e’x’al’ e ,an), .. -7Hn+1(€’x’a/l’ .. 70,}1)) .

We shall first analyze the case when € = 0. Note that fori =1,2,...,n, [[MEFy(x)];()| <
||ME||m for every [ € {0,1,2,...} and every x € Xy.

Consider Hi1(0,x,ay,...,a,) for each i = 1,2,...,n. If @; is sufficiently large, we may
ensure

fi0,L,a; + [ MEFo(x)1(D),...,a;i+ [MEFy(x));(D),...,a, + [MEFy(x)],()) = P; >0
and
fi(0,Lay + [ MEFy(x)11(D,...,—a;i+ [MEFy(x)];(D,...,ay, + [ MEFy(x)],(D)) <-N; <0

for every [ € {0,1,2,...} and every x € Xy. Therefore there is some y; > Nm+ 1 > 0 such that
for all x € Xy and for all ay,...,@—1,@i+1,..., ¥, €R,

Hi100,x,a1,...,,...,a,) < @; and H;1(0,x,a1,...,—q,...,a,) > —q; for a; > v;. We let
5,’ 27i+Nm+ 1.
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Now if a; € [y;,0;], then for all x € Xy and ay,...,@;i_1,@i+1,...,@, € R we have
Hi+1(0,x,(}f1,...,a’i,...,an)

N-1

= ;- Z fi0,Lay + [MEFo(0)]1(D), ..., ;i + [MEFo(x)]i(]),..., @ + [MEFo(x)](D)
=0
N-1

> ;- Z 1/i(0,L,a1 + [IMEFo(0)]i(D),..., @i + [IMEFo(0)]i(]),...,an + [MEFo(x)].(D)|
=0

>a;—Nm
> @i —Yi
>0

and
Hl'+l(07~xya,l?"~,_a/l"~--9a,n)

N-1
=-a;— Z fi0,L,ay + [MEFo (011 (D),...,—ai+ [MEFo(X)]i(]),...,an + [IMEFo(xX)].()
=0

N-1

<-a;i+ Z 1/i0,l,a1 + [MEFo()]1 (D), ..., —i + [IMEFo(0)]i(D), ..., an + [MEFo(x)]: (D)l
=0

<—-a;+Nm

< -t

Thus for all x€XN, ALy, Qio],Aixr],..., 0y €ER, and a; € [’yi,5i],
HH_](O,X,CY],...,Ql‘,...,an),HH.l(O,.x,al,...,_a[,...,a’n) € [_al’al] c [_61’61]

Furthermore, if 0 < @; <y;, for all x € Xy and a1, ...,a-1,®+1,...,a, €R,

|Hi+1(09x9al9~'~7ia,i7“-9an)|

< | + a/,-l
N-1
+ Z 1/i0,L,a1 + [MEFo()]1(D), ..., 2@ + [MEFo(0)]i(]), ..., an + [MEFo(0)],(D)|
=0
<vyi+Nm

< 6[.

We have shown that for € = 0, H;,; maps Xy X [=6;,6;] x R*! into [-6;,;] for each i =
1,2,...,n.
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Define 8 = {(x,a1,...,a@,) € Xy XR" i |IX]lo <61 +...+ 6, +[|ME|m+1 and |o;| < 0;
for eachi=1,2,...,n}, and note that 8 is a non-empty, closed, bounded, convex set.

From the above results, it follows that for (x,a1,...,a,) € B, HO,x,a1,...,a,) € B. For if
(x,a1,...,a,) € B, then Hi.1(0,x,a1,...,a,) € [-0;,6;], while

l1H1(0, x, 1, ...,an)lle0 < |aillletlloo + .. +|anlllenlloo + [|MEFo(x)lleo
<O61+...+0,+||ME||m
<O +...+0,+]|ME|m+1.

Since H is a continuous function, the Brouwer Fixed Point Theorem guarantees existence
of at least one fixed point of H in B.

Now consider the case when € > 0. We will show that there exists ¢ € R such that for
each e < g, H(e, x,ay,...,qa,) € B whenever (x,ay,...,qa,) € B.

Choose € small enough so that

file,Lar +[MEFo(x)li(D),...,xa; + [MEFo(x)]i(D),...,a, + [MEFy(x)],(]))—

fi0,.Lay +[MEFo(x)li(D),...,xa; + [MEFo(x)];(]),...,a, + [MEFy(x)].(])

for all (x,aq,...,a,) € B.

Note that we may now assume € lies in some compact interval of R, from which it
follows that for all x € By = {||x||cc <01+ ...+, + ||ME|m+ 1}, ||Fe(x) — Fo(x)|lo can be
made arbitrarily small for sufficiently small €. For our purposes, choose € small enough so
that for all x € B,,

IMEF(X)llco < [IME|(IIFe(x) = Fo()lleo + [1F0(X)lle0)

1
< ”ME”(M +m)

=1+|ME|m.
For each € satisfying the above properties, it now follows that H(e, x, a1, ...,a,) € 8 when-

ever (x,aq,...,a,) € B. First observe that for all (x,ay,...,a,) € B,

IH1(€, x,a1,...,an)|lo < lai1llletlleo + ... + lanlllenllco + IMEF (X)|lco
<01 +...+0, +||IME|m+1.
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Next, for all a; € [y;,6:],

Hi (e, x,aq,..., Q.. )
N-1
=a;- Z (fi(e, Lay+ [MEFo(0)11i(D,...,ai + [MEFo(x0))i(]),...,an + [MEF(x)]n(])
1=0
= fi0,Lay + [IMEFo()]1 (D), ...,a;i + [MEFo(x0))i(D), ..., an + [MEFo(X)]n(l)))
N-1
- Z Ji0,L,ay + [MEFo(xX)]1(D), ..., + [MEFo(x)]i(D),...,an + [MEFo(x)]u(]))
=0
N-1
<a;— (ﬁ(e, Lay+[MEFy(x)i(,..., a;+[MEFy(x)]:(D,..., ay+ [MEFy(x)].(D)
1=0
- fi(0,Lay + [MEFo(0)]1 (D, ...,a; + [MEFo(xX)]i(D),...,a, + [MEFO(X)]n(l)))
—NP;
g NP
Q; >
<,
while a similar calculation shows that H;, (e, x,aq,..., —, ..., ay) > —q; for all ; € [y, 6;].

Also, for all ¢; € [y;,6;],

Hi (e, x,a,..., Qjy.en .y a,)
N-1
= ai= ) (fite.ar + IMEFoGOL(D... a5 + IMEFo(OLD, ... + IMEFo(9L, (D)
=
= fi(0,,ay + IMEFo(0)]i (), ..., + [IMEFo(x)]i(D),...,an + [MEFO(X)]n(l)))
N-1
- Z Ji(0,L,ar + IMEFo(x)11 (D), ..., i + IMEFo(x)]i(D), . ..,an + [MEFo(x)]n(]))
=0
N-1
> ;- Z |f,~(€, Lay+[MEFy(x)](D,..., a;+[MEFy(x)];(D),..., an +[MEFy(x)],(])
=0
— /O, + [MEFo(N (D), .., i + [MEFo(OL(D, ..t + IMEFo(x)1(D)
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N-1
> ;— Z |ﬁ(6, Lai +[MEFo(x)l1(]),...,a;i + [MEFo(x)]i(]),...,an+ [MEFy(x)],(])
=0

= fi(0,Lay + [MEFo(0)]1 (D, ...,a; + [MEFo(X)]i(D),...,ay + [MEFy(x)],(])
—Nm

>a;i—Nm—1

>Qi—Yi
>0,
while a similar calculation shows that H;, (€, x,aq,...,—a;,...,a,) <0 for all a; € [y;,6;].

Finally, for all ; € [0,7;],

|Hi+1(e,x,ala' "’iai7"-’all)|

N-1
< | + ail + Z |f,‘(€, l,a’1 + [MEF()(X)]](Z), - 0 [MEF()(X)]I‘(Z), e, t [MEFo(x)]n(l))
=0

- fi(0,L,a1 + [MEFy(x)]1(D),....,xa; + [MEFy(x)];(),...,an+ [MEFO(x)]n(l))|

N-1
+ 3 [0, Lar + IMEFo)I D, 2ai + [MEFoliD) .., + [IMEFo ()1 (D)
=0

N-1
<vyi+ Z ’f,-(e, Lai +[MEFo(x)1(),...,xa; + [MEFy(x)];(),...,an+ [MEF(x)],(])
=0

- [0, La; + [ MEFy(x)1(),...,xa; + IMEFy(x))i(D),...,a, + [ MEFy(x)],(]))
+Nm

<vi+Nm+1
=0;.

Hence for each € sufficiently small, H(e, x,a1,...,a,) € B whenever (x,ay,...,a,) € B.
Since H is a continuous function, the Brouwer Fixed Point Theorem guarantees existence
of at least one fixed point of H in B. This fixed point is a periodic solution of

Ax(?) = f(e,t,x(2)).
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