Positive Solutions for Abstract Hammerstein Equations and Applications

Abdelhamid Benmezai*
Faculty of Mathematics
USTHB
Po. Box 32, El-Alia Bab-ezouar
Algiers, Algeria
John R. Graef ${ }^{\dagger}$
Department of Mathematics
University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA
Lingju Kong ${ }^{\ddagger}$
Department of Mathematics
University of Tennessee at Chattanooga
Chattanooga, TN 37403, USA
(Communicated by Michal Fečkan)

Abstract

The authors use fixed point index properties to prove existence of positive solutions to the abstract Hammerstein equation $u=L F u$ where $L: E \rightarrow E$ is a compact linear operator, $F: K \rightarrow K$ is a continuous and bounded mapping, E is a Banach space, and K is a cone in E. The results obtained are used to prove existence results for positive solutions to two point boundary value problems associated with differential equations.

AMS Subject Classification: 47H07, 37C25, 34B15.
Keywords: Increasing operator, fixed point index theory, boundary value problems, Hammerstein equation.

[^0]
1 Introduction

Existence and multiplicity of solutions to boundary value problems (BVPs) associated with ordinary differential equations (ODEs) is a subject that has been widely investigated in the last several decades; see, for example, $[3,4,5,13,16,17,18,19,20,21,15]$, and the references therein. Often those BVPs are formulated as a fixed point problem in a Banach space E having the form $u=L F u$, where $L \in L(E)$ is compact and $F: E \rightarrow E$ is continuous and bounded (maps bounded sets into bounded sets). This equation is known as the abstract Hammerstein equation (see [23, Chapter 7]).

In many of the papers cited above, existence and multiplicity results are obtained under the condition that the nonlinearity varies between 0 and $+\infty$ or between $-\infty$ and $+\infty$. For instance, in [4], the author obtain existence and multiplicity of positive solutions to the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x, u(x)), \quad x \in(0,1) \tag{1.1}\\
a u(0)-b u^{\prime}(0)=0 \\
c u(1)+d u^{\prime}(1)=0
\end{array}\right.
$$

where a, b, c, and d are nonnegative real numbers such that $a c+a d+c b>0$ and $f:[0,1] \times$ $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous function, where $\mathbb{R}^{+}=[0,+\infty$). It is known (see [4, Proposition 3.2]) that problem (1.1) has no positive solutions if either

$$
\frac{f(t, x)}{x}>\lambda_{1} \quad \text { for all } \quad(t, x) \in[0,1] \times(0,+\infty)
$$

or

$$
\frac{f(t, x)}{x}<\lambda_{1} \quad \text { for all } \quad(t, x) \in[0,1] \times(0,+\infty)
$$

where λ_{1} is the smallest positive eigenvalue of the linear boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=\lambda u(x), \quad x \in(0,1) \\
a u(0)-b u^{\prime}(0)=0 \\
c u(1)+d u^{\prime}(1)=0
\end{array}\right.
$$

This result means that a necessary condition for the existence of a positive solution to problem (1.1) is that the nonlinearity f must cross the linear function $\lambda_{1} u$ at least once. An existence result is obtained under the hypothesis

$$
f(t, u) \geq \alpha u \text { for all }(t, u) \in[0,1] \times[p, q] \quad \text { and } \quad f(t, u) \leq \beta u \text { for all }(t, u) \in[0,1] \times[r, s]
$$

with $\alpha>\lambda_{1}>\beta$ and other suitable conditions. Moreover, this result holds if the intervals $[p, q]$ and $[r, s]$ are neighborhoods of 0 and $+\infty$ (see [4, Corollary 3.7]).

Results similar to [4, Corollary 3.7] are often seen in the literature; in the case of second order BVPs see, for example, $[3,6,15,16,17]$, and in the singular case, see [5]; for fourth order BVPs, see [22].

It is clear from the above discussion that the eigenvalues of L play some role in the existence of solutions to the abstract Hammerstein equation. Thus, in this paper, we focus our attention on existence of positive solutions (solutions belonging to a cone) to the equation
$u=L F u$. Roughly speaking, we will prove that there exists two nonnegative real numbers $\lambda^{+} \leq \lambda^{-}$such that the Hammerstein equation has no positive solutions if the nonlinearity F lies above the linear function $\left(\lambda^{+}\right)^{-1} u$ or below $\left(\lambda^{-}\right)^{-1} u$, and we obtain existence otherwise (see Theorems 3.7 and 3.10 in Section 3 below). We may also ask when do λ^{+}and λ^{-} coincide with a positive eigenvalue of L ? We answer this question in Theorems 3.13 and 3.15 .

In order to illustrate the importance of our results, we conclude this paper with two applications. Throughout, we let $A^{*}:=A \backslash\{0\}$ where A is any subset of a Banach space.

2 Preliminaries

In all that follows, E denotes a real Banach space, $L(E)$ is the set of all continuous linear maps from E into E, and $Q(E)$ is the subset of $L(E)$ consisting of compact maps. For $L \in L(E), r(L)=\lim _{n \rightarrow \infty}\left\|L^{n}\right\|^{\frac{1}{n}}$ denotes the spectral radius of L.

Definition 2.1. Let K be a nonempty closed convex subset of E. Then K is said to be a cone if $K \cap(-K)=\{0\}$ and $(t K) \subset K$ for all $t \geq 0$.

It is well known that a cone induces a partial ordering in the Banach space E. We write for all $x, y \in E, x \leq y$ if $y-x \in K ; x<y$ if $y-x \in K$ and $y \neq x ; x \not 又 y$ if $y-x \notin K$; and $x \ll y$ if $\operatorname{int} K \neq \emptyset$ and $y-x \in \operatorname{int} K$. The notations $\geq,>, \nsupseteq$, and \gg are defined similarly.
Definition 2.2. Let K be a cone in E. Then:
(i) K is reproducing if $E=K-K$;
(ii) K is total if $E=\overline{K-K}$;
(iii) K is normal if there exists a positive constant N such that for all $u, v \in K, u \leq v$ implies $\|u\| \leq N\|v\|$.
Remark 2.3. A cone with nonempty interior is a typical example of a reproducing cone.
Definition 2.4. Let K be a cone in E and $L \in L(E)$. Then:
(i) L is said to be increasing if $L(K) \subset K$;
(ii) An increasing operator $L \in L(E)$ is K-normal if there exists a positive constant N such that for all $u, v \in K, u \leq v$ implies $\|L u\| \leq N\|L v\|$.

We will make extensive use of fixed point index theory. For the sake of completeness, we recall some basic facts related to this; see, for example, [7, 14, 15].

Let K be a nonempty closed subset of E. Then K is called a retract of E if there exists a continuous mapping $r: E \rightarrow K$ such that $r(x)=x$ for all $x \in K$. Such a mapping is called a retraction. From a theorem by Dugundji, every nonempty closed convex subset of E is a retract of E. In particular, every cone in E is a retract of E.

Let K be a retract of E and U be a bounded open subset of K such that $U \subset B(0, R)$, where $B(0, R)$ is the ball centered at 0 of radius R. For any completely continuous mapping $f: \bar{U} \rightarrow K$ with $f(x) \neq x$ for all $x \in \partial U$, the integer given by

$$
i(f, U, K)=\operatorname{deg}\left(I-f \circ r, B(0, R) \cap r^{-1}(U), 0\right)
$$

where deg is the Leray-Schauder degree, is well defined and is called the fixed point index. Properties of the fixed point index

Normality: $i(f, U, K)=1$ if $f(x)=x_{0} \in \bar{U}$ for all $x \in \bar{U}$.
Homotopy invariance: Let $H:[0,1] \times \bar{U} \rightarrow K$ be a completely continuous mapping such that $H(t, x) \neq x$ for all $(t, x) \in[0,1] \times \partial U$. The integer $i(H(t, \cdot), U, K)$ is independent of t.

Additivity: $i(f, U, K)=i\left(f, U_{1}, K\right)+i\left(f, U_{2}, K\right)$ whenever U_{1} and U_{2} are two disjoint open subsets of U such that f has no fixed point in $\bar{U} \backslash\left(U_{1} \cup U_{2}\right)$.

Permanence: If K^{\prime} is a retract of K with $f(\bar{U}) \subset K^{\prime}$, then $i(f, U, K)=i\left(f, U \cap K^{\prime}, K^{\prime}\right)$.
Solution property: If $i(f, U, K) \neq 0$, then f admits a fixed point in U.
Now we assume that K is a cone in E and for all $R>0$, we let $K_{R}=B(0, R) \cap K$. We will need the following lemmas related to the computation of the index $i\left(f, K_{R}, K\right)$.

Lemma 2.5. If $f(x) \neq \lambda x$ for all $x \in \partial K_{R}=\partial B(0, R) \cap K$ and $\lambda \geq 1$, then

$$
i\left(f, K_{R}, K\right)=1
$$

Lemma 2.6. If $f(x) \neq \lambda x$ for all $x \in \partial K_{R}=\partial B(0, R) \cap K$ and $\lambda \in(0,1]$, and if $\inf \{\|f(x)\|$: $\left.x \in \partial K_{R}\right\}>0$, then

$$
i\left(f, K_{R}, K\right)=0
$$

Lemma 2.7. If $f(x) \nsupseteq x$ for all $x \in \partial K_{R}=\partial B(0, R) \cap K$, then

$$
i\left(f, K_{R}, K\right)=1
$$

Lemma 2.8. If $f(x) \not \leq x$ for all $x \in \partial K_{R}=\partial B(0, R) \cap K$, then

$$
i\left(f, K_{R}, K\right)=0
$$

For additional details and proofs of these lemmas, we refer the reader to [14].

3 Main results

Let K be a cone in $E, L \in L(E)$ be increasing, and $F: K \rightarrow K$ be a continuous bounded mapping. We focus our attention in this section on the existence of positive solutions to the abstract equation

$$
\begin{equation*}
u=L F u \tag{3.1}
\end{equation*}
$$

By a positive solution to (3.1), we mean a vector $u \in K^{*}$ satisfying $u=L F u$. We recall that $\lambda \geq 0$ is a positive eigenvalue of L if there exists $u \in K^{*}$ such that $L u=\lambda u$, and it is an interior eigenvalue if there exists $u \in \operatorname{int} K$ such that $L u=\lambda u$. For any subset P of K with $P^{*} \neq \emptyset$, let

$$
\Lambda_{P}^{+}(L)=\left\{\lambda \geq 0: \text { there exists } u \in P^{*} \text { such that } L u \leq \lambda u\right\}
$$

and

$$
\Lambda_{P}^{-}(L)=\left\{\lambda \geq 0: \text { there exists } u \in P^{*} \text { such that } L u \geq \lambda u\right\}
$$

When these quantities exist, we set

$$
\lambda_{P}^{+}=\inf \Lambda_{P}^{+}(L), \lambda_{P}^{-}=\sup \Lambda_{P}^{-}(L), \lambda^{+}=\inf \Lambda_{K}^{+}(L), \text { and } \lambda^{-}=\sup \Lambda_{K}^{-}(L)
$$

Remark 3.1. (i) Note that $0 \in \Lambda_{P}^{-}(L)$, and if $\lambda \in \Lambda_{P}^{-}(L)$, then $[0, \lambda] \subset \Lambda_{P}^{-}(L)$. (ii) If $\lambda \in \Lambda_{P}^{+}(L)$, then $[\lambda,+\infty) \subset \Lambda_{P}^{+}(L)$. (iii) We have $\Lambda_{P}^{+}(L) \subset \Lambda_{K}^{+}(L)$ and $\Lambda_{P}^{-}(L) \subset \Lambda_{K}^{-}(L)$.

The following lemmas provide sufficient conditions for the existence of λ_{P}^{+}and λ_{P}^{-}. Let $\mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Lemma 3.2. If P is a cone and $L(K) \subset P$, then $\Lambda_{P}^{+}(L) \neq \emptyset$.
Proof. For $\lambda>r(L),\left(I-\frac{L}{\lambda}\right)^{-1}=\sum_{n \in \mathbb{N}_{0}} \frac{L^{n}}{\lambda^{n}}$, and since for all integers $n, L^{n}(K) \subset P$, we obtain $\left(I-\frac{L}{\lambda}\right)^{-1}(K) \subset P$. Thus, for any $u \in K^{*}, v=\left(I-\frac{L}{\lambda}\right)^{-1}(u) \in P^{*}$. In other words, $\lambda v>L v$, and so $\lambda \in \Lambda_{P}^{+}(L)$.

Lemma 3.3. If $\operatorname{int} K \neq \emptyset$, then $\Lambda_{\mathrm{in} T}+(L) \neq \emptyset$.
Proof. For $\lambda>r(L),\left(I-\frac{L}{\lambda}\right)^{-1}=\sum_{n \in \mathbb{N}_{0}} \frac{L^{n}}{\lambda^{n}}$ is a homeomorphism of E, so $\left(I-\frac{L}{\lambda}\right)^{-1}(\operatorname{int} K)$ is an open set contained in K. Therefore, $\left(I-\frac{L}{\lambda}\right)^{-1}(\operatorname{int} K) \subset \operatorname{int} K$. Thus, for any $u \in \operatorname{int} K$, $v=\left(I-\frac{L}{\lambda}\right)^{-1}(u) \in \operatorname{int} K$, i.e., $\lambda v>L v$, so $\lambda \in \Lambda_{\mathrm{int} K}^{+}(L)$.

Lemma 3.4. Assume that K is normal. Then for any nonempty subset $P \subset K, \Lambda_{P}^{-}(L)$ is bounded from above by $r(L)$.

Proof. If $\lambda>0$ and $u \in P^{*}$ with $\|u\|=1$ are such that $L u \geq \lambda u$, then

$$
u \leq T^{n} u \text { for all } n \in \mathbb{N}^{*}
$$

where $T=\frac{L}{\lambda}$. Hence, the normality of K implies that

$$
1 \leq N^{\frac{1}{n}}\left\|T^{n} u\right\|^{\frac{1}{n}}=N^{\frac{1}{n}} \frac{\left\|L^{n} u\right\|^{\frac{1}{n}}}{\lambda} \leq N^{\frac{1}{n}} \frac{\left\|L^{n}\right\|^{\frac{1}{n}}}{\lambda}
$$

where N is the constant of normality of K. Letting $n \rightarrow \infty$, we have

$$
\lambda \leq \lim _{n} N^{\frac{1}{n}}\left\|L^{n}\right\|^{\frac{1}{n}}=r(L)
$$

which proves the lemma.
Lemma 3.5. Assume that L is K-normal. Then, for any cone $P \subset K$ with $L(K) \subset P, \Lambda_{P}^{-}(L)$ is bounded from above by $r(L)$.

Proof. If $\lambda>0$ and $u \in P^{*}$ with $\|L u\|=1$ are such that $L u \geq \lambda u$, then

$$
L u \leq T^{n} L u \text { for all } n \in \mathbb{N}^{*},
$$

where $T=\frac{L}{\lambda}$. Hence, the K-normality of L implies that

$$
1 \leq N^{\frac{1}{n}}\left\|T^{n} L u\right\|^{\frac{1}{n}}=N^{\frac{1}{n}} \frac{\left\|L^{n} L u\right\|^{\frac{1}{n}}}{\lambda} \leq N^{\frac{1}{n}} \frac{\left\|L^{n}\right\|^{\frac{1}{n}}}{\lambda}
$$

where N is the constant of the K-normality of L. Letting $n \rightarrow \infty$, we obtain

$$
\lambda \leq \lim _{n} N^{\frac{1}{n}}\left\|L^{n}\right\|^{\frac{1}{n}}=r(L)
$$

which completes the proof.
Before presenting existence results for equation (3.1), we need to draw attention to the following fact. If L admits a positive eigenvalue λ, then $\lambda^{+} \leq \lambda^{-}$and $\lambda \in\left[\lambda^{+}, \lambda^{-}\right]$. In what follows, we will prove that for any cone P, with $L(K) \subset P \subset K$, if L is completely continuous, no matter if L has a positive eigenvalue or not, we always have $\lambda_{P}^{+} \leq \lambda_{P}^{-}$. To prove this we need following results.

Proposition 3.6. Let either

$$
\begin{equation*}
F u \leq \alpha u \text { for all } u \in P^{*} \text { with } \alpha \lambda_{P}^{-}<1 \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
F u \geq \beta u \text { for all } u \in P^{*} \text { with } \beta \lambda_{P}^{+}>1 \tag{3.3}
\end{equation*}
$$

hold, where $P \subset K$ is nonempty with $L(K) \subset P$. Then equation (3.1) has no positive solutions.
Proof. We present the proof in the case where (3.2) holds; the proof in the other case is similar. Assume there exists $u \in K^{*}$ such that $L F u=u$. Then $u \in P^{*}$, and since $F u \leq \alpha u$, it follows that $L u \geq \frac{1}{\alpha} u$ and $\frac{1}{\alpha} \leq \lambda_{P}^{-}$, which contradicts $\alpha \lambda_{P}^{-}<1$. This completes the proof.

From [14, Theorem 2.3.3] we can obtain the following existence result.
Theorem 3.7. Assume that $L \in Q(E), P \subset K$ is a cone with $L(K) \subset P$, and there exist real numbers α, β, R_{1}, and R_{2} with $\alpha \lambda_{P}^{-}<1, \beta \lambda_{P}^{+}>1$, and $0<R_{1}<R_{2}$. If either

$$
\begin{equation*}
F u \leq \alpha u \text { for all } u \in P \cap \partial B\left(0, R_{1}\right) \text { and } F u \geq \beta u \text { for all } u \in P \cap \partial B\left(0, R_{2}\right) \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
F u \geq \beta u \text { for all } u \in P \cap \partial B\left(0, R_{1}\right) \text { and } F u \leq \alpha u \text { for all } u \in P \cap \partial B\left(0, R_{2}\right) \tag{3.5}
\end{equation*}
$$

then equation (3.1) admits a positive solution u with $R_{1}<\|u\|<R_{2}$.
We also have the following comparison result.

Theorem 3.8. Assume that $L \in Q(E)$. Then for any cone $P \subset K$ with $L(K) \subset P$, we have $\lambda_{P}^{+} \leq \lambda_{P}^{-}$.

Proof. The case $\lambda_{P}^{+}=0$ is obvious, so assume that $\lambda_{P}^{+}>\lambda_{P}^{-} \geq 0$ and consider the function $G: K \rightarrow K$ defined by

$$
G u=\frac{\beta u+\alpha\|u\| u}{1+\|u\|}
$$

with $0<\beta<\alpha$ and $\beta \lambda_{P}^{+}>1>\alpha \lambda_{P}^{-}$. On one hand, we have

$$
G u-\alpha u=\frac{(\beta-\alpha) u}{1+\|u\|}<0 \text { for all } u \in K^{*},
$$

so by Proposition 3.6, the equation $u=L G u$ admits no positive solution. On the other hand, for any $0<R_{1}<R_{2}$, we have

$$
G u \leq \alpha u \text { for all } u \in K \cap \partial B\left(0, R_{1}\right) \text { with } \alpha \lambda_{P}^{-}<1
$$

and

$$
G u-\beta u=\frac{(\alpha-\beta) u\|u\|}{1+\|u\|}>0 \text { for all } u \in K \cap \partial B\left(0, R_{2}\right) \text { with } \beta \lambda_{P}^{+}>1 .
$$

Condition (3.4) is satisfied, so by Theorem 3.7, the equation $u=L G u$ has a positive solution. This contradiction implies $\lambda_{P}^{+} \leq \lambda_{P}^{-}$.

Remark 3.9. From Lemmas 2.7 and 2.8 we see that if $L \in Q(E)$, then for any cone $P \subset K$ with $L(K) \subset P$ and any $R>0$, we have

1. $i(\alpha L, B(0, R) \cap P, P)=1$ if $\alpha \lambda_{P}^{-}<1$, and
2. $i(\beta L, B(0, R) \cap P, P)=0$ if $\beta \lambda_{P}^{+}>1$.

Next we present an existence result for positive solutions to the Hammerstein equation (3.1) in case the cone K is normal. This result includes those covered by [4, Corollary 3.7].

Theorem 3.10. Assume that $L \in Q(E), K$ is normal, $P \subset K$ is a cone with $L(K) \subset P$, and there exist nonnegative real numbers α, β, and γ, and continuous functions $G_{i}: K \rightarrow K$, $i=1,2,3$, with

$$
\alpha \lambda_{P}^{-}<1 \text { and } \beta \lambda_{P}^{+}>1,
$$

$$
F u \leq \alpha u+G_{1} u \text { for all } u \in P^{*} \cap B(0, \delta) \text { for some } \delta>0,
$$

and

$$
\beta u-G_{2} u \leq F u \leq \gamma u+G_{3} u \text { for all } u \in P^{*} .
$$

If either

$$
\begin{equation*}
G_{1} u=o(\|u\|) \text { as } u \rightarrow 0 \text { and } G_{i} u=o(\|u\|) \text { as } u \rightarrow \infty \text { for } i=2,3 \text {, } \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{1} u=o(\|u\|) \text { as } u \rightarrow \infty \text { and } G_{i} u=o(\|u\|) \text { as } u \rightarrow 0 \text { for } i=2,3, \tag{3.7}
\end{equation*}
$$

then equation (3.1) has a positive solution.

Proof. We give the proof in case (3.6) holds; the proof if (3.7) holds is similar. All we need to do is to show the existence of $0<r<R$ such that

$$
i(L F, B(0, r) \cap P, P)=1 \text { and } i(L F, B(0, R) \cap P, P)=0 .
$$

Then the additivity and the solution properties of the fixed point index will imply that

$$
i(L F,(B(0, R) \backslash \bar{B}(0, r)) \cap P, P)=i(L F, B(0, R) \cap P, P)-i(L F, B(0, r) \cap P, P)=-1
$$

and equation (3.1) has a positive solution u with $r<\|u\|<R$.
Consider the function $H_{1}:[0,1] \times K \rightarrow K$ defined by $H_{1}(t, u)=t L F u+(1-t) \beta L u$. We want to show the existence of $R>0$ large enough so that for all $t \in[0,1]$, the equation $H_{1}(t, u)=u$ has no solution in $\partial B(0, R) \cap P$. To the contrary, suppose that for all integers $n \geq 1$, there exist $t_{n} \in[0,1]$ and $u_{n} \in \partial B(0, n) \cap P$ such that

$$
u_{n}=t_{n} L F u_{n}+\left(1-t_{n}\right) \beta L u_{n} .
$$

Note that $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|} \in \partial B(0,1) \cap P$ and satisfies

$$
\begin{equation*}
v_{n}=t_{n} L\left(\frac{F u_{n}}{\left\|u_{n}\right\|}\right)+\left(1-t_{n}\right) \beta L v_{n} . \tag{3.8}
\end{equation*}
$$

Thus, the normality of the cone K combined with the inequalities

$$
\begin{equation*}
\beta v_{n}-\frac{G_{2} u_{n}}{\left\|u_{n}\right\|} \leq \frac{F u_{n}}{\left\|u_{n}\right\|} \leq \gamma v_{n}+\frac{G_{3} u_{n}}{\left\|u_{n}\right\|} \tag{3.9}
\end{equation*}
$$

and the fact that $G_{i}\left(u_{n}\right)=o\left(\left\|u_{n}\right\|\right)$ at ∞ for $i=2,3$, implies that $\frac{F u_{n}}{\left\|u_{n}\right\|}$ is bounded. From the compactness of L, we obtain the existence of a subsequence of $\left(v_{n}\right)$, also denoted by $\left(v_{n}\right)$, that converges to $v \in \partial B(0,1) \cap P$. Taking limits as $n \rightarrow \infty$ in (3.8) and (3.9) shows $v \geq \beta L v$. That is, $\frac{1}{\beta} \geq \lambda_{P}^{+}$, which contradicts $\beta \lambda_{P}^{+}>1$.

For such an $R>0$, from the homotopy property of the fixed point index and Remark 3.9, we have

$$
\begin{aligned}
i(L F, B(0, R) \cap P, P)=i\left(H_{1}(1, \cdot), B\right. & (0, R) \cap P, P) \\
& =i\left(H_{1}(0, \cdot), B(0, R) \cap P, P\right)=i(\beta L, B(0, R) \cap P, P)=0 .
\end{aligned}
$$

In a similar way, we consider the function $H_{2}:[0,1] \times K \rightarrow K$ defined by $H_{2}(t, u)=$ $t L F u+(1-t) \alpha L u$ and we prove the existence of $r>0$ small enough so that for all $t \in[0,1]$, the equation $H_{2}(t, u)=u$ has no solution in $\partial B(0, r) \cap P$. To the contrary, suppose that for every integer $n \geq 1$ with $1 / n<\delta$, there exists $t_{n} \in[0,1]$ and $u_{n} \in \partial B(0,1 / n) \cap P$ such that

$$
u_{n}=t_{n} L F u_{n}+\left(1-t_{n}\right) \alpha L u_{n} .
$$

Now $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|} \in \partial B(0,1) \cap P$ and satisfies

$$
v_{n}=t_{n} L\left(\frac{F u_{n}}{\left\|u_{n}\right\|}\right)+\left(1-t_{n}\right) \alpha L v_{n}
$$

The normality of the cone K combined with the inequality

$$
\frac{F u_{n}}{\left\|u_{n}\right\|} \leq \alpha v_{n}+\frac{G_{1} u_{n}}{\left\|u_{n}\right\|}
$$

and the fact that $G_{1}\left(u_{n}\right)=o\left(\left\|u_{n}\right\|\right)$ at 0 shows that $\frac{F u_{n}}{\left\|u_{n}\right\|}$ is bounded. Then, from the compactness of L, we conclude the existence of a subsequence of $\left(v_{n}\right)$, also denoted by $\left(v_{n}\right)$, that converges to $v \in \partial B(0,1) \cap P$. Again taking limits shows that $v \leq \alpha L v$. Thus, $\frac{1}{\alpha} \leq \lambda_{P}^{-}$, which contradicts $\alpha \lambda_{P}^{-}<1$.

For such an $r>0$ the homotopy property of the fixed point index and Remark 3.9 show that

$$
\begin{aligned}
& i(L F, B(0, r) \cap P, P)=i\left(H_{2}(1, \cdot), B(0, r) \cap P, P\right) \\
&= \\
& i\left(H_{2}(0, \cdot), B(0, r) \cap P, P\right)=i(\alpha L, B(0, r) \cap P, P)=1
\end{aligned}
$$

This completes the proof of the theorem.
Remark 3.11. Note that if ker $L \cap K^{*}=\emptyset$, then for every subset $P \subset K$ with $L(K) \subset P$,

$$
\Lambda_{P}^{+}(L)=\Lambda_{K}^{+}(L), \quad \Lambda_{P}^{-}(L)=\Lambda_{K}^{-}(L), \quad \lambda_{P}^{+}=\lambda^{+}, \text {and } \lambda_{P}^{-}=\lambda^{-}
$$

In fact, if $\lambda>0$ and $u \in K^{*}$ are such that $L u \leq \lambda u$ (resp. $L u \geq \lambda u$), then $U=L u \in P^{*}$ and $L U \leq \lambda U($ resp. $L U \geq \lambda U)$.

Let P be a cone such that $L(K) \subset P \subset K$. In our previous results, we saw the role played by the constants λ_{P}^{+}and λ_{P}^{-}in the existence of positive solutions for the Hammerstein equation (3.1). Now we will present two results in which λ_{P}^{+}and λ_{P}^{-}coincide with the unique positive eigenvalue of L. To do this, we need the following definition.

Definition 3.12. Let $\chi: E \times E \rightarrow \mathbb{R}$ be a bilinear form. We say that χ is positive if for all u, $v \in K, \chi(u, v) \geq 0$, and we say that χ is increasing if for all $u_{1}, u_{2}, v_{1}, v_{2} \in K$,

$$
u_{1} \leq u_{2} \text { implies } \chi\left(u_{1}, v_{1}\right) \leq \chi\left(u_{2}, v_{1}\right) \text { and } v_{1} \leq v_{2} \text { implies } \chi\left(u_{1}, v_{1}\right) \leq \chi\left(u_{1}, v_{2}\right)
$$

Theorem 3.13. Assume that $L \in Q(E), \lambda^{+}>0$, and there exists a positive increasing bilinear form $\chi: E \times E \rightarrow \mathbb{R}$ such that

$$
0<\chi(L u, v)=\chi(u, L v) \text { for all } u, v \in K^{*}
$$

Then for every subset P of K with $L(K) \subset P$, we have $\lambda_{P}^{+}=\lambda_{P}^{-}=\lambda^{+}=\lambda^{-}$, and $\lambda_{1}=\lambda^{+}=\lambda^{-}$ is the unique positive eigenvalue of L.

Proof. Note that $\lambda^{+}>0$ implies $\operatorname{ker} L \cap K^{*}=\emptyset$, and for every subset P of K with $L(K) \subset P \subset$ K, we have $\lambda_{P}^{+}=\lambda^{+}$and $\lambda_{P}^{-}=\lambda^{-}$. We claim that L has a positive eigenvalue. By Remark 3.9, for any $R>0, i(\alpha L, B(0, R) \cap K, K)=0$ with $\alpha \lambda^{+}>1$. Hence, we see from Lemma 2.5 that there exist $\theta \geq 1$ and $u \in K \cap \partial B(0, R)$ such that $\alpha L u=\theta u$. That is, $\frac{\theta}{\alpha}$ is a positive eigenvalue of L.

Let λ_{1} be a positive eigenvalue of L and let ϕ be the associated eigenvector. On one hand, we have

$$
\begin{equation*}
0<\lambda^{+} \leq \lambda_{1} \leq \lambda^{-} \leq+\infty . \tag{3.10}
\end{equation*}
$$

At the same time, if $u, v \in K^{*}$ and λ, μ, are such that $L u \leq \lambda u$ and $L v \geq \mu v$, then the properties of χ lead to

$$
0<\lambda_{1} \chi(\phi, u)=\chi(L \phi, u)=\chi(\phi, L u) \leq \lambda \chi(\phi, u)
$$

and

$$
\lambda_{1} \chi(\phi, v)=\chi(L \phi, v)=\chi(\phi, L v) \geq \mu \chi(\phi, v),
$$

which imply

$$
\mu \leq \lambda_{1} \leq \lambda,
$$

that is,

$$
\begin{equation*}
\lambda^{-} \leq \lambda_{1} \leq \lambda^{+} \tag{3.11}
\end{equation*}
$$

Combining (3.10) and (3.11) gives $\lambda^{-}=\lambda^{+}=\lambda_{1}$ is the unique positive eigenvalue of L.
Remark 3.14. If we add to Theorem 3.13 the condition that K is a total cone, then it follows from [7, Theorem 19.2] (or [23, Proposition 7.26]) that $\lambda^{-}=\lambda^{+}=\lambda_{1}$ is the principal and unique positive eigenvalue of L.

Theorem 3.15. Assume that $L \in Q(E)$, int $K \neq \emptyset$, and either K is normal or L is K-normal. Then

$$
\lambda^{-} \leq \lambda_{\mathrm{in} K}^{+} .
$$

Moreover, if $\lambda^{+}>0$ and K is a total cone, then $\lambda^{-}=r(L)>0$ is the principal eigenvalue of L.

Proof. Assume that $\lambda_{\text {int } K}^{+}<\lambda^{-}$and $\lambda \in\left(\lambda_{\text {int } K}^{+}, \lambda^{-}\right)$. For such a λ, there exists $u \in \operatorname{int} K$ and $v \in K^{*}$ such that $L u \leq \lambda u$ and $L v \geq \lambda v$. Now $u \in \operatorname{int} K$ implies the existence of $t>0$ such that $u>v_{t}=t v$.

If K is normal, then the operator $T=\frac{L}{\lambda}$ maps the closed bounded convex interval $\left[\nu_{t}, u\right]$ into itself. So Schauder's fixed point theorem guarantees the existence of a fixed point w of T such that $v_{t} \leq w \leq u$ and λ is an eigenvalue of L.

If L is K-normal, then the operator $T=\frac{L}{\lambda}$ maps the closed bounded convex set $\overline{L\left(\left[v_{t}, u\right]\right)}$ into itself. Schauder's fixed point theorem then guarantees the existence of a fixed point $w \in \overline{L\left(\left[v_{t}, u\right]\right)}$ of T and λ is an eigenvalue of L.

This shows that in the two cases, $\left(\lambda_{\mathrm{in} K}^{+}, \lambda^{-}\right) \subset \operatorname{sp}(L)$, where $\operatorname{sp}(L)$ is the spectrum of L, and this contradicts L being compact.

Now if $0<\lambda^{+}$, then $r(L)>0$, and since K is total, [7, Theorem 19.2] (or [23, Proposition 7.26]) ensures that $r(L)$ is a positive eigenvalue of L and $r(L)=\lambda^{-}$.

Remark 3.16. Note that Theorem 3.15 guarantees that L has at most one interior eigenvalue. In fact, if λ_{1} is an interior eigenvalue, then

$$
\lambda^{+} \leq \lambda_{1} \leq \lambda^{-} \leq \lambda_{\mathrm{int} K}^{+} \leq \lambda_{1}
$$

which implies

$$
\lambda_{1}=\lambda^{-}=\lambda_{\mathrm{int} K}^{+}
$$

Moreover, if 0 is an interior eigenvalue, then λ_{1} is the unique positive eigenvalue of L. If this is the case, then $\lambda_{\text {int } K}^{+}=\lambda^{+}=\lambda^{-}$.

Theorem 3.17. Assume that $L \in Q(E)$, $\operatorname{int} K \neq \emptyset, L(\partial K \backslash\{0\}) \subset \operatorname{int} K$, and either K is normal or L is K-normal. Then, $\lambda^{-}=\lambda^{+}=r(L)$ is the principal and unique positive eigenvalue of L.

Proof. We need to prove that $\lambda^{+}=\lambda_{\mathrm{int} K}^{+}$. To this end, we show that $\Lambda_{K}^{+}(L) \subset \Lambda_{\mathrm{intK}}^{+}(L)$. If $\lambda \in \Lambda_{K}^{+}(L)$, then there exists $u \in K^{*}$ such that $L u \leq \lambda u$ and there are two possibilities.

First, we could have $u \in \operatorname{int} K$. Then $\lambda \in \Lambda_{\operatorname{int} K}^{+}(L)$. Second, we could have $u \in \partial K$. In this case, $U=L u \in \operatorname{int} K$ and $L U \leq \lambda U$. This again implies $\lambda \in \Lambda_{\operatorname{int} K}^{+}(L)$.

Let $u \in \partial K \backslash\{0\}$; then $L u \in \operatorname{int} K$, so there exists $t>0$ such that $L u \geq t u$. This implies that $\lambda^{-}>0$, and by Lemmas 3.4 and $3.5, r(L) \geq \lambda^{-}>0$. Thus, it follows from the Krein-Rutman Theorem (see [7, Theorem 19.3] or [23, Theorem 7.C]) that $r(L)=\lambda^{-}$is the principal and positive eigenvalue of L. Finally, we see that the condition $L(\partial K \backslash\{0\}) \subset \operatorname{int} K$ implies that L has only interior eigenvalues, so uniqueness follows from Remark 3.16.

Combining the Krein-Rutman Theorem with Theorem 3.17, we obtain the following result.

Corollary 3.18. Assume that $L \in Q(E)$, int $K \neq \emptyset, L(K \backslash\{0\}) \subset$ int K, and either K is normal or L is K-normal. Then $\lambda^{-}=\lambda^{+}=r(L)$ is the principal and unique positive eigenvalue of L.

Remark 3.19. Common to both Theorems 3.13 and 3.17 is that 0 cannot be an eigenvalue of L and so for every subset $P \subset K$ with $L(K) \subset P$, we have $\lambda_{P}^{+}=\lambda_{P}^{-}=\lambda^{+}=\lambda^{-}$.

4 Applications

In this section we apply our results to some specific boundary value problems.

4.1 Third order boundary value problem

Consider the third order boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime \prime}(x)=a(x) f(u(x)), \quad x \in(0,1) \tag{4.1}\\
u(0)=u^{\prime}(0)=u^{\prime}(1)=0,
\end{array}\right.
$$

where $a \in C\left([0,1], \mathbb{R}^{+}\right)$does not vanish identically on any subinterval of $[0,1]$ and $f: \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}is a continuous function. We also consider the associated linear eigenvalue problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime \prime}(x)=\mu a(x) u(x), \quad x \in(0,1) \tag{4.2}\\
u(0)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

Theorem 4.1. The linear eigenvalue problem (4.2) has a unique positive eigenvalue $\mu_{1}>0$. Moreover, problem (4.1) has no positive solution if either

$$
\inf \{f(t, u) / u, t \in[0,1] u>0\}>\mu_{1}
$$

or

$$
\sup \{f(t, u) / u, t \in[0,1] u>0\}<\mu_{1} .
$$

Proof. Let $X=\left\{u \in C^{2}([0,1]): u(0)=u^{\prime}(0)=u^{\prime}(1)=0\right\}$ be equipped with the norm defined for $u \in X$ by $\|u\|=\sup \left\{\left|u^{\prime \prime}(t)\right|, t \in[0,1]\right\}$ and consider the operator $L: X \rightarrow X$ given by

$$
\begin{equation*}
L u(x)=\int_{0}^{x}\left(\int_{0}^{1} G(s, t) a(t) u(t) d t\right), \tag{4.3}
\end{equation*}
$$

where

$$
G(s, t)= \begin{cases}s(1-t), & 0 \leq s \leq t \leq 1, \\ t(1-s), & 0 \leq t \leq s \leq 1,\end{cases}
$$

is the Green function associated with the differential operator $-\frac{d^{2}}{d x^{2}}$ and Dirichlet boundary conditions. It is clear that $\mu>0$ is a positive eigenvalue of (4.2) if and only if μ^{-1} is a positive eigenvalue of L. Let Q be the natural cone in X, i.e., $Q=\{u \in X: u \geq 0$ in $[0,1]\}$. In view of Corollary 3.18 , let us prove that $L\left(Q^{*}\right) \subset \operatorname{int} Q$. To this end, consider the set

$$
S=\left\{u \in X: u^{\prime}>0 \text { in }(0,1), u^{\prime \prime}(0)>0, \text { and } u^{\prime \prime}(1)<0\right\} .
$$

We have $S \subset Q$ and S is an open set; in fact, $X \backslash S=F_{1} \cup F_{2} \cup F_{3}$ where

$$
\begin{aligned}
& F_{1}=\left\{u \in X: \text { there exists } x \in(0,1) \text { with } u^{\prime}(x) \leq 0\right\}, \\
& F_{2}=\left\{u \in X: u^{\prime \prime}(0) \leq 0\right\}, \text { and } \\
& F_{3}=\left\{u \in X: u^{\prime \prime}(1) \geq 0\right\} .
\end{aligned}
$$

It is clear that F_{2} and F_{3} are closed sets in X so let $\left(u_{n}\right) \subset F_{1}$ tending to u in X and $\left(x_{n}\right) \subset(0,1)$ tending to $\bar{x} \in[0,1]$ with $u_{n}^{\prime}\left(x_{n}\right) \leq 0$. Now if $\bar{x} \in(0,1)$, then $u^{\prime}(\bar{x})=\lim u_{n}^{\prime}\left(x_{n}\right) \leq 0$, and so $u \in F_{1}$. If $\bar{x}=0$, we have $u^{\prime \prime}(0)=\lim _{n \rightarrow \infty} \frac{u_{n}^{\prime}\left(x_{n}\right)}{x_{n}} \leq 0$, which implies $u \in F_{2}$. Finally, if $\bar{x}=1$, then $u^{\prime \prime}(1)=\lim _{n \rightarrow \infty} \frac{u_{n}^{\prime}\left(x_{n}\right)}{x_{n}-1} \geq 0$, so $u \in F_{3}$.

Now let $u \in Q^{*}$ and $v=L u$; we have

$$
\begin{gathered}
v^{\prime}(x)=\int_{0}^{1} G(x, t) a(t) u(t) d t>0 \text { for any } x \in(0,1), \\
v^{\prime \prime}(0)=\int_{0}^{1}(1-t) a(t) u(t) d t>0, \text { and } v^{\prime \prime}(1)=-\int_{0}^{1} t a(t) u(t) d t<0,
\end{gathered}
$$

that is, $L\left(Q^{*}\right) \subset S \subset$ int Q. Since Q is not a normal cone in X, to complete our proof we need to show that L is a Q-normal operator. Let $u_{1}, u_{2} \in Q$ with $u_{1} \leq u_{2}, v_{1}=L u_{1}$, and $v_{2}=L u_{2}$. For $i=1,2, v_{i}^{\prime}$ are concave functions on $[0,1]$ and $\left\|v_{i}\right\|=\max \left\{v_{i}^{\prime \prime}(0),-v_{i}^{\prime \prime}(1)\right\}$. We have

$$
v_{1}^{\prime \prime}(0)=\int_{0}^{1}(1-t) a(t) u_{1}(t) d t \leq \int_{0}^{1}(1-t) a(t) u_{2}(t) d t=v_{2}^{\prime \prime}(0)
$$

and

$$
-v_{1}^{\prime \prime}(1)=\int_{0}^{1} t a(t) u_{1}(t) d t \leq \int_{0}^{1} t a(t) u_{2}(t) d t=-v_{2}^{\prime \prime}(0) .
$$

That is, $\left\|v_{1}\right\| \leq\left\|v_{2}\right\|$ and so L is Q-normal. The conclusion of the theorem then follows from Corollary 3.18 and Proposition 3.6.

In order to present an existence result, we introduce the following notations:

$$
\begin{aligned}
f^{0} & =\limsup _{u \rightarrow 0}\left(\max _{t \in[0,1]} \frac{f(t, u)}{u}\right), & f^{\infty}=\limsup _{u \rightarrow+\infty}\left(\max _{t \in[0,1]} \frac{f(t, u)}{u}\right), \\
f_{0} & =\liminf _{u \rightarrow 0}\left(\min _{t \in[0,1]} \frac{f(t, u)}{u}\right), & f_{\infty}=\liminf _{u \rightarrow+\infty}\left(\min _{t \in[0,1]} \frac{f(t, u)}{u}\right) .
\end{aligned}
$$

Theorem 4.2. If either

$$
f^{0}<\mu_{1}<f_{\infty} \leq f^{\infty}<\infty
$$

or

$$
f^{\infty}<\mu_{1}<f_{0} \leq f^{0}<\infty
$$

holds, then problem (4.1) has a positive solution.
Proof. Let $E=C([0,1])$ equipped with its sup-norm, $L: E \rightarrow E$ be the operator defined by (4.3), and $F: C \rightarrow C$ be the Nemytskii operator defined for $u \in C$ by $F u(t)=f(t, u(t))$, where C is a positive cone in E. It is clear that continuity of f implies that F is continuous and maps bounded sets of C into bounded sets of C. Also, L is an increasing and compact operator and u is a positive solution of problem (4.1) if and only if u is a positive fixed point of $L F$. Let λ_{C}^{+}and λ_{C}^{-}be defined by

$$
\lambda_{C}^{+}=\inf \left\{\lambda \geq 0: L u \leq \lambda u \text { for some } u \in C^{*}\right\}
$$

and

$$
\lambda_{C}^{-}=\sup \left\{\lambda \geq 0: L u \geq \lambda u \text { for some } u \in C^{*}\right\} .
$$

Since 0 is not an eigenvalue of L and $L(C) \subset Q$, where Q is the cone defined in the proof of Theorem 4.1, it follows from Remark 3.19 that

$$
\left(\mu_{1}\right)^{-1}=\lambda_{C}^{-}=\lambda_{C}^{+} .
$$

Moreover, $f^{0}<\mu_{1}<f_{\infty} \leq f^{\infty}<\infty$ (the other case is similar) implies there exists $\varepsilon>0$ and positive constants C_{1}, C_{2} such that

$$
F(u) \leq\left(\mu_{1}-\varepsilon\right) u+G(u) \text { for all } u \in Q^{*} \cap B(0, \delta)
$$

and

$$
\left(\mu_{1}+\varepsilon\right) u-C_{1} \leq F(u) \leq\left(f^{\infty}+\varepsilon\right) u+C_{2} \text { for all } u \in Q^{*},
$$

where $G u(t)=\max \left\{f(t, u(t))-f^{0} u(t), 0\right\}$. The conclusion of the theorem follows from Theorem 3.10.

4.2 Positive solution for the generalized Fisher like equation posed on the positive half line

Consider the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+c u^{\prime}(x)+\lambda u(x)=a(x) f(x, u(x)), x \in(0,+\infty) \tag{4.4}\\
u(0)=u(+\infty)=0
\end{array}\right.
$$

where c, λ are positive constants, $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$does not vanish identically on any subinterval of $[0,+\infty)$, and $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous function. Also consider the associated linear eigenvalue problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+c u^{\prime}(x)+\lambda u(x)=\mu a(x) u(x), x \in(0,+\infty) \tag{4.5}\\
u(0)=u(+\infty)=0
\end{array}\right.
$$

Let G be the Green function associated with (4.4) given by

$$
G(x, t)=\frac{1}{k} \begin{cases}e^{r_{1}(x-t)}\left(1-e^{\left(r_{1}-r_{2}\right) x}\right), & x \geq t \\ e^{r_{2}(x-t)}\left(1-e^{\left(r_{1}-r_{2}\right) t}\right), & x \leq t\end{cases}
$$

where $r_{1}<0<r_{2}$ are the two roots of $-X^{2}+c X+\lambda=0$ and $k=r_{2}-r_{1}$. For the mathematical origin and physical significance of this equation we refer the reader to [9]-[12].

Denote by E the Banach space of all continuous functions defined on $[0,+\infty)$ that vanish at 0 and $+\infty$ equipped with its sup-norm. Let $L: E \rightarrow E$ be the linear operator defined by

$$
L u(x)=\int_{0}^{+\infty} G(x, t) a(t) u(t) d t
$$

and $F: U \rightarrow U$ be the Nemytskii operator defined by

$$
F u(t)=f(t, u(t))
$$

where U is the normal positive cone of E. It is clear that F is continuous and maps bounded sets into bounded sets and $u \in E$ is a positive solution of (4.4) if and only if u is a positive fixed point of $L F$. Moreover, $\mu>0$ is a positive eigenvalue of (4.5) if and only if μ^{-1} is a positive eigenvalue of L.

In order to prove the compactness of the operator L, we will make use of the following lemmas.

Lemma 4.3. ([1], [2]) A subset $A \subset E$ is relatively compact if and only if the following conditions are satisfied
(i) A is uniformly bounded;
(ii) A is equicontinuous on every compact interval of \mathbb{R}^{+};
(iii) A is equiconvergent.

By equiconvergence in Lemma 4.3 we mean that for every $\varepsilon>0$ there exists $T_{\varepsilon}>0$ such that, for all $u \in A$ and $t>T_{\varepsilon}$, we have $|u(t)|<\varepsilon$.

Lemma 4.4. If $a \in E$, then $L \in Q(E)$.
Proof. First note that $\int_{0}^{+\infty} G(0, t) a(t) d t=0$, and by Hôpital's rule, we conclude from the fact that $a \in E$ that $\lim _{x \rightarrow+\infty} \int_{0}^{+\infty} G(x, t) a(t) d t=0$. Let $[a, b] \subset[0,+\infty)$ and $a \leq x<y \leq b$. Straightforward computations show that

$$
\left|\int_{0}^{+\infty} G(x, t) a(t) d t-\int_{0}^{+\infty} G(y, t) a(t) d t\right| \leq 2 \theta^{*} \int_{x}^{y} e^{-r_{1} t} a(t) d t+2 \gamma^{*} \int_{x}^{y} e^{-r_{2} t} a(t) d t
$$

where $\theta^{*}=\sup \left\{e^{-r_{1} x}\left(1-e^{\left(r_{1}-r_{2}\right) x}\right): x \in[a, b]\right\}$ and $\gamma^{*}=\sup \left\{e^{r_{2} x}: x \in[a, b]\right\}$.
Since the functions $z \rightarrow \int_{0}^{z} e^{-r_{1} t} a(t) d t$ and $z \rightarrow \int_{0}^{z} e^{-r_{2} t} a(t) d t$ are uniformly continuous on $[a, b]$, for any $\varepsilon>0$ there exists $\delta>0$ such that, for all $x, y \in[a, b]$ with $|x-y|<\delta$, we have

$$
\begin{equation*}
\left|\int_{0}^{+\infty} G(x, t) a(t) d t-\int_{0}^{+\infty} G(y, t) a(t) d t\right|<\varepsilon \tag{4.6}
\end{equation*}
$$

Therefore, the function $x \rightarrow \int_{0}^{+\infty} G(x, t) a(t) d t$ is continuous and $\sup _{x \geq 0}\left\{\int_{0}^{+\infty} G(x, t) a(t) d t\right\}$ $<\infty$. Thus, for all $u \in E, L u(0)=0, \lim _{x \rightarrow+\infty} L u(x)=0$, and $L u$ is continuous on $[0,+\infty)$, that is, $L u \in E$. In addition,

$$
|L u(x)| \leq\left(\sup _{x \geq 0}\left\{\int_{0}^{+\infty} G(x, t) a(t) d t\right\}\right)\|u\|
$$

so $L \in L(E)$.
To show the compactness of L, let B be a subset of E bounded by $M>0$. Then $L(B)$ is bounded by $\left(\sup _{x \geq 0}\left\{\int_{0}^{+\infty} G(x, t) a(t) d t\right\}\right) M$, and for all $u \in B$ and $x, y \in[a, b] \subset[0,+\infty)$ with $0<y-x<\delta$, (4.6) implies

$$
|L u(x)-L u(y)| \leq M \varepsilon
$$

that is, $L(B)$ is equicontinuous on any compact subinterval of $[0,+\infty)$.
Now, for any $u \in B$, we have

$$
|L u(x)| \leq M \int_{0}^{+\infty} G(x, t) a(t) d t
$$

so from the fact that $\lim _{x \rightarrow+\infty} \int_{0}^{+\infty} G(x, t) a(t) d t=0$, for any $\varepsilon>0$ there exists $T_{\varepsilon}>0$ such that

$$
|L u(x)| \leq M \int_{0}^{+\infty} G(x, t) a(t) d t<\varepsilon \text { for any } x>T_{\varepsilon}
$$

Hence, $L(B)$ is equiconvergent. Thus, Lemma 4.3 guarantees $L \in Q(E)$.
Now consider the functional $\alpha: U \rightarrow \mathbb{R}^{+}$defined by

$$
\alpha(u)=\min \{u(x), x \in[\gamma, \delta]\}
$$

where $[\gamma, \delta] \subset(0,+\infty)$ is a given interval. It is easy to see that α has the following properties:

$$
\alpha(\lambda u)=\lambda \alpha(u) \text { for any } u \in U \text { and } \lambda \geq 0
$$

$u \leq v$ implies $\alpha(u) \leq \alpha(v)$ where $u, v \in U ;$
$\alpha(L u)=0$ implies $u=0 ;$
and for all $u \in U$,

$$
\begin{equation*}
\alpha(L u) \geq C_{0} \alpha(u) \tag{4.7}
\end{equation*}
$$

where $C_{0}=\min \left\{\int_{\gamma}^{\delta} G(x, t) a(t) d t: x \in[\gamma, \delta]\right\}>0$.
Thus, if $\lambda \geq 0$ and $u \in U^{*}$ are such that $L u \leq \lambda u$, then

$$
0<\alpha(L u) \leq \lambda \alpha(u)
$$

and by (4.7),

$$
0<C_{0} \alpha(u) \leq \alpha(L u) \leq \lambda \alpha(u),
$$

that is, $\lambda \geq C_{0}$, and so $\lambda^{+} \geq C_{0}>0$.
Consider the bilinear form $\chi: E \times E \rightarrow \mathbb{R}$ defined for $u, v \in E$ by

$$
\chi(u, v)=\int_{0}^{+\infty} e^{-c x} a(x) u(x) v(x) d x
$$

It is clear that χ is positive, increasing, and for all $u, v \in U^{*}, \chi(L u, v)>0$. Let $u, v \in U, W_{1}=$ $L u$, and $W_{2}=L v$. We need to prove that $e^{-c x} W_{1}^{\prime}(x)$ and $e^{-c x} W_{2}^{\prime}(x)$ are bounded functions. Let $x_{0} \geq 0$ be such that $W_{1}^{\prime}\left(x_{0}\right)=0$. Then,

$$
\left|e^{-c x} W_{1}^{\prime}(x)\right|=\left|\int_{x_{0}}^{x} e^{-c x}\left(m u-\lambda W_{1}\right)\right| \leq\left(\int_{0}^{+\infty} e^{-c x} d x\right)\left(\|m\|\|u\|+\lambda\left\|W_{1}\right\|\right)<\infty
$$

and similarly

$$
\left|e^{-c x} W_{2}^{\prime}(x)\right| \leq\left(\int_{0}^{+\infty} e^{-c x} d x\right)\left(\|m\|\|v\|+\lambda\left\|W_{2}\right\|\right)<\infty
$$

Two integrations by parts then lead to

$$
\begin{aligned}
\chi(L u, v)=\int_{0}^{+\infty} e^{-c x} a(x) W_{1}(x) & v(x) d x \\
& =\int_{0}^{+\infty} e^{-c x} a(x) W_{1}(x)\left(-W_{2}^{\prime \prime}(x)+c W_{2}^{\prime}(x)+\lambda W_{2}(x)\right) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{+\infty} a W_{1}\left(-\left(e^{-c x} W_{2}^{\prime}\right)^{\prime}+\lambda e^{-c x} W_{2}\right) & d x \\
& =\int_{0}^{+\infty} a W_{2}\left(-\left(e^{-c x} W_{1}^{\prime}\right)^{\prime}+\lambda e^{-c x} W_{1}\right) d x=\chi(u, L v)
\end{aligned}
$$

The hypotheses of Theorem 3.13 are satisfied, so we have the following result.

Theorem 4.5. The linear eigenvalue problem (4.5) has a unique positive eigenvalue $\mu_{1}>0$. Moreover, problem (4.4) has no positive solutions if either

$$
\inf \{f(t, u) / u, t \in[0,1] u>0\}>\mu_{1}
$$

or

$$
\sup \{f(t, u) / u, t \in[0,1] u>0\}<\mu_{1} .
$$

To prove our existence result we need the following notation:

$$
\begin{array}{ll}
f^{0} & =\limsup _{u \rightarrow 0}\left(\max _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right), \quad f^{\infty}=\limsup _{u \rightarrow+\infty}\left(\max _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right) \\
f_{0} & =\liminf _{u \rightarrow 0}\left(\min _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right), \quad f_{\infty}=\liminf _{u \rightarrow+\infty}\left(\min _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right)
\end{array}
$$

Theorem 4.6. If either

$$
f^{0}<\mu_{1}<f_{\infty} \leq f^{\infty}<\infty
$$

or

$$
f^{\infty}<\mu_{1}<f_{0} \leq f^{0}<\infty,
$$

then problem (4.4) has a positive solution.
Proof. The condition $f^{0}<\mu_{1}<f_{\infty} \leq f^{\infty}<\infty$ (the other case is similar) implies that there exists $\varepsilon>0$ and positive constants C_{1}, C_{2} such that

$$
F(u) \leq\left(\mu_{1}-\varepsilon\right) u+G(u) \text { for all } \in U^{*} \cap B(0, \delta)
$$

and

$$
\left(\mu_{1}+\varepsilon\right) u-C_{1} \leq F(u) \leq\left(f^{\infty}+\varepsilon\right) u+C_{2} \text { for all } u \in U^{*},
$$

where $G u(t)=\max \left\{f(t, u(t))-f^{0} u(t), 0\right\}$. The conclusion then follows from Theorem 3.10.

Remark 4.7. The generalized Fisher equation posed on the real line has been studied in [8] and [9]. Arguing as in Sub-section 4.2, we can prove the existence of $0<\mu^{+} \leq \mu^{-}$such that, if

$$
f^{0}<\mu^{+} \leq \mu^{-}<f_{\infty} \leq f^{\infty}<\infty
$$

or

$$
f^{\infty}<\mu^{+} \leq \mu^{-}<f_{0} \leq f^{0}<\infty
$$

holds, then the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+c u^{\prime}(x)+\lambda u(x)=a(x) f(x, u(x)), x \in \mathbb{R} \\
u(-\infty)=u(+\infty)=0
\end{array}\right.
$$

has a positive solution in the case where $a \in C\left(\mathbb{R}, \mathbb{R}^{+}\right)$does not vanish identically on any subinterval of \mathbb{R}, and vanishes at $\pm \infty, f \in C\left(\mathbb{R} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$, and

$$
f^{0}=\limsup _{u \rightarrow 0}\left(\max _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right), \quad f^{\infty}=\limsup _{u \rightarrow+\infty}\left(\max _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right),
$$

$$
f_{0}=\liminf _{u \rightarrow 0}\left(\min _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right), \quad f_{\infty}=\liminf _{u \rightarrow+\infty}\left(\min _{t \in[0,+\infty)} \frac{f(t, u)}{u}\right) .
$$

Moreover, the eigenvalue problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+c u(x)+\lambda u(x)=\mu a(x) u(x), x \in \mathbb{R}, \\
u(-\infty)=u(+\infty)=0,
\end{array}\right.
$$

admits at least one positive eigenvalue.

Acknowledgments

The work of A. Benmezai was supported by the General Directorate of Scientific Research and Technological Development, Ministry of Higher Education, Algeria.

References

[1] C. Avramescu, Sur l'existence de solutions convergentes des systémes d'équations différentielles non linéaires. Ann. Mat. Pura Appl. (4) 81 (1969), pp 147-168.
[2] C. Avramescu and C. Vladimirescu, Homoclinic solutions for linear and linearizable ordinary differential equations. Abstr. Appl. Anal. 5 (2000), pp 65-85.
[3] A. Benmezaï, On the number of solutions of two classes of Sturm-Liouville boundary value problems. Nonlinear Anal. 70 (2009), pp 1504-1519.
[4] A. Benmezaï, Positive solutions for a second order two point boundary value problem. Comm. Appl. Anal. 14 (2010), pp 177-190.
[5] A. Benmezaï, J. R. Graef, and L. Kong, Positive solutions to a two point singular boundary value problem. Differ. Equ. Appl. 3 (2011), pp 347-373.
[6] D. G. de Figueiredo, Positive solutions of semilinear elliptic problems. Differential equations (Sao Paulo, 1981). Lecture Notes in Math. 957, pp 34-87, Springer, BerlinNew York, 1982.
[7] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, New York, 1985.
[8] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals. Electron. J. Qual. Theory Differ. Equ. 2006 (2006), No. 4, pp 1-19.
[9] S. Djebali, O. Kavian, and T. Moussaoui, Qualitative properties and existence of solutions for a generalized Fisher-like equation. Iranian J. Math. Sci. Infor. 4 (2009), pp 65-81.
[10] S. Djebali and K. Mebarki, Existence results for a class of BVPs on the positive half line. Comm. Appl. Nonlinear Anal. 14 (2007), pp 95-113.
[11] S. Djebali and K. Mebarki, Multiple positive solutions for singular BVPs on the positive half line. Comput. Math. Appl. 55 (2008), pp 2940-2952.
[12] S. Djebali and O. Saifi, Positive solutions for singular BVPs with sign changing and derivative depending nonlinearity on the positive half line. Acta Appl. Math. 110 (2010), pp 639-665.
[13] C. L. Dolph, Nonlinear integral equations of the Hammerstein type. Trans. Amer. Math. Soc. 60 (1949), pp 289-307.
[14] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988.
[15] Z. Liu and F. Li, Multiple positive solutions of two point boundary value problems. J. Math. Anal. Appl. 203 (1996), pp 610-625.
[16] Y. Naïto and S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second order differential equations. Nonlinear Anal. 56 (2004), pp 919-935.
[17] F. I. Njoku and F. Zanolin, Positive solutions for two point BVP's: Existence and multiplicity results. Nonlinear Anal. 13 (1989), pp 1329-1338.
[18] B. Ruf, On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. (4) 128 (1981), pp 133-151.
[19] B. Ruf and P. N. Srikanth, Multiplicity results for O.D.E's with nonlinearities crossing all but a finite number of eigenvalues. Nonlinear Anal. 10 (1986), pp 157-163.
[20] K. Schmitt, Boundary value problems with jumping nonlinearities. Rocky Mountain J. Math. 16 (1986), pp 481-496.
[21] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems. Ann. Inst. Henri Poincaré 2 (1985), pp 143-156.
[22] X. Xu, D. Jiang, D. O'Regan, and R. Agarwal, Multiple positive solutions of fourth order boundary value problems, Math. Inequal. Appl. 8 (2005), pp 79-88.
[23] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I, Fixed Point Theorems. Springer-Verlag, New-York, 1986.

[^0]: *E-mail address: abenmezai@yahoo.fr
 ${ }^{\dagger}$ E-mail address: John-Graef@utc.edu
 \ddagger E-mail address: Lingju-Kong@utc.edu

