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Abstract

The aim of this work is to study the essential ascent and the related essential ascent
spectrum of closed unbounded operators on a Banach space. Our approach is based
on the concept of paracomplete subspaces of Banach spaces. We prove an unbounded
spectral mapping theorem for the ascent spectrum and the essential ascent spectrum.
A characterization of closed unbounded operators with finite essential ascent as direct
sum of a suitable operators is proved. The new notion of a-essential index for closed
unbounded operators with finite essential ascent is introduced. We also give some
perturbations results for such operators. This paper extends some results proved in [1]
to closed unbounded operators.
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Géométrie et Applications



20 Z. Garbouj and H. Skhiri

1 Introduction and terminology

Let X be an infinite-dimensional complex Banach space. We denote by ϕ(X) the class of
all closed linear operators with domain D(T ) ⊆ X and range Im(T ) ⊆ X. Let B(X) be the
Banach algebra of bounded linear operators on X. We denote by ker(T ) the kernel of an
operator T ∈ ϕ(X) and by α(T ) = dimker(T ) and β(T ) = dimX/Im(T ) its nullity and defect,
respectively. The resolvent set of T ∈ ϕ(X) is defined by

%(T ) = {z ∈ C : (zI−T )−1 ∈ B(X)},

i.e., z ∈ %(T ) if and only if Im(zI−T ) = X and (zI−T ) is injective and has continuous inverse
(zI−T )−1 ∈ B(X). The spectrum of T ∈ ϕ(X) is defined as σ(T ) = C\%(T ).

Recall that T ∈ ϕ(X) is said to be upper semi-Fredholm if T has closed range and
α(T ) < +∞; and T is said to be lower semi-Fredholm if β(T ) < +∞. We say that T is semi-
Fredholm if it is upper or lower semi-Fredholm, and we denote by Φ±(X) the class of all
semi-Fredholm operators. For an operator T ∈ Φ±(X) we define the index of T by

ind(T ) = α(T )−β(T ).

An operator is Fredholm if it is semi-Fredholm with finite index. We denote by Φ(X)
(resp. Φ+(X), Φ−(X)) the class of all Fredholm (resp. upper semi-Fredholm, lower semi-
Fredholm) operators. The Fredholm spectrum (known in literature also as essential spec-
trum) is defined by

σe(T ) = {λ ∈ C : λI−T < Φ(X)}.

We define the generalized kernel of T ∈ ϕ(X) by ker∞(T ) =
⋃

n∈N
ker(T n) and the general-

ized range of T by Im∞(T ) =
⋂

n∈N
Im(T n).

Also from [13] we recall that for T ∈ ϕ(X), the ascent, a(T ), and the descent, d(T ),
are defined by a(T ) = inf{n ≥ 0 : ker(T n) = ker(T n+1)} and d(T ) = inf{n ≥ 0 : Im(T n) =
Im(T n+1)}, respectively; the infimum over the empty set is taken to be∞.

An operator T ∈ϕ(X) is called s-regular (semi-regular) if T has closed range and ker∞(T )
⊆ Im∞(T ).

For T :D(T ) ⊆ X −→ X an unbounded operator and n, k ∈ N, we define the following
three quantities :

αk
n(T ) = dimker(T n+k)/ker(T n),

βk
n(T ) = dim Im(T n)/Im(T n+k),

S k
n(T ) = dim[Im(T n)∩ker(T k)]/[Im(T n+1)∩ker(T k)].

Let us recall the following useful relations :

αk
n(T ) = dimker(T k)∩ Im(T n),

βk
n(T ) = dimD(T n)/[Im(T k)+ker(T n)]∩D(T n),

≤ dimX/[Im(T k)+ker(T n)].

It is clear that, for every j ∈ N, (α j
n(T ))n≥0 and (β j

n(T ))n≥0 are both decreasing sequences,
whereas (αk

j(T ))k≥0 and (βk
j(T ))k≥0 are both increasing sequences.
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For T ∈ ϕ(X), the essential ascent, ae(T ), is defined by

ae(T ) = inf{n ∈ N : α1
n(T ) < +∞},

where as usual the infimum over the empty set is taken to be ∞. The essential descent,
de(T ), is defined by

de(T ) = inf{n ∈ N : β1
n(T ) < +∞},

if no such n exists, then by definition de(T ) = +∞.

The paper is organized as follows. In the next section, we prove some algebraic results
needed in this paper. Section 3 focuses on some properties of essential ascent of closed
unbounded operators in Banach spaces. Some results that deal with the connection between,
on the one hand, the essential ascent resolvent set, and on the other, the s-regular set and
the upper semi-Fredholm resolvent set of closed unbounded operators are given. In Section
4, we prove an unbounded spectral mapping theorems for the essential ascent spectrum and
ascent spectrum. The notion of an a-essential index of closed unbounded operator with
finite essential ascent is introduced in Section 5. We prove a decomposition theorem for
closed unbounded operators with finite essential ascent and such that Im(T )+ker(T ae(T )) is
topological complemented in X as direct sum of a suitable operators having some specific
properties. Finally, in Section 6, we show some perturbation results for closed unbounded
operators with finite essential ascent.

In this paper, some results from [1] related to essential ascent for bounded operators are
extended to closed unbounded operators. However, the techniques used in this work are
different from those used in [1]. Our approach here is based in the concept of paracomplete
subspaces of Banach spaces (see, [8, Chapter II]).

2 Algebraic preliminaries

Throughout this paper the symbol u denotes the standard algebraic sum, while ⊕ denotes
the direct sum of closed subspaces, i.e., X0 = X1 ⊕X2 if the linear space X0 = X1 +X2 is
closed and X1∩X2 = {0}. We shall say that X1 is topological complemented in X0 if there is
a closed subspace X2 ⊆ X0 such that X0 = X1⊕X2. In this case the subspace X2 is said to be
a topological complement of X1. Also X1 and X2 are said to be topological complementary
subspaces.

For T :D(T ) ⊆ X −→ X and k ∈ N, the k-degree of stable iteration, pk(T ), is defined by

pk(T ) = inf{n ∈ N : ker(T k)∩ Im(T n) = ker(T k)∩ Im(T m),∀m ≥ n},
= inf{n ∈ N : S k

m(T ) = 0,∀m ≥ n},

where the infimum over the empty set is taken to be∞.
We note that if ae(T ) < +∞, then

pk(T ) = inf{n ∈ N : αk
n(T ) = αk

m(T ), ∀m ≥ n}.

Define
A(X) = {T ∈ ϕ(X) :D(T i)+ Im(T j) = X, ∀ i, j ∈ N}.
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Clearly,A(X) , ∅, because T ∈ A(X), when T is a closed surjective operator.
For T ∈ A(X), we can see the following

βk
n(T ) = dim Im(T n)/Im(T n+k),

= dimD(T n)/[Im(T k)+ker(T n)]∩D(T n),
= dim[D(T n)+ Im(T k)]/[Im(T k)+ker(T n)],
= dimX/[Im(T k)+ker(T n)].

(2.1)

Throughout this paper, we use the following notation

T̃k : D(T̃k) ⊆ X/ker(T k) −→ X/ker(T k)
x 7−→ T x,

where T ∈ ϕ(X) and k ∈ N.
We start our study with the following algebraic results for later use.

Lemma 2.1. Let T :D(T ) ⊆ X −→ X, n ∈ N and k, m ∈ N\{0}. Then

α1
nm(T ) ≤ αk

n(T m) ≤ mkα1
nm(T ), (1)

β1
nm(T ) ≤ βk

n(T m) ≤ mkβ1
nm(T ). (2)

Proof. Let us first observe that

αk
n(T m) = dimker[(T m)n+k]/ker[(T m)n] = dimker(T mn+mk)/ker(T mn).

It follows that

αk
n(T m) =

mk−1∑
i=0

dimker(T mn+i+1)/ker(T mn+i) =
mk−1∑
i=0

α1
mn+i(T ).

Therefore
α1

nm(T ) ≤ αk
n(T m) ≤ mkα1

nm(T ).

This prove (1). To prove (2), note that

βk
n(T m) = dim Im[(T m)n]/Im[(T m)n+k] = dim Im(T mn)/Im(T mn+mk).

In particular, this allows us to see

βk
n(T m) =

mk−1∑
i=0

dim Im(T mn+i)/Im(T mn+i+1) =
mk−1∑
i=0

β1
mn+i(T ).

Hence
β1

nm(T ) ≤ βk
n(T m) ≤ mkβ1

nm(T ).

The proof is complete. �

Lemma 2.2. Let T :D(T ) ⊆ X −→ X and n, k ∈ N, then

αk
n(T ) = S k

n(T )+αk
n+1(T ).
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Proof. Let M ⊆ ker(T k)∩ Im(T n) such that

ker(T k)∩ Im(T n) = ker(T k)∩ Im(T n+1)uM.

Then
dimM = dim[ker(T k)∩ Im(T n)]/[ker(T k)∩ Im(T n+1)] = S k

n(T ).

Consequently,
αk

n(T ) = S k
n(T )+αk

n+1(T ),

and this completes the proof. �

Lemma 2.3. Let T :D(T ) ⊆ X −→ X and let i, k ∈ N, one has

S k
i (T ) = dim[ker(T )∩ Im(T i)]/[ker(T )∩ Im(T i+k)],

= dim[ker(T i+1)+ Im(T k)]/[ker(T i)+ Im(T k)].

Proof. Let Ti denote the restriction of T to the invariant subspace Im(T i). Since

S k
i (T ) = dim[ker(T k)∩ Im(T i)]/[Im(T i)∩ker(T k)∩ Im(T i+1)]

= dimker[(Ti)k]/[ker[(Ti)k]∩ Im(Ti)],

from [6, Lemma 3.5], we deduce that

S k
i (T ) = dimker(Ti)/[ker(Ti)∩ Im[(Ti)k]]

= dim[ker(T )∩ Im(T i)]/[ker(T )∩ Im(T i+k)].

This prove the first equality. Let us show the second equality. First, denote by y the class
of y ∈ [ker(T )∩ Im(T i)] modulo [ker(T )∩ Im(T i+k)]. Define ψ by setting ψ(x) = T ix, for
each x ∈ ker(T i+1). It is clear that ψ is a linear operator from ker(T i+1) onto [ker(T )∩
Im(T i)]/[ker(T )∩ Im(T i+k)] and ker(ψ) = [Im(T k)+ker(T i)]∩ker(T i+1). Consequently,

[ker(T )∩ Im(T i)]/[ker(T )∩ Im(T i+k)] ≈ ker(T i+1)/[Im(T k)+ker(T i)]∩ker(T i+1)
≈ [ker(T i+1)+ Im(T k)]/[ker(T i)+ Im(T k)].

This completes the proof of the lemma. �

Remark 2.4. Let T : D(T ) ⊆ X −→ X and k ∈ N\{0}, then p1(T ) = pk(T ). Indeed, let d =
pk(T ), from Lemma 2.3, we have immediately

ker(T )∩ Im(T d) = ker(T )∩ Im(T i+k), ∀ i ≥ d.

Hence, for every i ∈ N,

ker(T )∩ Im(T d+i) ⊆ ker(T )∩ Im(T d) = ker(T )∩ Im(T d+i+k) ⊆ ker(T )∩ Im(T d+i),

which implies that p1(T ) ≤ pk(T ). On the other hand, put l = p1(T ), then

ker(T )∩ Im(T l) = ker(T )∩ Im(T i+k), ∀ i ≥ l.

Now, from Lemma 2.3, for all i ≥ l, we have S k
i (T ) = 0, and consequently, pk(T ) ≤ p1(T ).
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Lemma 2.5. Let T ∈ A(X) and let n, k ∈ N. Then

βk
n(T ) = S k

n(T )+βk
n+1(T ).

Proof. First, from (2.1), it follows that

βk
n(T ) = dimX/[Im(T k)+ker(T n)]

and
βk

n+1(T ) = dimX/[Im(T k)+ker(T n+1)].

On the other hand, since

Im(T k)+ker(T n) ⊆ Im(T k)+ker(T n+1) ⊆ X,

we see that

βk
n(T ) = dim[Im(T k)+ker(T n+1)]/[Im(T k)+ker(T n)]+βk

n+1(T ).

Hence, by Lemma 2.3,
βk

n(T ) = S k
n(T )+βk

n+1(T ).

This complete the proof. �

3 Ascent spectrum and essential ascent spectrum of closed op-
erator

The goal of this section is to extend some results in [1] to closed unbounded operators of
Banach spaces.

For the rest of this article, we denote by

ϕ∞(X) = {T ∈ ϕ(X) : T n ∈ ϕ(X), ∀n ∈ N}.

We note that if %+e (T ) = {λ ∈ C : λI −T ∈ Φ+(X)} , ∅, then P(T ) ∈ ϕ(X), for every complex
polynomial P.

Let us recall the following definition [8, Definition 2.1.1].

Definition 3.1. A subspace M of X is said to be paracomplete in X, if M is a Banach space
and the canonical injection of M in X is continuous.

The following lemma follows immediately from [8, Proposition 2.1.3] and [8, Proposi-
tion 2.1.4].

Lemma 3.2. Let T : D(T ) ⊆ X −→ X be a paracomplete operator and let k ∈ N. Then
D(T k), Im(T k) and ker(T k) are paracomplete subspaces in X.

We have the following lemma, which will be needed in the sequel.

Lemma 3.3. Let T : D(T ) ⊆ X −→ X be a paracomplete operator such that ae(T ) < +∞
and let k ∈ N. The following statements are equivalent :
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1) Im(T k)+ker(T n) is closed for some n ≥ ae(T );

2) Im(T k)+ker(T n) is closed for all n ≥ ae(T ).

Proof. Only the implication ”1) =⇒ 2)” requires a proof. Let n0 ≥ ae(T ) such that Im(T k)+
ker(T n0) is closed. First, we prove that Im(T k)+ ker(T n0+1) is closed. Since α1

n0
(T ) < +∞,

then there is a finite dimensional subspace M ⊆ ker(T n0+1) such that ker(T n0+1) = ker(T n0)u
M. Hence,

Im(T k)+ker(T n0+1) = Im(T k)+ker(T n0)+M is closed.

Suppose that n0 > ae(T ). The lemma is proved if we prove that Im(T k)+ker(T n0−1) is closed.
Since α1

n0−1(T ) < +∞, there exists a finite dimensional subspace N ⊆ ker(T n0) such that
ker(T n0) = ker(T n0−1)uN. Therefore [Im(T k)+ker(T n0−1)]+N and [Im(T k)+ker(T n0−1)]∩
N are both closed. Consequently, by applying Lemma 3.2, [8, Proposition 2.1.1] and [8,
Proposition 2.2], we deduce that Im(T k)+ ker(T n0−1) is closed. This completes the proof.

�

Lemma 3.4. Let T ∈ ϕ∞(X) such that ae(T ) is finite. Let k ∈N\{0} and j≥ pk(T ). If Im(T k)+
ker(T ae(T )) is closed, then

T̃ : D(T̃ ) ⊆ X/ker(T j) −→ X/ker(T j)
x 7−→ T kx

is both s-regular and upper semi-Fredholm operator.

Proof. First, recall that from Lemma 3.3, we have Im(T k)+ ker(T ae(T )+n) is closed for all
n ∈ N. Define the following map :

π : X×X −→ (X/ker(T j))× (X/ker(T j))
(x, y) 7−→ (x, y).

Let G(T̃ ) denote the graph of T̃ , evidently G(T̃ ) = π(G(T k)). Recall that by [8, Proposition
2.1.4], G(T̃ ) is paracomplete. On the other hand, it is clear that α(T̃ )= dimker(T j+k)/ker(T j)
is finite and Im(T̃ ) = [Im(T k)+ ker(T j)]/ker(T j) is closed. Hence, from [8, Proposition
2.2.3], T̃ is closed, and consequently, T̃ is upper semi-Fredholm. Now let x ∈ ker(T j+k),
then

T jx ∈ ker(T k)∩ Im(T j) = ker(T k)∩ Im(T j+nk), ∀ n ∈ N,

which implies that, for every n ∈ N, there is xn ∈ X such that T jx = T j+nkxn. Hence, x =
(x−T knxn)+T knxn ∈ Im(T kn)+ ker(T j) and consequently, ker(T̃ ) ⊆ Im∞(T̃ ). This finishes
the proof of Lemma 3.4. �

We should note that the techniques given in Lemma 3.4 were influenced by a Lemma
2.1 [1].

To simplify notation, for the remainder of the paper we write simply Tλ in place of
λI−T, for all T ∈ ϕ(X) and λ ∈ C.

The ascent resolvent set of an operator T ∈ ϕ(X) is defined by

%asc(T ) = {λ ∈ C : Tλ ∈ ϕ∞(X), a(Tλ) < +∞, Im(Tλ)+ker[(Tλ)a(Tλ)] is closed}.
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The complementary set σasc(T ) = C\%asc(T ) is the ascent spectrum of T.
The essential ascent resolvent and essential ascent spectrum for T ∈ ϕ(X) are defined

respectively by

%e
asc(T ) = {λ ∈ C : Tλ ∈ ϕ∞(X), ae(Tλ) < +∞, Im(Tλ)+ker[(Tλ)ae(Tλ)] is closed}

and
σe

asc(T ) = C\%e
asc(T ).

It is clear from Lemma 3.3, that

%(T ) ⊆ %asc(T ) ⊆ %e
asc(T ).

On the other hand, if %+e (T ) , ∅, then

%asc(T ) = {λ ∈ C : a(Tλ) < +∞, Im(Tλ)+ker[(Tλ)a(Tλ)] is closed}

and
%e

asc(T ) = {λ ∈ C : ae(Tλ) < +∞, Im(Tλ)+ker[(Tλ)ae(Tλ)] is closed}.

Example 3.5.

1) Let T ∈ Φ+(X), then ae(T ) = 0, Im(T )+ ker(T ae(T )) is closed and T ∈ ϕ∞(X). Hence,
0 ∈ %e

asc(T ).

2) Let T ∈ A(X)∩ ϕ∞(X) such that q = max{ae(T ), de(T )} < +∞, then we have β1
q(T ) =

dimX/[Im(T )+ ker(T q)] < +∞. Using [8, Proposition 2.1.1], [8, Proposition 2.2] to-
gether with Lemma 3.2 and Lemma 3.3, we infer Im(T )+ ker(T ae(T )) is closed. Hence,
0 ∈ %e

asc(T ).

3) Let T ∈ A(X)∩ϕ∞(X) such that max{a(T ), de(T )} < +∞, then 0 ∈ %asc(T ).

Remark 3.6. Let T ∈ ϕ∞(X), such that ae(T ) < +∞.

1) If Im(T )+ ker(T ae(T )+n) is closed for some n ∈ N, then Im(T k)+ ker(T ae(T )+n) is closed
for all k ∈ N. Indeed, from the proof of Lemma 3.4, we conclude that

T̃ : D(T̃ ) ⊆ X/ker(T ae(T )+n) −→ X/ker(T ae(T )+n)
x 7−→ T x

is upper semi-Fredholm operator and hence,

Im(T̃ k) = [Im(T k)+ker(T ae(T )+n)]/ker(T ae(T )+n)

is closed for all k ∈ N. Consequently, Im(T k)+ker(T ae(T )+n) is closed.

2) If Im(T ) + ker(T ae(T )+n) is closed for some n ∈ N, then Im(T k) is closed for all k ≥
ae(T ). Indeed, from assertion 1), we know that Im(T k) + ker(T ae(T )+n) is closed and
dim Im(T k)∩ ker(T ae(T )+n) = αae(T )+n

k (T ) < +∞. Now the result follows from Lemma
3.2 and [8, Proposition 2.1.1].
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Remark 3.7. For the case of Hilbert spaces, if T ∈ A(X), from Remark 3.6 and [8, Proposi-
tion 2.3.5], we can deduce that :

%asc(T ) = {λ ∈ C : Tλ ∈ ϕ∞(X), a(Tλ) < +∞ and Im[(Tλ)a(Tλ)+1] is closed}

and

%e
asc(T ) = {λ ∈ C : Tλ ∈ ϕ∞(X), ae(Tλ) < +∞ and Im[(Tλ)ae(Tλ)+1] is closed}.

Now, we are ready to state our main result of this section, which represents an improve-
ment of [1, Theorem 2.3] to the class of unbounded closed operators.

Theorem 3.8. Let T ∈ϕ∞(X) such that ae(T )<+∞ and Im(T )+ker(T ae(T )) is closed. For all
j, n ∈N\{0}, there exists ε > 0 such that for every λ with 0 < |λ| < ε, the following assertions
hold :

1) λI−T j is s-regular and upper semi-Fredholm,

2) α[(λI−T j)n] = jnα1
p1(T )(T ),

3) ae(λI−T j) = p1(λI−T j) = 0,

4) ifD(T ) = X, then β[(λI−T )n] ≥ nβ1
p1(T )(T ), and equality holds when T ∈ A(X).

Proof. Assertions 1) and 2) can be proved as in [1, Theorem 2.3].
3) Let p = p1(T ). Since α[(λI−T j)n] = n jα1

p(T ) < +∞, it follows that

ae(λI−T j) = 0,

α1
n(λI−T j) = dim(ker[(λI−T j)n+1]\ker[(λI−T j)n]),

= α[(λI−T j)n+1]−α[(λI−T j)n],
= jα1

p(T ).

Hence, p1(λI−T j) = 0.

4) Let p = p1(T ). We have D(T̃p) = D(T )/ker(T p) = X/ker(T p), so as in the proof of [1,
Theorem 2.3], we see that

β[(λI−T )n] = β[(λI− T̃p)n],
= n dimX/[Im(T )+ker(T p)],
≥ n dim Im(T p)/Im(T p+1).

Now suppose that T ∈A(X). We know from Remark 3.6 that Im(T p) and Im(T p+1) are both
closed. Let us define T̃ :D(T̃ ) ⊆ Im(T p) −→ Im(T p) by T̃ (x) = T x. Clearly,

α(T̃ ) = dimker(T )∩ Im(T p) < +∞, (1)

Im(T̃ ) = Im(T p+1) is closed in Im(T p), (2)

ker(T̃ ) = ker(T )∩ Im(T p) = ker(T )∩ Im(T p+n) ⊆ Im(T p+n) ⊆ Im(T̃ n). (3)

Then combining (1), (2) and (3), we obtain T̃ is both s-regular and upper semi-Fredholm
operator. Thus, there exists ε > 0 such that if 0 < |λ| < ε, the following facts hold
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• λI− T̃ is both s-regular and upper semi-Fredholm operator,

• α[(λI− T̃ )n] = nα(T̃ ) = nα1
p(T ),

• ind[(λI− T̃ )n] = n ind(λI− T̃ ) = n ind(T̃ ) = n ind(T̃ ).

Now, we observe that Im[(λI −T )n]+ Im(T p) = X, for all λ ∈ C\{0}. Indeed, since the poly-
nomials Q1(µ) = (λ− µ)n and Q2(µ) = µp are relatively prime, then there exist R1 and R2
two polynomials of degree n1 and n2, respectively, such that

1 = Q1(µ)R1(µ)+Q2(µ)R2(µ), ∀ µ ∈ C.

Now, setting n0 =max{n+n1, p+n2}, then

D[Q1(T )R1(T )+Q2(T )R2(T )] =D(T n0).

Let x ∈ D(T n0), we have

x = Q1(T )R1(T )x+Q2(T )R2(T )x ∈ Im[(λI−T )n]+ Im(T p),

which implies that
D(T n0) ⊆ Im[(λI−T )n]+ Im(T p).

Since T ∈ A(X), it follows that

X =D(T n0)+ Im(T p) ⊆ Im[(λI−T )n]+ Im(T p).

On the other hand, for every λ ∈ C\{0}, we have

β[(λI−T )n] = dimX/Im[(λI−T )n],
= dim[Im[(λI−T )n]+ Im(T p)]/Im[(λI−T )n],
= dim Im(T p)/[Im[(λI−T )n]∩ Im(T p)].

(4)

Let us show that

Im[(λI− T̃ )n] = Im[(λI−T )n]∩ Im(T p), ∀λ ∈ C\{0}.

If p = 0, the equality above is trivial. If, instead, p ≥ 1, clearly Im[(λI − T̃ )n] ⊆ Im[(λI −
T )n]∩ Im(T p). In order to show the converse inclusion, let y ∈ Im(λI −T )∩ Im(T p). Then

there exist z, x ∈ X such that y = (λI −T )z = T px. This implies in particular that z =
1
λ

(Tz+

T px) ∈ Im(T ). Thus z ∈ Im(T p) and y = (λI −T )z ∈ Im(λI − T̃ ). Consequently Im(λI − T̃ ) =
Im(λI−T )∩ Im(T p). Now, we can prove by induction that

Im[(λI− T̃ )n] = Im[(λI−T )n]∩ Im(T p), ∀n ≥ 1. (5)

Finally, for every 0 < |λ| < ε, from (4) and (5), it follows that

β[(λI−T )n] = β[(λI− T̃ )n]
= α[(λI− T̃ )n]− ind[(λI− T̃ )n]
= nα(T̃ )−n ind(T̃ )
= nβ(T̃ ) = nβ1

p(T ),

and this completes the proof of Theorem 3.8. �
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As a consequence, we have the following result.

Corollary 3.9. Let T ∈ ϕ∞(X).

1) If a(T ) < +∞ and Im(T )+ker(T a(T )) is closed, then for all j, n ∈N\{0}, there exists ε > 0
such that for every λ with 0 < |λ| < ε, the following assertions hold :

i) λI−T j is injective with closed range,

ii) ifD(T ) = X, we have β[(λI−T )n] ≥ nβ1
a(T )(T ) and equality holds when T ∈ A(X).

2) σasc(T ) and σe
asc(T ) are both closed. Moreover, σasc(T )\σe

asc(T ) is an open set.

Proof. The first assertion is clear and we can prove the assertion 2) similarly as in [1,
Corollary 2.6]. �

For T ∈ ϕ(X), we define

σiso(T ) = {λ ∈ σ(T ) : λ an isolated point}

and
E(T ) = σiso(T )∩{λ ∈ σ(T ) : a(Tλ) = d(Tλ) = m, Im[(Tλ)m] is closed}.

Let’s recall that if %(T ) , ∅, (see, [9, Theorem 2.1])

E(T ) = {λ ∈ σ(T ) : a(Tλ) < +∞ and d(Tλ) < +∞}.

Theorem 3.10. Let T ∈ ϕ(X) such thatD(T ) = X. Then

%e
asc(T )∩∂σ(T ) = %asc(T )∩∂σ(T ) = E(T ).

Proof. The case %(T ) = ∅ is trivial, so assume that %(T ) , ∅. Clearly, the following inclu-
sions hold :

E(T ) ⊆ %asc(T )∩∂σ(T ) ⊆ %e
asc(T )∩∂σ(T ).

For the reverse inclusions, let λ ∈ %e
asc(T )∩∂σ(T ) and put p = p1(Tλ). We know from The-

orem 3.8, that there exists ε > 0 such that

α(µI−Tλ) = α1
p(Tλ), β(µI−Tλ) ≥ β1

p(Tλ), ∀ 0 < |µ| < ε.

Since B(0, ε)\{0} ∩ %(Tλ) , ∅, α1
p(Tλ) = β1

p(Tλ) = 0. This leads to a(Tλ) < +∞ and d(Tλ) <
+∞. Since λ ∈ σ(T ), then λ ∈ E(T ), and this completes the proof of Theorem 3.10. �

This result represents an improvements of [1, Theorem 2.7] to closed unbounded oper-
ators.

As an immediate consequence of Theorem 3.10 we have the following result.

Corollary 3.11. Let T ∈ ϕ(X). Then the following assertions are equivalent :

1) σasc(T ) = ∅;

2) σe
asc(T ) = ∅;



30 Z. Garbouj and H. Skhiri

3) ∂σ(T ) ⊆ %asc(T );

4) ∂σ(T ) ⊆ %e
asc(T );

5) ∂σ(T ) = E(T ) and in this case if %(T ) , ∅, then σ(T ) = E(T ).

Example 3.12.
Let X = L2([0, 1]), we define the second-order differential operator T by

Tu = u′′ andD(T ) = {u ∈ X2 : u′(0)+u′(1) = 0, u(0) = 0},

where X2 denotes the subspace of X consisting of all functions u ∈ C1([0, 1]) with u′ ab-
solutely continuous on [0, 1] and u′′ ∈ X. In [10, page 30], it is proved that σ(T ) = {λi}

∞
i=1,

where λi = (2i−1)2π2, and a(Tλi)= d(Tλi)= 2, for i= 1, 2, · · · . Then σ(T )=E(T ), and hence
σasc(T ) = σe

asc(T ) = ∅ according to Corollary 3.11.

4 A spectral mapping theorem for essential ascent spectrum

We start this section with the following lemma.

Proposition 4.1. Let T ∈ B(X), then the two following assertions are equivalent :

1) a(T ) < +∞ and Im(T )+ker(T a(T )) is closed,

2) a(T ) < +∞ and Im(T a(T )+1) is closed.

Proof. The implication ”1) =⇒ 2)” is a direct consequence of Remark 3.6 and ”2) =⇒ 1)”
is trivial, because Im(T )+ker(T a(T )) = T−a(T )[Im(T a(T )+1)] is closed. �

For T ∈ B(X) and n ∈N, we define Tn as the restriction of T to Im(T n) viewed as a map
from Im(T n) into Im(T n), in particular T0 = T. If for some integer n the range space Im(T n)
is closed and Tn is semi-Fredholm operator, then T is called semi-B-Fredholm operator (see
[2, 3] for more details).

Proposition 4.2.
Let T ∈ ϕ∞(X). Then the following assertions are equivalent :

1) Im(T )+ker(T n) is closed, for some integer n ≥ ae(T ),

2) there exists k ∈ N such that T̃k ∈ Φ+(X/ker(T k)) and T̃k is s-regular,

3) there exists k ∈ N such that T̃k ∈ Φ+(X/ker(T k)).

If additionally T ∈ B(X), then all these assertions are equivalent to :

4) ae(T ) < +∞ and Im(T ae(T )+1) is closed,

5) T is upper semi-B-Fredholm.
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Proof. ”1) =⇒ 2) =⇒ 3)” see the proof of Lemma 3.4.

”3) =⇒ 1)” is clear.

”1) =⇒ 4)” this is an immediate consequence of Remark 3.6.

”4) =⇒ 1)” is clear, because Im(T )+ker(T ae(T )) = T−ae(T )[Im(T ae(T )+1)] is closed.

”1) =⇒ 5)” follows from Remark 3.6.

”5) =⇒ 1)” it suffices to remark that Im(T n+1) is closed for some n≥ ae(T ) and consequently
Im(T )+ker(T n) = T−n[Im(T n+1)] is closed. �

Corollary 4.3. Let T ∈ B(X) and let f be an analytic function on an open neighborhood of
σ(T ). If f is not identically constant in any connected component of its domain, then

f (σe
asc(T )) = σe

asc( f (T )) and f (σasc(T )) = σasc( f (T )).

Proof. Using Proposition 4.1 together with Proposition 4.2, we infer

%asc(T ) = {λ ∈ C : a(Tλ) < +∞ and Im[(Tλ)a(Tλ)+1] is closed},

%e
asc(T ) = {λ ∈ C : ae(Tλ) < +∞ and Im[(Tλ)ae(Tλ)+1] is closed}.

The result now follows from [12, page 202]. �

For T :D(T ) ⊆ X −→ X, we denote by

do(T ) = inf{n ∈ N :D(T n) =D(T n+1)},

where as usual the infimum over the empty set is taken to be∞. Let’s remark that if do(T ) <
+∞, then

D(T do(T )) =D(T do(T )+n) ⊆D(T n), ∀ n ∈ N.

Assume that T is paracomplete operator such that q = do(T ) and D(T q) =D(T q). It is
clear that if P is a complex polynomial, then P(T ) is paracomplete and j = do(P(T )) ≤ q.
Furthermore, if P is a non-constant polynomial, thenD([P(T )] j) =D(T q).

Let [T ] : D(T q) −→ X to be the restriction of T toD(T q). By [8, Proposition 2.1.4] and
[8, Proposition 2.1.5], we deduce that in fact, [T ] is a bounded operator.

Define T̃ to be the restriction of T to D(T q) viewed as a map from D(T q) into D(T q).
Since for all x ∈D(T q), we have ‖T̃ x‖ = ‖[T ]x‖ ≤ ‖[T ]‖‖x‖, then T̃ is also a bounded opera-
tor. Assume now that P is a non-constant complex polynomial. Hence, taking into account
that ker[P(T )] ⊆ D

(
[P(T )]q) = D(T q), we conclude that ker[P(T )] = ker[P(T̃ )] is closed.

Also, we remark that Im
(
[P(T )]n) ⊆ D(T q), for all n ≥ q. Indeed, let y ∈ Im

(
[P(T )]n), then

there exists x ∈ D
(
[P(T )]n) =D(T q) =D

(
[P(T )]n+q) such that y = [P(T )]nx. This leads to

y ∈ D(T q).
Define

Γ(X) = {T ∈ ϕ(X) : q = do(T ) < +∞,D(T q) and Im(Tλ)+D(T q) are both closed, ∀ λ ∈ C}.
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Let us show that if T ∈ Γ(X), then Im[P(T )]+D
(
[P(T )]do(P(T ))) is closed, for every non-

constant complex polynomial. Put q = do(T ) and define

T : D(T ) ⊆ X/D(T q) −→ X/D(T q)
x 7−→ T x.

Let λ ∈ C and x ∈ ker(λI − T ), then Tλx ∈ D(T q). Hence, x ∈ D(T q+1) = D(T q), which
implies that x = 0. Therefore ker(λI−T ) = {0}.

On the other hand, it is clear that Im(λI−T ) = [Im(Tλ)+D(T q)]/D(T q) is closed. As in
the proof of Lemma 3.4, we see that λI −T is paracomplete. Hence, applying [8, Proposi-
tion 2.2.3], we get λI−T ∈ ϕ(X/D(T q)). This leads to λI−T ∈Φ+(X/D(T q)). Furthermore,
let P(Z) = (λ1−Z)α1(λ2−Z)α2 · · · (λm−Z)αm be a non-constant complex polynomial. Recall
that, if S , L ∈ ϕ(X) such that L ∈ Φ+(X) and Im(S ) is closed, then LS ∈ ϕ(X) and Im(LS ) is
closed. Since, for every i, j ∈ {1, 2, · · · ,m}, λiI−T ∈Φ+(X/D(T q)) and Im(λ jI−T ) is closed,
we deduce that (λiI −T )(λ jI −T ) ∈ ϕ(X/D(T q)) and Im[(λiI −T )(λ jI −T )] is closed. Con-
sequently, (λiI −T )(λ jI −T ) ∈ Φ+(X/D(T q)) because ker[(λiI −T )(λ jI −T )] = {0}. There-
fore Im(P(T )) = [Im[P(T )]+D(T q)]/D(T q) is closed, and finally we obtain Im[P(T )]+
D
(
[P(T )]do(P(T ))) = Im[P(T )]+D(T q) is closed.

The following lemma extends [12, Lemma 12.8] to the case of unbounded closed oper-
ators. For simplicity of notation, we denote by deg(P) the degree of the polynomial P.

Lemma 4.4. Let T ∈ ϕ(X) and let P and Q be two relatively prime polynomials. If A = P(T )
and B = Q(T ), then

1) Im(AnBn) = Im(An)∩ Im(Bn), for all n ∈ N,

2) ker(AnBn) = ker(An)+ker(Bn), for all n ∈ N,

3) ker∞(A) ⊆ Im∞(B) and ker∞(B) ⊆ Im∞(A),

4) max{ae(A), ae(B)} ≤ ae(AB) ≤ ae(A)+ae(B) and a(AB) =max{a(A), a(B)}.

In addition, assume that T ∈ Γ(X),

5) if max{ae(A), ae(B)} < +∞, then Im(A)+ ker(Aae(A)) and Im(B)+ ker(Bae(B)) are both
closed if and only if Im(AB)+ker[(AB)ae(AB)] is closed,

6) if max{a(A), a(B)} < +∞ then Im(A)+ker(Aa(A)) and Im(B)+ker(Ba(B)) are both closed
if and only if Im(AB)+ker[(AB)a(AB)] is closed.

Proof. The proof is trivial when P or Q is a constant. Therefore, we may assume that P
and Q are two non-constant polynomials. We note that the first assertion follows from [4,
Lemma 2.2].
2) Let n ∈N\{0}. Since Pn and Qn are relatively prime, we know that there exist two polyno-
mials Pn and Qn such that PnPn+QnQn = 1. Let pn (resp. qn, k,m) be the degree of Pn (resp.
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Qn, P, Q). Then, we have α1(n) = deg(PnPn) = nk+ pn and α2(n) = deg(QnQn) = nm+ qn.

Put α(n) =max{α1(n), α2(n)}, we have

D[AnPn(T )+BnQn(T )] = D[AnPn(T )]∩D[BnQn(T )],
= D(Tα1(n))∩D(Tα2(n)),
= D(Tα(n)).

Hence,
AnPn(T )x+BnQn(T )x = x, ∀ x ∈ D(Tα(n)). (1)

First, we note that the inclusion ker(An)+ ker(Bn) ⊆ ker(AnBn) is immediate. For the con-
verse inclusion, let x ∈ ker(AnBn). Then from [4, Lemma 2.1], we know that x ∈ D(Tα(n)).
Hence, taking into account of (1), we conclude that x ∈ ker(An)+ker(Bn).

3) We observe from [4, Lemma 2.2], that ker(An) = Bn(ker(An)
)
⊆ Im(Bn), for all n ∈ N.

If m ≥ n, then ker(An) ⊆ ker(Am) ⊆ Im(Bm), which implies that ker(An) ⊆ Im∞(B). Conse-
quently ker∞(A) ⊆ Im∞(B). The reverse inclusion follows by interchanging A and B.

4) Put n ∈ N. Let M and N be two subspaces of X such that

ker(An+1) = ker(An)uN and ker(Bn+1) = ker(Bn)uM.

Then, we have

α1
n(AB) = dimker(An+1Bn+1)/ker(AnBn),

= dim[ker(An+1)+ker(Bn+1)]/[ker(An)+ker(Bn)],
= dim[ker(An)+ker(Bn)+M+N]/[ker(An)+ker(Bn)],
≤ dimM+dimN,

≤ α1
n(A)+α1

n(B).

Assume that α1
n(AB)<+∞, and write j=α1

n(AB)+1. If a(A)≤ n. Then α1
n(A)= 0 and there is

nothing to prove. Thus we may assume that n< a(A). Let x1, x2, · · · , x j ∈ ker(An+1)\ker(An).
Since ker(An+1) ⊆ Im(Bn+1), for every 1 ≤ i ≤ j, there exists yi ∈ D(Bn+1), such that xi =

Bn+1yi. Therefore, for every 1 ≤ i ≤ j, yi ∈ ker(An+1Bn+1). But, since AnBn+1yi , 0, AnBnyi ,

0 and consequently, for every 1 ≤ i ≤ j, yi ∈ ker(An+1Bn+1)\ker(AnBn), Hence, for every

1 ≤ i ≤ j, there exists αi ∈ C, such that αk , 0 and
j∑

i=1
αiyi = 0, with k ∈ {1, 2, · · · , j}.

Now, taking into account that

j∑
i=1

αixi =

j∑
i=1

αiBn+1yi = Bn+1
( j∑

i=1

αiyi
)
= 0,

one concludes that α1
n(A) ≤ α1

n(BA). Therefore

max{α1
n(A), α1

n(B)} ≤ α1
n(AB) ≤ α1

n(A)+α1
n(B), ∀ n ∈ N.

5) If n ≥ do(T ) = q, then q ≥ α(n). First, by (1), it is clear that

D(T q) ⊆D(Tα(n)) ⊆ Im(An)+ Im(Bn).
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Since Im(An) ⊆D(T q) and Im(Bn) ⊆D(T q), for every j ∈ N, it follows that

D(T q) = Im(An)+ Im(Bn) = [ker(A j)+ Im(An)]+ [Im(Bn)+ker(B j)]. (2)

Now using [5, Lemma 2.1], we infer

ker(A jB j)+ Im(AnBn) = ker(A j)+ker(B j)+ Im(An)∩ Im(Bn),
= [ker(A j)+ Im(An)]∩ Im(Bn)+ker(B j),
= [ker(A j)+ Im(An)]∩ [Im(Bn)+ker(B j)].

(3)

Thus, taking into account of Lemma 3.2, [8, Proposition 2.1.1, Proposition 2.1.2, page
183], equality (2) and equalities (3), we deduce that ker(A j)+ Im(An) and ker(B j)+ Im(Bn)
are both closed if and only if ker(A jB j)+ Im(AnBn) is closed.

On the other hand, suppose that j ≥ ae(A)+ae(B) and n > do(T ). Define the following
maps :

θ : D(θ) ⊆ X/ker(A jB j) −→ X/ker(A jB j)
x 7−→ ABx,

φ : D(φ) ⊆ X/ker(B j) −→ X/ker(B j)
x 7−→ Bx,

ψ : D(ψ) ⊆ X/ker(A j) −→ X/ker(A j)
x 7−→ Ax,

π : X×X −→ (X/ker(A jB j))× (X/ker(A jB j))
(x, y) 7−→ (x, y).

Let G(θ) denote the graph of θ. Since G(θ) = π(G(AB)), from [8, Proposition 2.1.3] and
[8, Proposition 2.1.4], we deduce that G(θ) is paracomplete, which prove that θ is para-
complete. Now, if Im(AB)+ ker[(AB)ae(AB)] is closed, by Lemma 3.3, Im(AB)+ ker(A jB j)
is closed. Thus, Im(θ) is closed. Since α(θ) < +∞, by [8, Proposition 2.2.3], θ is closed
and consequently, θ ∈ Φ+(X/ker(A jB j)). This shows that θn ∈ Φ+(X/ker(A jB j)), and hence
Im(AnBn)+ker[(AB)ae(AB)] is closed according to Lemma 3.3.

Assume now that N = Im(AnBn) + ker[(AB)ae(AB)] is closed. Since n > do(T ), then
D(Bn−1An−1) =D(T q) and Im(Bn−1An−1) ⊆D(T q). On the other hand, it is clear that

B̂A : D(T q) −→ D(T q)
x 7−→ Bn−1An−1x,

is well-defined and B̂A = [P(T̃ )Q(T̃ )](n−1) is a bounded operator. We also remark that(
Im(AB)+ker[(AB)ae(AB)+n−1]

)
∩D(T q) = A−(n−1)B−(n−1)(N)

= {x ∈ D(T q) : An−1Bn−1x ∈ N}

= {x ∈ D(T q) : ÂBx ∈ N ⊆D(T q)}

= ÂB
−1

(N) is closed.

Since (Im(AB) + ker[(AB)ae(AB)+n−1]) +D(T q) = Im(AB) +D[(AB)do(AB)] is closed, from
Lemma 3.2 and [8, Proposition 2.1.1], it follows that Im(AB)+ker[(AB)ae(AB)+n−1] is closed.
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Thus, by Lemma 3.3, Im(AB)+ ker[(AB)ae(AB)] is closed. In the same way, we obtain the
following equivalences :

Im(A)+ker(Aae(A)) is closed ⇐⇒ Im(An)+ker(Aae(A)) is closed,
Im(B)+ker(Bae(B)) is closed ⇐⇒ Im(Bn)+ker(Bae(A)) is closed.

Consequently, Im(A)+ ker(Aae(A)) and Im(B)+ ker(Bae(B)) are both closed if and only if
Im(AB)+ker[(AB)ae(AB)] is closed.

6) Finally, note, by Lemma 3.3 and assertion 5), we can see that the following facts are
equivalent :

(i) Im(A)+ker(Aa(A)) is closed and Im(B)+ker(Ba(B)) is closed,

(ii) Im(A)+ker(Aae(A)) is closed and Im(B)+ker(Bae(B)) is closed,

(iii) Im(AB)+ker[(AB)ae(AB)] is closed,

(iv) Im(AB)+ker[(AB)a(AB)] is closed,

and the proof of the lemma is complete. �

Lemma 4.5. Let T :D(T )⊆X−→X be a paracomplete operator such that do(T )<+∞ and
D(T do(T )) =D(T do(T )). If ae(T ) < +∞ and Im(T )+ker(T ae(T )) is closed, then T ∈ ϕ∞(X).

Proof. Let n ∈ N and put k ≥ ae(T ). First, from the proof of Lemma 3.4, we know that
T̃k ∈Φ+(X/ker(T k)). Thus, T̃k

n
∈Φ+(X/ker(T k)). Let λn ∈C\{0} such that λnI− T̃k

n
is upper

semi-Fredholm. Then λnI − T n is also upper semi-Fredholm, and hence T n ∈ ϕ(X). This
completes the proof. �

Lemma 4.6. Let T ∈ Γ(X) and let m ∈ N\{0}. Then

0 ∈ %e
asc(T )⇐⇒ 0 ∈ %e

asc(T m)

and
0 ∈ %asc(T )⇐⇒ 0 ∈ %asc(T m).

Proof. First, by Lemma 2.1, ae(T ) < +∞ if and only if ae(T m) < +∞. Let k ≥ max{ae(T ),
ae(T m)}. Thus, by Lemma 3.3,

Im(T )+ker(T ae(T )) is closed =⇒ Im(T )+ker(T k) is closed,
=⇒ T̃k ∈ Φ+(X/ker(T k)),
=⇒ T̃k

m
∈ Φ+(X/ker(T k)),

=⇒ Im(T m)+ker(T k) is closed,
=⇒ Im(T m)+ker(T mk) is closed,
=⇒ Im(T m)+ker(T mae(T m)) is closed.

Now, assume that Im(T m)+ker(T mae(T m)) is closed and let n>max{ae(T ),ae(T m), do(T )}. If
we put A = T m, then A is a paracomplete operator with ae(A) < +∞ and Im(A)+ker(Aae(A))
is closed. Thus, Ãn is upper semi-Fredholm. In particular, we deduce that Im(Ãn

n
) is closed.
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Furthermore, let Z = Im(T nm)+ ker(T nm), then Z ⊆ D(T q) and Z is closed. It now follows
fromD(T mn−1) =D(T q), that

[Im(T )+ker(T 2mn−1)]∩D(T q) = T−(mn−1)(Z)
= {x ∈ D(T q) : T mn−1x ∈ Z}

= {x ∈ D(T q) : T̃ mn−1x ∈ Z ⊆D(T q)}
= T̃−(mn−1)(Z) is closed.

Since [Im(T )+ ker(T 2mn−1)]+D(T q) = Im(T )+D(T q) is closed, by Lemma 3.2 and [8,
Proposition 2.1.1], Im(T )+ker(T 2mn−1) is closed. Thus, from Lemma 3.3, Im(T )+ker(T ae(T ))
is closed and by Lemma 4.5, we see that

0 ∈ %e
asc(T )⇐⇒ 0 ∈ %e

asc(T m).

On the other hand, since for every m ∈ N\{0}, a(T ) < +∞ if and only if a(T m) < +∞, we
deduce

Im(T )+ker(T a(T )) is closed ⇐⇒ Im(T )+ker(T ae(T )) is closed,
⇐⇒ Im(T m)+ker(T mae(T m)) is closed,
⇐⇒ Im(T m)+ker(T ma(T m)) is closed.

Finally, using Lemma 4.5, we obtain

0 ∈ %asc(T )⇐⇒ 0 ∈ %asc(T m).

This completes the proof. �

Using Lemma 4.4 and Lemma 4.5, one proves the following result.

Theorem 4.7. Let T ∈ Γ(X). If A and B are defined as in Lemma 4.4, then

0 ∈ %e
asc(AB)⇐⇒ 0 ∈ %e

asc(A)∩%e
asc(B)

and
0 ∈ %asc(AB)⇐⇒ 0 ∈ %asc(A)∩%asc(B).

As a consequence, we have the following result.

Corollary 4.8. Let T ∈ Γ(X) and let P(Z) = (λ1−Z)m1(λ2−Z)m2 · · · (λn−Z)mn be a complex
polynomial such that mi , 0 for all i = 1, 2, · · · , n. Then

0 ∈ %e
asc(P(T ))⇐⇒ λi ∈ %

e
asc(T ), ∀ 1 ≤ i ≤ n

and
0 ∈ %asc(P(T ))⇐⇒ λi ∈ %asc(T ), ∀ 1 ≤ i ≤ n.

Proof. By Lemma 4.6 and Theorem 4.7, we obtain

0 ∈ %e
asc(P(T )) ⇐⇒ 0 ∈

⋂
1≤i≤n

%e
asc[(λiI−T )mi],

⇐⇒ 0 ∈
⋂

1≤i≤n
%e

asc(λiI−T ),

⇐⇒ λi ∈ %
e
asc(T ), ∀ 1 ≤ i ≤ n.
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In the same way, we see

0 ∈ %asc(P(T ))⇐⇒ λi ∈ %asc(T ), ∀ 1 ≤ i ≤ n.

This completes the proof. �

Theorem 4.9. Let T ∈ Γ(X) and let P be a non-constant complex polynomial. Then

P(σe
asc(T )) = σe

asc(P(T ))

and
P(σasc(T )) = σasc(P(T )).

Proof. By Theorem 4.7 and Corollary 4.8, we see that

λ ∈ P(σe
asc(T )) ⇐⇒ λ = P(µ), where µ ∈ σe

asc(T ),
⇐⇒ λ−P(Z) = (µ−Z)kQ(Z), where Q(µ) , 0,
⇐⇒ λ ∈ σe

asc(P(T )).

In the same way, we prove that P(σasc(T )) = σasc(P(T )). This completes the proof. �

5 Decomposition Theorems

We start this section with the following definition.

Definition 5.1. For T ∈ ϕ(X) such that n = ae(T ) < +∞ and Im(T )+ ker(T ae(T )) is closed,
the a-essential index, indae(T ), is defined by

indae(T ) = α1
n(T )−β1

n(T ) ∈ Z∪{−∞}.

Let T ∈ ϕ∞(X) such that n0 = ae(T ) < +∞ and Im(T )+ ker(T ae(T )) is closed. From
Remark 3.6, we know that Im(T n) is closed for every n ≥ n0. Furthermore, if Tn is the
restriction of T to Im(T n) viewed as a map from Im(T n) into Im(T n), then Tn is upper semi-
Fredholm for all n ≥ n0 and indae(T ) = ind(Tn0).

Assume that T ∈ A(X), by Lemma 2.2, S 1
n0

(T ) = α1
n0

(T )−α1
n0+1(T ). Thus from Lemma

2.5, we obtain

β1
n0

(T ) = S 1
n0

(T )+β1
n0+1(T ) = α1

n0
(T )−α1

n0+1(T )+β1
n0+1(T ).

This implies that

indae(T ) = ind(Tn0) = α1
n0

(T )−β1
n0

(T ) = α1
n0+1(T )−β1

n0+1(T ) = ind(Tn0+1).

Therefore
indae(T ) = ind(Tn), ∀ n ≥ n0.

Lemma 5.2. Let T ∈ ϕ(X) and let n, k ∈ N. Then Im(T k)+ ker(T n) is topological comple-
mented in X if and only if Im(T k)+ker(T n) is paracomplete complemented in X.
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Proof. The direct implication is obvious. Let us prove the converse implication. First, by
Lemma 3.2 and [8, Proposition 2.2], we have Im(T k)+ ker(T n) is a paracomplete subspace
of X. Let M be a paracomplete complement of Im(T k)+ker(T n) in X, thus

X = [Im(T k)+ker(T n)]uM.

Now from [8, Proposition 2.1.1], we conclude that Im(T k)+ker(T n) and M are both closed
in X. This completes the proof. �

Lemma 5.3. Let T ∈ ϕ(X) such that ae(T )<+∞ and let k ∈N. Then the following assertions
are equivalent :

1) Im(T k)+ker(T n) is topological complemented in X for some n ≥ ae(T ),

2) Im(T k)+ker(T n) is topological complemented in X for all n ≥ ae(T ).

Proof. Only the implication ”1) =⇒ 2)” requires a proof. We put n0 ≥ ae(T ) and let M be a
topological complement of Im(T k)+ker(T n0) in X. Thus,

X = [Im(T k)+ker(T n0)]⊕M. (1)

First, we prove that Im(T k)+ker(T n0+1) is topological complemented in X. From

[Im(T k)+ker(T n0+1)]/[Im(T k)+ker(T n0)] ≈ ker(T n0+1)/[Im(T k)+ker(T n0)]∩ker(T n0+1)

and
ker(T n0) ⊆ [Im(T k)+ker(T n0)]∩ker(T n0+1) ⊆ ker(T n0+1),

it follows that

dim[Im(T k)+ker(T n0+1)]/[Im(T k)+ker(T n0)] ≤ α1
n0

(T ) < +∞.

Hence, there exists a finite dimensional subspace Z of X such that

Im(T k)+ker(T n0+1) = [Im(T k)+ker(T n0)]⊕Z.

Let P be the projection of X onto M associated with the decomposition (1). Thus

Z ⊆ (I−P)(Z)⊕P(Z), P(Z) ⊆M and (I−P)(Z) ⊆ Im(T k)+ker(T n0).

We now write

α = dim{[Im(T k)+ker(T n0)]⊕P(Z)}/[Im(T k)+ker(T n0)] = dim P(Z),

β = dim{[Im(T k)+ker(T n0)]⊕P(Z)}/{[Im(T k)+ker(T n0)]⊕Z},

κ = dim{[Im(T k)+ker(T n0)]⊕Z}/[Im(T k)+ker(T n0)] = dimZ.

Then, clearly α= β+κ <+∞,which implies that β= α−κ = dim P(Z)−dimZ= 0. Therefore

Im(T k)+ker(T n0+1) = [Im(T k)+ker(T n0)]⊕Z = [Im(T k)+ker(T n0)]⊕P(Z).
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On the other hand, let W be a closed subspace of M such that M = P(Z)⊕W. Clearly,

X = [Im(T k)+ker(T n0)]⊕ [P(Z)⊕W]
= [Im(T k)+ker(T n0+1)]uW.

Hence, by Lemma 5.2, we obtain Im(T k)+ker(T n0+1) and W are both closed. If n0 = ae(T ),
the proof is complete by induction.

To finish the lemma, it is enough to prove that Im(T k)+ ker(T n0−1) is topological com-
plemented in X, when n0 > ae(T ). Since

dim[Im(T k)+ker(T n0)]/[Im(T k)+ker(T n0−1)] ≤ α1
n0−1(T ) < +∞,

there exists a finite dimensional subspace N ⊆ X such that

Im(T k)+ker(T n0) = [Im(T k)+ker(T n0−1)]uN,

and hence

X = [Im(T k)+ker(T n0)]⊕M = [Im(T k)+ker(T n0−1)]u [N+M].

However, because M is closed and dimN < +∞, N+M is closed. Finally, by Lemma 5.2,
the subspace Im(T k)+ ker(T n0−1) is topological complemented in X. This completes the
proof. �

Now notice that if ae(T ) < +∞ and Im(T )+ ker(T ae(T )) is topological complemented
in X, then T is a quasi-Fredholm operator (see, [8, Definition 3.1.2] and [8, Remark page
206]).

In the following result we prove a decomposition theorem for T ∈ ϕ(X),with ae(T ) finite
and Im(T )+ker(T ae(T )) is topological complemented in X.

Theorem 5.4. Let T ∈ ϕ(X). Then the following assertions are equivalent :

1) there exists n ∈ N such that ae(T ) ≤ n and Im(T )+ker(T n) is topological complemented
in X,

2) there exist d ∈ N and two closed subspaces M and N such that :

(i) X =M⊕N;

(ii) T (M∩D(T )) ⊆M, N ⊆ ker(T d) ⊆D(T ), and T (N) ⊆ N (therefore Im(T d) ⊆M);

(iii) S = T|M ∈ Φ+(M), S is a s-regular and Im(S ) is topological complemented in M.

In this case, we have ind(T|M) = ind(
1
k

I−T ), for sufficiently large k.

Proof. ”1) =⇒ 2)” First, from the proof of [8, Theorem 3.2.1], we know that there exist
d ∈ N and two closed subspaces M and N such that X = M⊕N, T (M∩D(T )) ⊆ M, N ⊆

ker(T d) ⊆ D(T ), T (N) ⊆ N and S = T|M is s-regular. Put m = max{d, n}. Thus, since S is a
s-regular, we must have

ker(T )∩ Im(T m) = ker(S )∩ Im(S m) = ker(S ).
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This implies that α(S ) = α1
m(T ) < +∞, and hence S ∈Φ+(M). Consequently, by Lemma 5.3,

Im(T )+ ker(T m) is topological complemented in X. Furthermore, since Im(T )+ ker(T m) =
Im(S )⊕N, it follows that

X = [Im(T )+ker(T m)]⊕W = [Im(S )⊕N]⊕W = Im(S )u [N⊕W].

Thus, by [8, Proposition 2.1.1] and [8, Proposition 2.1.2], we conclude that N⊕W is closed.
Therefore

M = [Im(S )⊕ (N⊕W)]∩M = Im(S )⊕ [N⊕W]∩M.

”2) =⇒ 1)” Assume that T = S ⊕A, where S = T|M, A = T|N, thus

ker(T d) = ker(S d)⊕N and ker(T d+1) = ker(S d+1)⊕N,

from which follows that

α1
d(T ) = dim[ker(S d+1)⊕N]/[ker(S d)⊕N]

= dimker(S d+1)/ker(S d)
≤ dimker(S d+1) < +∞.

Hence, ae(T ) ≤ d.
On the other hand, we have

Im(T ) = Im(S )u Im(A)

and
Im(T )+ker(T d) = [Im(S )+ker(S d)]u [N+ Im(A)] = Im(S )⊕N.

Let W be a topological complement of Im(S ) in M, thus

Im(T )+ker(T d)+W = [Im(S )⊕W]⊕N =M⊕N = X

and
[Im(T )+ker(T d)]∩W = [Im(S )⊕N]∩W = {0},

from which one deduces that Im(T )+ker(T d) is topological complemented in X.

Furthermore, by Lemma 5.3, Im(T )+ ker(T n) is topological complemented in X for all
n ≥ ae(T ). To conclude the proof, we remark that for sufficiently large k,

1
k

I−T = (
1
k

I−S )⊕ (
1
k

I−A),
1
k

I−S ∈ Φ+(M) and
1
k

I−A is invertible.

Therefore ind(
1
k

I−T ) = ind(
1
k

I−S ) = ind(S ). This completes the proof. �

Example 5.5.
Let T ∈ Φ+(X) such that Im(T ) is topological complemented in X (in particular T is quasi-
Fredholm). From [7, Theorem 4], we know that there exist d ∈ N and two closed subspaces
M and N such that :

(1) X =M⊕N;
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(2) T (M∩D(T )) ⊆M, N ⊆ ker(T d) ⊆D(T ) and T (N) ⊆ N (therefore Im(T d) ⊆M);

(3) S = T|M is a s-regular.

It is clear that α(S )≤ α(T )<+∞, and hence S ∈Φ+(M). Let W be a topological complement
of Im(T ) in X. Therefore

X = Im(T )⊕W = [Im(S )⊕ Im(A)]⊕W = Im(S )u [Im(A)uW].

Taking into account of [8, Proposition 2.1.1], [8, Proposition 2.2] and Lemma 3.2, we
deduce that Im(A)+W is closed. This leads to

M =
(
Im(S )⊕ [Im(A)+W]

)
∩M = Im(S )⊕ [Im(A)+W]∩M.

Consequently S ∈ Φ+(M), S is s-regular and Im(S ) is topological complemented in M.

As an application of the decomposition theorem we have the following result.

Corollary 5.6. Let T ∈ ϕ(X) such that ae(T ) ≤ n and Im(T )+ker(T n) is topological comple-
mented in X. Then there exists ε > 0 such that Tλ ∈Φ+(X), Tλ is s-regular and λ 7−→ ind(Tλ)
is constant for every λ with 0 < |λ| < ε.

Theorem 5.7. Let T ∈ ϕ(X). There exists n ∈N such that a(T ) = n <∞ and Im(T )+ker(T n)
is topological complemented if and only if there exist d ∈ N and two closed subspaces M

and N such that :

(i) X =M⊕N;

(ii) T (M∩D(T )) ⊆M, N ⊆ ker(T d) ⊆D(T ) and T (N) ⊆ N;

(iii) S = T|M is injective and Im(S ) is topological complemented in M.

Proof. Let remark that by Lemma 5.3, if a(T ) = n < +∞ and Im(T )+ker(T n) is topological
complemented in X, then ae(T ) ≤ n and Im(T )+ker(T n) is topological complemented in X.

Now the proof follows from Theorem 5.4. �

Example 5.8.
Let T ∈ A(X) such that max{a(T ), d(T )} < +∞. It is clear that if m = a(T ) = d(T ), then
X = Im(T )+ker(T m), X = Im(T m)⊕ker(T m) and S = T|Im(T m) is bijective.

6 Essential ascent and perturbation

For T ∈ ϕ(X), the algebraic core Co(T ) is defined to be the greatest subspace M of X for
which T (D(T )∩M) =M. Trivially, if T ∈ ϕ(X) is surjective then Co(T ) = X, and for every
T ∈ ϕ(X), we have Co(T ) = T n(Co(T )

)
⊆ T n(X), for all n ∈ N. From which it follows that

Co(T ) ⊆ Im∞(T ). For the reader’s convenience, we recall the following lemma which will
be used to prove Proposition 6.2.

Lemma 6.1 ([11]). Let T ∈ ϕ(X) be a s-regular operator.
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1) Co(T ) = Im∞(T ) is closed.

2) If λ ∈ C with |λ| < γ(T ), then Tλ is s-regular.

3) If λ ∈ C with |λ| < γ(T ), then Co(Tλ) = Co(T ).

Proposition 6.2. Let T ∈ ϕ(X) such that ae(T ) ≤ n and Im(T )+ker(T n) is topological com-
plemented in X. Then Im∞(T ) = Co(T ) and there exists ε > 0 such that

Im∞(Tλ) = Co(Tλ) = ker∞(T )+Co(T ), ∀ 0 < |λ| < ε.

Proof. Let N and S as in Theorem 5.4. Thus, by Lemma 6.1,

Im∞(T ) = Im∞(S ) = Co(S ) ⊆ Co(T ) ⊆ Im∞(T ).

Let λ ∈ C\{0}, then

Im∞(λI−S )⊕N ⊆ Im∞(λI−S )+ker∞(T ) ⊆ Im∞(Tλ)+ker∞(T ) ⊆ Im∞(Tλ)

and
Im∞(Tλ) = Im∞(λI−S )⊕N ⊆ Im∞(λI−S )+ker∞(T ).

This leads to
Im∞(Tλ) = Im∞(λI−S )+ker∞(T ).

Hence, by Lemma 6.1, we deduce that there exists ε > 0 such that λI − S is semi-regular
and

Co(S ) = Co(λI−S ) = Im∞(λI−S ), ∀ |λ| < ε.

On the other hand, let A = T|N, since λI − A is invertible for every λ , 0, then Tλ is semi-
regular, for every 0 < |λ| < ε, from which one deduces that

Co(Tλ) = Im∞(Tλ) = Im∞(λI−S )+ker∞(T )
= Co(S )+ker∞(T )
= Co(T )+ker∞(T ).

This completes the proof of the proposition. �

Now we recall the following definition [5, Definition 2.5, Theorem 3.2].

Definition 6.3. Let T ∈ ϕ(X) and d ∈N. Then T has an uniform descent for n ≥ d if Im(T )+
ker(T n) = Im(T )+ker(T d) for all n ≥ d.
If in addition Im(T )+ker(T d) is closed, then T is said to have a topological uniform descent
for n ≥ d.

Proposition 6.4. Let T ∈ ϕ(X). The following statements are equivalent :

1) ae(T ) < +∞ and Im(T )+ker(T ae(T )) is closed;

2) ae(T ) < +∞ and T has a topological uniform descent for n ≥ p1(T ).
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Proof. ”1) =⇒ 2)” Is a direct consequence of Lemma 2.3 and Lemma 3.3.

”2) =⇒ 1)” By the definition of the descent uniform topological, we clearly have Im(T )+
ker(T p1(T )) is closed. Thus, by Lemma 3.3, Im(T )+ ker(T ae(T )) is closed in X (because
ae(T ) ≤ p1(T )). This completes the proof. �

Theorem 6.5. Let T, S ∈ B(X) such that TS = S T, max{ae(T ), ae(S )} < +∞, Im(T ) +
ker(T ae(T )) and Im(S )+ker(S ae(S )) are both closed.

1) If ‖S −T‖ is sufficiently small, then

indae(T ) = indae(S ), ker∞(T ) = ker∞(S ) and Im∞(T ) = Im∞(S ).

If in addition Im(T )+ker(T ae(T )) and Im(S )+ker(S ae(S )) are topological complemented
subspaces of X, then Im∞(S ) = Co(T ) = Co(S ).

2) If S −T is a compact operator, then indae(T ) = indae(S ).

Proof. 1) Let n ≥ d =max{p1(T ), p1(S )}. First, from [5, Theorem 4.6], we have

Im∞(T ) = Im∞(S ), ker∞(T ) = ker∞(S )

and
β1

n(S ) = β1
n(T ), α1

n(S ) = α1
n(T ),

from which follows that

indae(T ) = ind(Tn) = ind(S n) = indae(S ).

Now, if Im(T )+ker(T ae(T )) and Im(S )+ker(S ae(S )) are topological complemented subspaces
of X, by Proposition 6.2, we deduce that

Co(T ) = Im∞(T ) = Im∞(S ) = Co(S ).

2) From [5, Theorem 5.8], we conclude that ind(Tn) = ind(S n), for sufficiently large n.
Hence,

indae(T ) = ind(Tn) = ind(S n) = indae(S ).

This completes the proof. �

Now we write ϕd(X) = {T ∈ ϕ(X) :D(T ) = X}.

Theorem 6.6. Let T ∈ ϕ(X) and let F ∈ B(X) such that Im(F)⊆D(T ) and dim Im(Fn)<+∞
for some n ∈ N. Assume that T F(x) = FT (x), for every x ∈ D(T ), one has

1) ae(T ) < +∞ if and only if ae(T +F) < +∞.

2) If T ∈ ϕ∞(X)∩ϕd(X) with ae(T ) < +∞, then Im(T )+ ker(T ae(T )) is closed if and only if
Im(T +F)+ker[(T +F)ae(T+F)] is closed.
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Proof. The first assertion can be proved in the same way as [1, Theorem 3.1]. To prove the
second assertion, let p ≥ ae(T ), we know that

T̃ : D(T̃ ) ⊆ X/ker(T p) −→ X/ker(T p)
x 7−→ T x

is upper semi-Fredholm operator and dim Im(F̃n) < +∞, where

F̃ : X/ker(T p) −→ X/ker(T p)
x 7−→ Fx.

Hence, T̃ n− (−F̃)n is upper semi-Fredholm operator. Since

T̃ n− (−F̃)n = (T̃ + F̃)(T̃ n−1+ T̃ n−2(−F̃)+ · · ·+ (−F̃)n−1) ∈ Φ+(X/ker(T p)),

it follow that

(T̃ n−1+ T̃ n−2(−F̃)+ · · ·+ (−F̃)n−1)∗(T̃ + F̃)∗ ∈ Φ−([X/ker(T p)]∗).

Consequently, (T̃ + F̃)∗ ∈ Φ−([X/ker(T p)]∗). This proves that T̃ + F̃ ∈ Φ+(X/ker(T p)). Now
we can finish the proof as [1, Theorem 3.1]. �

Question 1. Is it possible to remove the hypothesisD(T ) = X in Theorem 6.6?

For T ∈ ϕ(X), an operator V ∈ B(X) is called T -reducing-space operator, if it satisfies
the following condition :

if M is a subspace of X reduce T =⇒M reduce V.

For T ∈ ϕ(X), define

ΥT = {V ∈ B(X) : V is T -reducing-space operator}.

Theorem 6.7. Let T ∈ ϕ(X) with ae(T ) < +∞ and Im(T )+ ker(T ae(T )) is topological com-
plemented in X and let V ∈ B(X). If V ∈ ΥT is invertible such that V

(
D(T )

)
⊆ D(T ),

VT (x) = TV(x) for all x ∈ D(T ) and ‖V‖ is sufficiently small, then 0 ∈ %e
asc(T +V).

Proof. First, from Theorem 5.4, we know that there exist M and N two closed subspaces of
X such that

• X =M⊕N;

• T (M∩D(T )) ⊆M, T (N) ⊆ N;

• A = T|M ∈ Φ+(M) and B = T|N is a nilpotent operator of degree d.

Write S = V|M and F = V|N. In fact, B+F is invertible operator. Indeed, since

Fd = Fd − (−B)d = (F +B)(Fd−1+ (−B)Fd−2+ · · ·+ (−B)d−1),

it follows that

x = (F +B)[Fd−1+ (−B)Fd−1+ · · ·+ (−B)d−1]F−d x, ∀ x ∈ N.

Hence, by using the fact that ‖S ‖ ≤ ‖V‖ < γ(A), we infer that A+S ∈ Φ+(M). Thus, T +V ∈
Φ+(X) and consequently, 0 ∈ %e

asc(T +V), which completes the proof of Theorem 6.7. �
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Lemma 6.8. Let T ∈ ϕ(X) such that ae(T ) < +∞. Then

a(T ) < +∞⇐⇒ Im∞(T )∩ker∞(T ) = {0}.

Proof. We note that the first assertion of [14, Proposition 1.6] remains valid for T ∈ ϕ(X).
If we put n = ae(T ) and Tn = T|Im(T n), then α(Tn) < +∞. Hence, by [14, Proposition 1.6], we
deduce that

a(T ) < +∞ ⇐⇒ a(Tn) < +∞,
⇐⇒ Im∞(Tn)∩ker∞(Tn) = {0},
⇐⇒ Im∞(T )∩ker∞(T ) = {0}.

This completes the proof. �

Define the following sets :

pΦ+(X) = {T ∈ ϕ∞(X) : ae(T ) < +∞ and Im(T )+ker(T ae(T )) is closed},
pΨ+(X) = {T ∈ ϕ∞(X) : a(T ) < +∞ and Im(T )+ker(T a(T )) is closed},

P(pΦ+(X)) = {L ∈ B(X) : L+S ∈ pΦ+(X), ∀S ∈ pΦ+(X)∩{L}′},

where {L}′ = {T ∈ ϕ(X) : L(D(T )) ⊆D(T ), LT x = T Lx, ∀ x ∈ D(T )}.
Recall that by Theorem 6.6, if F ∈ B(X) with dim Im(Fn) < +∞ for some n ∈ N, then

F ∈ P(pΦ+(X)).
We conclude the paper with the following result.

Theorem 6.9. Let T, K ∈B(X) such that T K = KT. If T ∈ pΨ+(X) and K ∈ P(pΦ+(X)), then
T +K ∈ pΨ+(X) and β1

n(T ) = β1
m(T +K), for every n ≥ a(T ), and for every m ≥ a(T +K).

Proof. First, it is clair, for all λ ∈ C, that T +λK ∈ pΦ+(X). By Theorem 6.5, for λ, µ ∈ C
such that |λ−µ| is sufficiently small, we conclude that

ker∞(T +λK) = ker∞(T +µK), Im∞(T +λK) = Im∞(T +µK), (1)

indae(T +λK) = indae(T +µK). (2)

Since [0, 1] is a compact subset of the complex plane, there exist n ∈ N\{0}, λi ∈ [0, 1], and
a non-negative real number εi sufficiently small (1 ≤ i ≤ n), such that

0 = λ1 < · · · < λn = 1, [0, 1] ⊆
n⋃

i=1

D(λi, εi),

D(λi, εi)∩D(λi+1, εi+1) , ∅, ∀ i ∈ {1, · · · ,n−1},

where D(λi, εi) denotes the open disk with center at λi and radius εi. Hence, taking into
account of (1) and (2), for all i ∈ {1, 2, · · · , n}, we deduce that

ker∞(T +λiK) = ker∞(T ), Im∞(T +λiK) = Im∞(T ) and indae(T +λiK) = indae(T ).

This leads to
ker∞(T +K)∩ Im∞(T +K) = {0}.
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Thus, by Lemma 6.8, a(T + K) < +∞. However, if L ∈ A(X)∩ pΦ+(X), then indae(L) =
ind(Ln), for all n ≥ ae(L). Consequently, if ae(T ) ≤ a(T ) ≤ n and ae(T +K) ≤ a(T +K) ≤ m,
then

indae(T +K) = −β1
m(T +K) and indae(T ) = −β1

n(T ).

This complete the proof. �
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