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Abstract

Let C be a Cantor subset of the real line. For a real number t, let C+t be the translate

of C by t. We say two real numbers s,t are translation equivalent, if the intersection

of C and C+s is a translate of the intersection of C and C+t. We consider a class of

Cantor sets determined by similarities with one fixed positive contraction ratio. For

this class of Cantor set, we show that an “initial segment” of the intersection of C and

C+t is a self-similar set with contraction ratios that are powers of the contraction ratio

used to describe C as a self-similar set if and only if t is translation equivalent to a

rational number. Many of our results are new even for the middle thirds Cantor set.

AMS Subject Classification: 28A80, 51F99.

Keywords: Cantor set, fractal, self-similarity, translation, intersection, Hausdorff measure,

Hausdorff dimension.

1 Introduction

In this paper we study self-similarity properties of the intersections of certain Cantor sets

with their translates. The simplest form of our results is Theorem 1.1. Cantor sets may

appear to be rather special. However, they occur in mathematical models involving fractals,

iterated function systems, and self-similar measures), they further play a role in number

theory, in signal processing, in ergodic theory, and in limit-theorems from probability. Can-

tor sets are also rooted in the theory of dynamical systems. See, for instance, Palis and
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2 Steen Pedersen and Jason D. Phillips

Takens [26]. The literature in this subject, neighboring areas, and applications is vast. Be-

low we limit ourselves to a small sample of the literature: Cabrelli, Mendivil, Molter, and

Shonkwiler[2], Dai and Tian [6], Davis and Hu [3], Duan, Liu, and Tang [5], Furstenberg,

[8], Garcia, Molter, and Scotto [9], Hare, Mendivil, and Zuberman [11], Kraft [15], [16], Li

and Nekka [17], Li, Yao, and Zhang [18], McClure [21], Moreira [22], Peres and Solomyak

[25], Pedersen and Phillips [23], [24], Williams [27], and Zhang and Gu [28].

Let n ≥ 3 be an integer. Any real number t ∈ [0,1] has at least one n-ary representation

t = 0.nt1t2 · · · =
∞∑

k=1

tk

nk

where each tk is one of the digits 0,1, . . . ,n− 1. Deleting some elements from the full digit

set {0,1, . . .n− 1} we get a set of digits D := {dk | k = 1,2, . . . ,m} with dk < dk+1 for all k =

1,2, . . . ,m−1. Assuming 2 ≤ m < n we get a corresponding deleted digits Cantor set

C =Cn,D :=


∞∑

k=1

xk

nk

∣∣∣∣ xk ∈ D for all k ∈ N
 . (1.1)

We say that D is uniform, if dk+1−dk, k = 1,2, . . . ,m−1 is constant and ≥ 2.We say D is

regular, if D is a subset of a uniform digit set. Finally, we say that D is sparse, if |δ−δ′| ≥ 2

for all δ , δ′ in the set of differences

∆ := D−D =
{
d j−dk | d j,dk ∈ D

}
.

Clearly, a uniform set is regular and a regular set is sparse. The set D = {0,5,7} is sparse

and not regular. We will abuse the terminology and say Cn,D is uniform, regular, or sparse

provided D has the corresponding property. The middle thirds Cantor set is obtained by

setting n = 3 and D = {0,2}. In particular, the middle thirds Cantor set is a uniform set.

In this paper we investigate self-similarity properties of the intersections C∩ (C+ t) of

C with its translates C + t := {x + t | x ∈ C}, for sparse Cantor sets C. Using a geometric

approach, we investigate the class of real numbers t ∈ [0,1] for which the intersection C∩
(C+ t) can be expressed as the finite, disjoint union of self-similar sets. Since the problem

is invariant under translation, we will assume d1 = 0.

Compared to previous studies, e.g., [4], [13], and [18], of self-similarity properties of

C∩ (C+ t) we allow a greater class of digits sets, sparse sets as compared to uniform sets

and we study self-similarity of a subset of C ∩ (C+ t) instead of self-similarity of all of

C∩ (C+ t).

Previous studies focused on the class of strongly periodic rational values t, see section

6.1. We expand the study of uniform sets to include all rational values of t and give a

method for constructing values t ∈ C for which the intersection C∩ (C+ t) is not the finite,

disjoint union of self-similar sets. These results, as well as Theorem 1.1, Theorem 1.3, and

Theorem 1.4 are new even for the middle thirds Cantor set.

1.1 Statement of results

Fix a real number t. If C∩ (C+ t) is non-empty, let

C (t) := (C∩ (C+ t))− inf (C∩ (C+ t)) ,
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otherwise, let C(t) be the empty set. We say that two real numbers s and t are translation

equivalent, if C(s) =C(t). Clearly, s and t are translation equivalent if and only if C∩ (C+ s)

is a translate of C ∩ (C+ t). We show that a real number t is translation equivalent to a

rational if and only if some initial segment of C(t) has a self-similarity property. More

precisely, we show:

Theorem 1.1. Let D be sparse and x ∈ [0,1] such that C (x) is not empty. Then x is transla-

tion equivalent to a rational t ∈ [0,1] if and only if there exists ε > 0, such that C(x)∩ [0,ε]

is a self-similar set generated by a finite set of similarities f j(y) = r jy+ b j, where r j = n−q j

for some q j ∈ N.

Theorem 1.1 only requires that the segment of C (x) in a neighborhood surrounding zero

is self-similar. However, if x is translation equivalent to a rational, then the intersection

C(x)∩ [ε,1] cannot be arbitrary, see Theorem 1.3.

Let ∆+ := ∆∩ [0,∞) and let F
(
∆+

)
be the set of α in the interval [0,1] such that

α =

∞∑

k=1

αkn−k, for some αk ∈ ∆+.

Then F
(
∆+

)
is a subset of the set F+ of all t ∈ [0,1] such that C∩ (C+ t) is non-empty, and

any t in F+ is translation equivalent to some α in F
(
∆+

)
, see Section 4.

Let δ be an integer. If D∩ (D+δ) is nonempty, let

Dδ := D∩ (D+δ)−min(D∩ (D+δ)) ,

otherwise, let Dδ be the empty set. It follows from Lemma 4.12, that α in F
(
∆+

)
is transla-

tion equivalent to a rational if and only if there are integers k ≥ 0 and q > 0, such that

Dα j
⊆ Dα j+q for all j > k. (1.2)

We say α is strongly periodic if there are sets D̃α j
and q > 0, such that

Dα j
+ D̃α j

= Dα j+q
for all j > 0.

Note this implies (1.2). We show in Section 6.1 that our notion of strong periodicity is

consistent with the one in [4], [18], [13], and [29], when D is uniform.

Theorem 1.2. Let D be sparse and α = 0.nα1α2 . . . be an element in F
(
∆+

)
. Then α is

strongly periodic if and only if C (α) is a self-similar set generated by a finite set of similar-

ities f j(x) = n−qx+b j , where q ∈N.

If D is uniform, this was established in [4], [18] when dm = n− 1. After we completed

this manuscript we received the preprint [14], this preprint contains a generalization of

Theorem 1.2, see Remark 4.16.

One part of Theorem 1.1 is a consequence of a structure theorem for C∩ (C+ x) , when

x is rational. This structure is summarized in the following result.
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Theorem 1.3. Let D be sparse and t ∈ [0,1] such that C ∩ (C+ t) is not empty. If t =

0.nt1 · · · tk−ptk−p+1 · · · tk for some period p and integer k ≥ p, then there exists a sparse digits

set E =
{
0 ≤ e1 < e2 < · · · < er < n2p

}
and corresponding deleted digits Cantor set Cn2p ,E

such that C (t) consists of a finite number of translates of 1
nk Cn2p ,E , the translates of 1

nk Cn2p ,E

are disjoint, in fact, the translates of the convex hull of 1
nk Cn2p ,E are disjoint.

Let dimH (C∩ (C+ t)) denote the Hausdorff measure of C∩ (C+ t) . We showed in [24]

that there are uncountably many t such that the dimH (C∩ (C+ t))-dimensional Hausdorff

measure of C ∩ (C+ t) is zero or infinity. For such t, the set C ∩ (C + t) is not a finite

union of translates of a self-similar set. In particular, not all real numbers are translation

equivalent to a rational number. We provide a method for constructing real numbers which

are not translation equivalent to any rational, and thus are not a finite, disjoint union of

self-similar sets. In particular, we show that if D is uniform and t ∈Cn,D is irrational, then t

is not translation equivalent to any rational.

The structure of uniform deleted digits Cantor sets allows us to prove the following

special case of Theorem 1.1:

Theorem 1.4. Let D be uniform and x ∈ [0,1] such that C ∩ (C+ x) is not empty. There

exists a rational t ∈ [0,1] such that C(x) =C(t) if and only if C (x) is the finite, disjoint union

of self-similar sets.

We show in Section 6.2 that our results extend to a class of β-expansions with non-

uniform digits sets. The papers [29] and [13] consider β-expansions with uniform digit

sets, but they allow a different class of β’s than we do.

We refer the reader to [7] for background information on Hausdorff dimension, Haus-

dorff measure and self-similar sets.

1.2 Outline

In Section 2 we summarize the construction of C∩ (C+ t) in our analysis. More details can

be found in [24] where this construction was used to investigate the Hausdorff measure of

C∩ (C+ t). A related construction was used in [23] to investigate the Hausdorff dimension

of C∩ (C+ t).

In Section 3 we investigate some aspects of translation equivalence leading to a proof

of Theorem 1.3. We calculate the Hausdorff measure of C∩ (C+ t) for some C and t and

apply our methods to situations when D is not sparse.

In Section 4 we resume our analysis of translation equivalence leading to a proof of

Theorem 1.1 and to a proof of Theorem 1.2

In Section 5 we associate an uncountable family of irrationals that are not translation

equivalent to a rational to any t such that C(t) is not finite.

Finally, in Section 6, we focus on uniform sets and discuss the relationship between

strong periodicity and translation equivalence. We extend the definition of strongly periodic

rationals to an arbitrary digits set D and show, if D is uniform, then Theorem 1.1 holds with

r j = n−q j replaced by r j > 0. We prove that our results hold for certain β-expansions with

non-uniform digits sets.
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2 A Construction of C∩ (C+ t)

In this section we assume n ≥ 3 is given and that D = {dk | k = 1,2, . . . ,m} , 2 ≤ m < n is a

digits set. We demonstrate a natural method for constructing C = Cn,D, which forms the

basis for our analysis of C∩ (C+ t) . The results in this section are proven in [24], but we

summarize the relevant parts of [24] here for the convenience of the reader.

In order to avoid trivial cases where C∩ (C+ t) is empty, define

F := {t |C∩ (C+ t) , ∅} .

It is easy to see that F = C −C = {x− y | x,y ∈ C} and consequently, F is compact. Since

C∩ (C− t) is a translate of C ∩ (C+ t) it is sufficient to consider t ≥ 0 and F =
(−F+

)∪F+

where F+ := F ∩ [0,∞).

The middle thirds Cantor set is often constructed by beginning with the closed interval

C0 = [0,1] and, inductively, for k ≥ 0, obtaining Ck+1 from Ck by removing the open middle

of each interval in Ck. In general, C = Cn,D can be constructed in a similar manner. The

refinement of an interval [a,b] is the set

m⋃

j=1

[
a+

d j

n
(b−a) ,a+

d j+1

n
(b−a)

]
.

Let C0 be the closed unit interval [0,1] and inductively, for k ≥ 0, obtain Ck+1 from Ck by

refining each n-ary interval in Ck . Then, Ck :=
{
0.nx1 x2 . . . | x j ∈ D for 1 ≤ j ≤ k

}
, Ck+1 ⊂Ck

for all k, and

C =Cn,D =

∞⋂

k=0

Ck =
{
0.nx1x2 . . . | x j ∈ D for all 1 ≤ j

}
. (2.1)

For any integer h, we say that an interval J(h) = 1
nk (C0 +h) is an n-ary interval of length

1
nk . We will simply say n-ary interval when k is understood from the context. In particular,

if U is a compact set, the phrase an n-ary interval of U refers to an n-ary interval of length
1
nk contained in U where k is the smallest such k. Note, Ck consists of mk disjoint n-ary

intervals.

For a fixed t = 0.nt1t2 . . . in [0,1], our analysis of C∩ (C+ t) has three ingredients: (i) It

follows from (2.1) that

C∩ (C+ t) =

∞⋂

k=0

(Ck ∩ (Ck + t)) . (2.2)

(ii) There is a relationship, see Lemma 2.5, between Ck∩ (Ck + t) and Ck∩ (Ck + btck), where

btck = 0.nt1t2 . . . tk. (iii), the structure of the set Ck ∩ (Ck + btck) is related to the structure of

the set Ck+1 ∩ (Ck+1+ btck+1), see the definition of σt and Lemma 2.3, below.

Since btck = h
nk for some integer h, then Ck + btck also consists of mk disjoint n-ary

intervals. Thus, an n-ary interval J(h) ⊂ Ck may interact with Ck + btck in combinations of

only four cases: we say J(h) is in the interval case if J(h) is also an interval of Ck + btck, the

potential interval case if J(h) + 1
nk is an interval of Ck + btck, the potentially empty case if

J(h)− 1
nk is an interval of Ck + btck, and the empty case if J(h)∩ (Ck + btck) is empty.
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Remark 2.1. According to Theorem 3.1 of [24], if D is any digits set and t ∈ [0,1] admits

a finite n-ary representation, then C ∩ (C+ t) = A∪ B where A is either empty or a finite,

disjoint collection of sets of the form 1
nk (C+h) for some integers k and h, and B is either

empty or a finite collection of points. For these reasons, we focus on real numbers which

do not admit finite n-ary representation.

It is important to note that only interval and potential interval cases can contribute points

to C∩ (C+ t) whenever t does not admit a finite n-ary representation.

Lemma 2.2. Suppose 0 < t− btck < 1
nk for some k. If J is an n-ary interval in Ck and J is

either in the potentially empty or the empty case, then J∩ (Ck + t) is empty. In particular,

the intersection J∩C∩ (C+ t) is empty.

It is possible for J(h) to be both in the interval case and potentially empty case, or

to be both in the potential interval case and in the potentially empty case. However, the

intersections corresponding to the potentially empty cases do not contribute points to C∩
(C+ t) when 0 < t−btck and we will not identify these cases with special terminology.

We introduce a function whose values tell us whether Ck ∩ (Ck + btck) contains interval

cases, potential interval cases, both, or neither. Since C0 ∩
(
C0 + btc0

)
= [0,1] consists of a

single interval case, then we can examine Ck ∩ (Ck + btck) using induction. Let i :=
√
−1 and

let ξ : {0,±1, i}× {0,±1, . . . ,± (n−1)} → {0,±1,±i} be determined by

ξ (0,h) := 0

ξ (1,h) :=



1 if |h| is in ∆ but not in ∆−1

−1 if |h| is in ∆−1 but not in ∆

i if |h| is both in ∆ and ∆−1

0 otherwise

ξ (−1,h) :=



−1 if |h| is in n−∆ but not in n−∆−1

1 it |h| is in n−∆−1 but not in n−∆
−i if |h| is both in n−∆ and in n−∆−1

0 otherwise

ξ (i,h) :=



−i if |h| is in ∆∪ (n−∆) but not in (∆−1)∪ (n−∆−1)

i if |h| is in (∆−1)∪ (n−∆−1) but not in ∆∪ (n−∆)

1 if |h| is both in ∆∪ (n−∆) and in (∆−1)∪ (n−∆−1)

0 otherwise.

The function ξ (z,h) is completely determined by D and n. Let σt :N0→ {0,±1, i} be deter-

mined by

σt(0) := 1 and inductively

σt (k+1) := ξ (σt (k) , tk+1) ·σt (k) for k ≥ 0.

By construction of ξ we have σt (k) ∈ {0,±1, i} for all k ≥ 0. Compared to [24] the present

definition of ξ uses |h| in place of h. This is to anticipate a variant needed in Section 4.
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Lemma 2.3. Let t= 0.nt1t2 · · · be some point in [0,1]. Then Ck ∩(Ck + btck) contains interval

cases but no potential interval cases iff σt (k) = 1, potential interval cases but no interval

cases iff σt (k) = −1, both interval and potential interval cases iff σt (k) = i, and neither

interval cases nor potential interval cases iff σt (k) = 0.

Lemma 2.3 allows us to describe F in terms of σt, when D is sparse.

Lemma 2.4. Let C =Cn,D be a deleted digits Cantor set. Then D is sparse iff

F+ = {t ∈ [0,1] | σt (k) = ±1 for all k ∈N} .

Let #E denote the number of elements in a finite set E. Define µt(0) := 1 and inductively

µt (k+1) =


µt(k) ·#(D− tk+1)∩ (D∪ (D+1)) if σt (k) = 1

µt(k) ·#(D−n+ tk+1)∩ (D∪ (D−1)) if σt (k) = −1

The function µt also depends on n and D, but we suppress this dependence in the notation.

The function µt provides a method for counting the number of intervals contained in Ck ∩
(Ck + t).

Lemma 2.5. Let C =Cn,D be given. Suppose t ∈ F+ does not admit a finite n-ary represen-

tation and σt(k) = ±1 for all k ≥ 0. Then Ck ∩ (Ck + t) is a union of µt(k) intervals, each of

length

`k :=


1
nk − (t−btck) when σt (k) = 1

t−btck when σt (k) = −1
.

While µt (k) provides an upper bound to the number of intervals of length `k required

to cover Ck ∩ (Ck + t), it is important to know that each of these intervals contains points in

C∩ (C+ t).

Lemma 2.6. Let C =Cn,D be given. Suppose t ∈ F+ does not admit a finite n-ary represen-

tation and σt(k) = ±1 for all k ≥ 0. For each k, every n-ary interval of Ck in the interval or

potential interval case contains points of C∩ (C+ t).

If D is not sparse, then some interval or potential interval cases may not lead to points

in C∩ (C+ t), see Example 3.13.

3 Real Values t.

In this section, we prove Theorem 1.3. Part of Theorem 1.1 is an immediate consequence.

The other part of Theorem 1.1 is proved in Section 4.

As in Section 2, many of the results of this section only require that t ∈ F and σt (k)=±1

for all k. This allows us to apply our results when D is not sparse for specific values of t, see

Section 3.4. On the other hand, if D is sparse the conditionσt (k) = ±1 follows immediately

from Lemma 2.4 for all t in F.
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3.1 Translation Equivalence of n-ary representations.

We begin by investigating the structure of C∩ (C+ t) for an arbitrary value t in F. Lemma

3.1 describes how the structure of C ∩ (C+ t) is related to the n-ary representation t =

0.nt1t2 . . ..

Lemma 3.1. Let C = Cn,D be given and t ∈ F+ such that t does not admit finite n-ary

representation and σt (k) = ±1 for all k ∈ N0. Then C ∩ (C+ t) is a union of µt(k) disjoint

copies of
1

nk

[
C∩

(
C+nk (t−btck)

)]
when σt (k) = 1

and of µt(k) disjoint copies of

1

nk

[
C∩

(
C−1+nk (t−btck)

)]
when σt (k) = −1.

Proof. Any n-ary interval in Ck is of the form J(h) = 1
nk (C0 +h) for some h ∈ Z. Let J

(h)

j
:=

1
nk

(
C j +h

)
. Then

1

nk

(
C∩

(
C+nk (t−btck)

))
+

h

nk
=

∞⋂

j=1

(
J

(h)

j
∩

(
J

(h)

j
+ (t−btck)

))
and

1

nk

(
C∩

(
C−1+nk (t−btck)

))
+

h

nk
=

∞⋂

j=1

(
J

(h)

j
∩

(
J

(h)

j
− 1

nk
+ (t−btck)

))

Now J(h) ⊆ Ck implies J
(h)

j
⊂ Ck+ j for all j, since J

(h)

j
is obtained from J(h) by repeated

refinement.

According to Lemma 2.2, only n-ary intervals in Ck that are in the interval case or the

potential intervals case can have points in common with C ∩ (C+ t) . By Lemma 2.5 there

are µt(k) n-ary intervals J(h) ⊆Ck in the interval or the potential interval case.

Supposeσt (k)= 1. Then J(h) is in the interval case by Lemma 2.3. Hence J(h) ⊂Ck+btck
and therefore J(h) + (t−btck) ⊂ Ck + t. By repeated refinement J

(h)

j
+ (t−btck) ⊂ Ck+ j + t.

Consequently,

∞⋂

j=1

(
J

(h)

j
∩

(
J

(h)

j
+ (t−btck)

))
⊆
∞⋂

j=1

(
Ck+ j ∩

(
Ck+ j + t

))

=C∩ (C+ t).

Suppose σt (k) = −1. Then J(h) is in the potential interval case by Lemma 2.3. Hence

J(h)− 1
nk ⊂Ck + btck and therefore J(h) − 1

nk + (t−btck) ⊂Ck + t. By repeated refinement J
(h)

j
−

1
nk + (t−btck) ⊂Ck+ j + t. Consequently,

∞⋂

j=1

(
J

(h)
j
∩

(
J

(h)
j
− 1

nk
+ (t−btck)

))
⊆
∞⋂

j=1

(
Ck+ j∩

(
Ck+ j + t

))

=C∩ (C+ t).
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Conversely, suppose x ∈ C ∩ (C+ t) =
⋂∞

k=1 Ck ∩ (Ck + t). Let k ∈ N0 be arbitrary and

J(h) ⊂Ck denote the n-ary interval such that x ∈ J(h) for some h by Lemma 2.2 and J(h) is in

interval or potential interval case. Let

Ik :=
{
i | J(i) ⊂Ck is n-ary and in the interval or potential interval case

}
.

If J( j) = J(i) − 1
nk for some j, i ∈ Ik then either J(i) or J( j) is in both the interval and potential

interval cases, which contradicts that σt (k) = ±1. Thus, any J(i) ⊂Ck ∩ (Ck + btck) such that

i , j is at least a distance of 1
nk from J( j) and J( j) ∩ J(i) = ∅.

Suppose σt (k) = 1 so that J(i) is in the interval case for all i ∈ Ik. Then Ck ∩ (Ck + t) =⋃
i∈I J(i) ∩

(
J(i) + (t−btck)

)
so that x ∈ J(h) ∩Ck ∩ (Ck + t) = J(h) ∩

(
J(h)+ (t−btck)

)
. Further-

more, J(h)∩Ck+ j = J
(h)
j

for each j > 0 by construction of Ck so that

x ∈
∞⋂

j=1

(
J(h)∩Ck+ j ∩

(
Ck+ j + t

))
=

∞⋂

j=1

(
J

(h)

j
∩

(
J

(h)

j
+ (t−btck)

))
.

Since x is arbitrary, then C∩ (C+ t) is a subset of the disjoint union

⋃

h∈Ik


∞⋂

j=1

(
J

(h)

j
∩

(
J

(h)

j
+ (t−btck)

))
 .

The caseσt (k)=−1 is obtained by replacing J
(h)

j
+(t−btck) by J

(h)

j
− 1

nk +(t−btck) above.

This completes the proof. �

According to Lemma 2.5, if σt ( j)=±1 for all j then Ck∩(Ck + btck) is the disjoint union

of µt (k) n-ary intervals of length 1
nk . Using the definition Ik from the proof of Lemma 3.1,

Ck ∩ (Ck + btck) =
⋃

h∈Ik
J(h) and, for each h ∈ Ik, the corresponding interval J(h) refines to

a “small” Cantor set intersected with its real translate. Lemma 3.1 shows that, for each k,

the translation value directly depends on digits t j for j > k, and the spacing of intervals J(h)

depends on btck = 0.nt1t2 . . . tk. The requirement that σt (k) = ±1 guarantees that the intervals

J(h) are disjoint. These results follow from the analysis in Section 2.

The next few lemmas establish some properties of translation equivalence. The first of

these result allows us to calculate limits of sequences of the form C∩
(
C+ x j

)
.

Let H s(K) denote the s-dimensional Hausdorff measure of a set K. If D is sparse and

0 < β < 1, 0 < y <∞ are arbitrary real numbers, then the set

Fβ,y :=
{
t | m−2βy ≤Hβ logn(m) (C∩ (C+ t)) ≤ y

}

is dense in F, see [24]. Thus, the mapping t 7→ H s (C∩ (C+ t)) is everywhere discontinu-

ous on F. In general, if
{
x j

}∞
j=0

is a sequence in F+ which converges to x, then the limit

lim j→∞
(
C∩

(
C+ x j

))
need not equal C∩ (C+ x), even when the limit exists with respect to

the Hausdorff metric.

Example 3.2. Let C = C3,{0,2} denote the Middle Thirds Cantor set. Choose x := 1
3

and

x j :=
∑ j

i=1
2

3i+1 = 0.302 · · ·20̄ so that x j converges to x. For each j,

C∩
(
C+ x j

)
=

(
1

3
− 1

3 j+1
C

)⋃(
1− 1

3 j+1
C

)
,
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so that lim j→∞
(
C∩

(
C+ x j

))
=

{
1
3 ,1

}
, however C∩ (C+ x) =

{
1
3 ,

2
3 ,1

}
.

However, with suitable restrictions on the sequence
{
x j

}
we show that the sets C ∩(

C+ x j

)
do converge.

Lemma 3.3. Let C =Cn,D and x0 be given. Suppose
{
x j

}∞
j=0

is a sequence in F+ converging

to some real number x. If

1. σx j
(k) = ±1 for all j,k ∈ N0,

2. for each j there exists c j ∈ R such that C∩
(
C+ x j

)
= (C∩ (C+ x0))+ c j and

3. the sequence c j converges to c ∈ R,

then C∩ (C+ x) = (C∩ (C+ x0))+ c.

Proof. Note that x ∈ F+ by compactness. Furthermore, the sequence of compact sets

(C∩ (C+ x0))+ c j converges in the Hausdorffmetric so that

lim
j→∞

(
C∩

(
C+ x j

))
= (C∩ (C+ x0))+ c.

We must show that C ∩ (C+ x) = (C∩ (C+ x0))+ c. The result is trivial if x = x j for

some j, so suppose x , x j for all j.

Let y ∈ (C∩ (C+ x0))+ c be arbitrary. For each j, choose y j ∈ C ∩
(
C+ x j

)
such that

y j converges to y. Thus, y j is a sequence of C so that y ∈ C and lim j→∞
{
C+ x j

}
= C + x

converges in the Hausdorffmetric so that y ∈ (C+ x). Hence (C∩ (C+ x0))+c ⊆C∩ (C+ x).

Let y ∈ C ∩ (C+ x) be arbitrary. For each j ∈ N, choose N j ∈ N such that
(

1
n

)N j+1 ≤
∣∣∣x− x j

∣∣∣ <
(

1
n

)N j
. Thus, bxcN j

=
⌊
x j

⌋
N j

and CN j
∩

(
CN j
+ bxcN j

)
= CN j

∩
(
CN j
+

⌊
x j

⌋
N j

)
. Let J

be the n-ary interval of CN j
which contains y. According to Lemma 2.6, J contains points

of C∩
(
C+ x j

)
so choose y j ∈ J∩C∩

(
C+ x j

)
. Since J has length

(
1
n

)N j
then

∣∣∣y− y j

∣∣∣≤
(

1
n

)N j
.

Thus, we can construct a sequence
{
y j

}
such that y j ∈ C ∩

(
C+ x j

)
for each j. Since

x j → x, then N j → ∞ and y j converges to y. Hence, y ∈ lim j→∞
{
C∩

(
C+ x j

)}
and C ∩

(C+ x) = (C∩ (C+ x0))+ c. �

Corollary 3.4. Let
{
x j

}∞
j=0

be a sequence in F+ such that x j converges to x, σx j
(k) = ±1 for

all k, C∩
(
C+ x j

)
= (C∩ (C+ x0))+ c j for each j, and the sequence c j converges to c. Then

c j ∈ F for all j ∈ N0.

Proof. Let j be arbitrary. Then C∩
(
C+ x j

)
=

(
C+ c j

)
∩

(
C+ x0 + c j

)
so that any element

y ∈ C ∩
(
C+ x j

)
is contained in both C and

(
C+ c j

)
. Thus c j ∈ F for all j and c ∈ F by

compactness. �

We now show that when t is rational with period p, then σt is also periodic with period

p or 2p.
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Lemma 3.5. Let Cn,D be given. Suppose t ∈ F+ does not admit finite n-ary representation,

σt (k) = ±1 for all k ∈ N, and t = 0.nt1 · · · tktk+1 · · · tk+p for some integer k ≥ 0 and period p.

Then σt has period p or 2p.

Proof. Suppose σt (k+1) = σt (k+ p+1). By induction, for any j > k,

σt ( j+ p+1) = ξ
(
σt ( j+ p) , t j+p+1

)
·σt ( j+ p)

= ξ
(
σt ( j) , t j+1

)
·σt ( j)

= σt ( j+1) .

Therefore, σt ( j) = σt ( j+ p) for all j > k and σt (k) has period p.

Supposeσt (k+1) = −σt (k+ p+1). If σt (k+ p+1) =σt (k+2p+1) then it follows that

σt ( j) = σt ( j+ p) for j > k + p and σt has period p by the argument above. Otherwise,

σt (k+1) = σt (k+2p+1). By induction, for any j > k,

σt ( j+2p+1) = ξ
(
σt ( j+2p) , t j+2p+1

)
·σt ( j+2p)

= ξ
(
σt ( j) , t j+1

)
·σt ( j)

= σt ( j+1) .

Hence, σt ( j) has period 2p. �

It follows from the next lemma that, if D is sparse, then any t in F+ is translation

equivalent to an s in F+ such that σs(k) = 1 for all k. That is, all intervals in Ck ∩ (Ck + bsck)

are in the interval case. We need Lemma 3.5 to show that, if t is rational, then the s we

construct is also rational.

Lemma 3.6. Let C =Cn,D be given. Suppose t ∈ F+ does not admit finite n-ary representa-

tion and σt (k) = ±1 for all k ∈ N. Then there exists y ∈ F+ such that σy (k) = 1 for all k ∈N
and C∩ (C+ t) = (C∩ (C+ y))+ c for some c ∈ R. If t is rational, then y is also rational.

Proof. Let t ∈ F be arbitrary. For a real sequence {xi}∞i=0, let xi := 0.nxi1xi2 . . . denote the

n-ary representation. Let x0 := t so that x0 j = t j and σx0
( j) = ±1 for all j ∈ N.

We will construct sequences {xi}∞i=0 and
{∑i

j=0 ck j

}∞
i=0

which satisfy Lemma 3.3 and

then show that y := limi→∞ xi satisfies our conditions. Let ck0
:= 0 so that C ∩ (C+ x0) =

(C∩ (C+ t)) + ck0
and the translation condition is true for i = 0. Suppose C ∩ (C+ xi ) =

(C∩ (C+ x0))+
∑i

j=0 ck j
for some i ∈ N0 and σxi

( j) = ±1 for all j ∈ N0.

Let Pi :=
{
h | σxi

(h) = −1
}

be a subset of N. By assumption, Pi is empty iff σxi
(k) = 1

for all k and we can choose y := xi.

Suppose Pi is nonempty and let ki+1 ∈ Pi be the minimal element. Thus,σxi
(ki+1 −1)= 1

so that xi,ki+1
∈ ∆−1 by definition of σ. Therefore, C∩ (C+ t) consists of µxi

(ki+1) copies of
1

nki+1

(
C∩

(
C−1+nki+1

(
xi −bxicki+1

)))
by Lemma 3.1. Since

C∩ (C−1+ z) = (C∩ (C+1− z))− (1− z)
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for any real z, then

1

nki+1

(
C∩

(
C−1+nki+1

(
xi −bxicki+1

)))

=
1

nki+1

(
C∩

(
C+1−nki+1

(
xi −bxicki+1

)))
− cki+1

=
1

nki+1

C∩
C+nki+1


∞∑

j=1+ki+1

n−1− xi j

n j





− cki+1
.

where cki+1
:= 1

nki+1

(
1−nki+1

(
xi −bxicki+1

))
. Since 0 ≤ nki+1

(
xi −bxicki+1

)
≤ 1, then 0 ≤ cki+1

≤
1

nki+1
. Choose xi+1 such that

x(i+1) j =



xi j for 1 ≤ j ≤ ki+1−1

xi j +1 for j = ki+1

n−1− xi j for j > ki+1.

Thus, σxi+1
( j) = σxi

( j) = 1 for all 1 ≤ j < ki+1. It is by definition of σ that σxi+1
(ki+1) = 1

since x(i+1)ki+1
∈∆. Also,σxi+1

( j)= ±1 for any j> ki+1 sinceσxi
( j)= ±1 by assumption and

x(i+1) j ∈∆ iff xi j ∈n−∆−1

x(i+1) j ∈∆−1 iff xi j ∈n−∆
x(i+1) j ∈n−∆ iff xi j ∈∆−1

x(i+1) j ∈n−∆−1 iff xi j ∈∆.

In particular, σxi+1
( j) = −σxi

( j) for any j ≥ ki+1. Therefore, C∩ (C+ xi+1 ) is not empty

by Lemma 2.6 so that xi+1 ∈ F+. Since each potential interval J ⊂Cki+1
∩

(
Cki+1

+ bxicki+1

)
is

an interval case in Cki+1
+ bxi+1cki+1

by Lemma 3.1 then C∩ (C+ xi ) = (C∩ (C+ xi+1))−cki+1
.

Hence,

C∩ (C+ xi+1) = (C∩ (C+ x0))+

i+1∑

j=0

ck j
.

By induction, {xi} is a sequence in F+ such that C∩ (C+ xi) = (C∩ (C+ x0))+
∑i

j=0 ck j
and

σxi
( j) = ±1 for all i, j ∈N0.

By construction, 0 ≤ cki
≤ 1

nki
and ck0

= 0 so that
∑i

j=0 ck j
≤ ∑i

j=1
1

n
k j
≤ ∑ki

j=1
1
n j ≤ 1

n−1

for all i ∈ N0. Since the sequence
{∑i

j=0 ck j

}
is increasing and bounded above, let c :=

lim j→∞
{∑i

j=0 ck j

}
.

Let ε > 0 be given. Choose N ∈ N such that ε >
(

1
n

)kN
> 0 and let N ≤ i < j. Since

xi and x j have been constructed so that the first ki digits are equal, then
∣∣∣xi − x j

∣∣∣ ≤
(

1
n

)ki
<

ε. Therefore, {xi} is a Cauchy sequence of F+ and y := limi→∞ (xi) is also in F+. By

construction, y = 0.ny1y2 . . . is the unique value such that

y j =



t j if σt ( j−1) = 1 and σt ( j) = 1

t j+1 if σt ( j−1) = 1 and σt ( j) = −1

n−1− t j if σt ( j−1) = −1 and σt ( j) = −1

n− t j if σt ( j−1) = −1 and σt ( j) = 1.

(3.1)
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Hence, the sequence {xi} satisfies the conditions of Lemma 3.3 so that

C∩ (C+ t) = (C∩ (C+ y))− c.

Furthermore, for each i ∈ N there exists k j > i such that y shares the first k j digits of x j and

σy (h) = σx j
(h) = 1 for all 0 ≤ h ≤ k j. Thus σy (h) = 1 for all h ∈ N.

It remains to show that y is rational whenever t is rational. Suppose k ≥ p > 0 and

t = 0.nt1 · · · tk−ptk−p+1 · · · tk. Let q denote a period of σt (k) by Lemma 3.5. Since t j+q = t j and

σt ( j+q) = σt ( j) for any j > k, then y j = y j+q by equation (3.1) so that y has period q. �

Remark 3.7. Define the functionψ : [0,1]→ [0,1] according to equation (3.1) so that ψ (t)=

y. For example, if D = {0,2,7,9}, n = 10, and t = 0.n544728, then ψ (t) = 0.n555272. In

example 4.4, we choose D, n, and t, t′ ∈ F such that C (t) =C (t′), yet ψ (t) , ψ (t′).

3.2 Proof of Theorem 1.3.

We have now developed the machinery necessary to prove the first half of Theorem 1.1. In

fact, Theorem 1.3 is a special case of the following result.

Theorem 3.8. Let Cn,D be given and z ∈ F be arbitrary. Suppose there exists t ∈ F+

such that C (z) = C (t), t = 0.nt1 · · · tk−ptk−p+1 · · · tk for some period p and integer k ≥ p,

and σt ( j) = ±1 for all j ∈ N0. If q denotes a period of σt ( j) then there exists a digits

set E = {0 ≤ e1 < e2 < · · · < er < nq} and corresponding deleted digits Cantor set B =Cnq ,E

such that C∩ (C+ t) consists of µt (k) disjoint copies of 1
nk B. If D is sparse then E is also

sparse.

Proof. Let y := ψ (t) ∈ F+ according to Lemma 3.6 so that y = 0.ny1 · · · ykx1x2 · · · xq does not

admit finite n-ary representation, σy ( j) = 1 for all j, and C∩ (C+ t) = (C∩ (C+ y))+ c for

some c ∈R. Define x := nk
(
y−byck

)
= 0.nx1 · · · xq so that C∩(C+ y) consists of µy (k) disjoint

copies of 1
nk (C∩ (C+ x)) by Lemma 3.1. We will construct E and show that C∩ (C+ x) = B.

Let {S d}d∈D be the similarity mappings which generate C. Let S 1 (a) :=
⋃

d∈D S d (a) so

that C = S 1 (C) by definition and let S j (a)=
(
S j−1 ◦S 1

)
(a) for all j ∈N. Thus, C∩ (C+ x) =

S q (C)∩ (S q (C)+ x). For each u =
(
u1,u2, · · · ,uq

)
∈ Dq, define

S u
(a) :=

(
S uq
◦ · · · ◦S u1

)
(a) =

1

nq

a+
q∑

j=1

u j ·nq− j

 .

Hence, C = S q (C) =
⋃

u∈Dq S u
(C) and Ck =

⋃
u∈Dq S u

([0,1]).

Since x = 1
nq

(∑q

j=1
x j ·nq− j

)
+ 1

nq x, let w :=
(
x1, x2, · · · , xq

)
. Then for any u ∈ Dq,

S u
(C)+ x = S u

(C)+
1

nq


q∑

j=1

x j ·nq− j

+
x

nq

=
1

nq

C+ x+

q∑

j=1

(
u j+ x j

)
·nq− j



= S u+w
(C+ x) .
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Therefore, S u
(C) + x = S u+w

(C) + x
nq = S u+w

(C+ x) and
⋃

v∈Dq+w
S v

([0,1]) = Ck + bxck.

Since σx (k) = 1 then Ck ∩ (Ck + bxck) is in the interval case by definition so that the sets

S u
([0,1]) and S v

([0,1]) are either disjoint or equal for any pair u ∈ Dq and v ∈ Dq +w.

Since C ⊆ [0,1] and 0 < x < 1 then

C∩ (C+ x) =


⋃

u∈Dq

S u
(C)


⋂

⋃

v∈Dq+w

(S v
(C+ x))



⊆

⋃

u∈Dq

S u
([0,1])


⋂

⋃

v∈Dq+w

(S v
([0,1]+ x))



⊆

⋃

u∈Dq

S u
([0,1])


⋂

⋃

v∈Dq+w

S v
([0,1])

 .

Hence, S u
(C)∩ (S v

(C+ x)) , ∅ only if v ∈ Dq. Thus,

C∩ (C+ x) =


⋃

u∈Dq

S u
(C)


⋂

⋃

v∈Dq+w

(S v
(C+ x))



=
⋃

u∈Dq∩(Dq+w)

(S u
(C)∩S u

(C+ x))

=
⋃

u∈Dq∩(Dq+w)

S u
(C∩ (C+ x)) .

Let E :=
{∑q

j=1
u j ·nq− j | u ∈ Dq∩ (Dq+w)

}
. Then B = Cnq ,E is the unique, nonempty

compact set invariant under the mapping

⋃

e∈E

(
1

nq
(·+ e)

)
=

⋃

u∈Dq∩(Dq+w)

S u
(·) .

Hence, C∩ (C+ x) = B. Note that #E =
∏q

j=1
#
(
D∩

(
D+ x j

))
= µx (q).

Suppose D is sparse. It is sufficient to show that γ − γ′ ≥ 2 for any γ , γ′ in Γ :={∑q

j=1
u j ·nq− j | u ∈ Dq−Dq

}
since E −E ⊆ Γ. Let γ , γ′ be arbitrary and i be the smallest

index 1≤ i≤ q such that γi , γ
′
i
. Without loss of generality, assume γi > γ

′
i
. Since D is sparse

and γ j,γ
′
j
∈ ∆, then

∣∣∣∣γ j−γ′j
∣∣∣∣ ≥ 2 for all 1 ≤ j ≤ q. Thus, if i = q then |γ−γ′| =

∣∣∣γq−γ′q
∣∣∣ ≥ 2.

Otherwise, if i < q then

∣∣∣γ−γ′
∣∣∣ =

∣∣∣∣∣∣∣∣

q∑

j=i

γ j ·nq− j −
q∑

j=i

γ′j ·nq− j

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(
γi −γ′i

)
nq−i+

q∑

j=i+1

(
γ j−γ′j

)
·nq− j

∣∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣∣
2nq−i−

q∑

j=i+1

(n−1) ·nq− j

∣∣∣∣∣∣∣∣
≥

∣∣∣2nq−i−nq−i
∣∣∣ ≥ n.

Therefore, E is sparse. �

Theorem 3.8 shows that any sparse set C and rational t ∈ F is the finite, disjoint union

of self-similar sets and proves the first half of Theorem 1.1.
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3.3 HausdorffMeasure of C∩ (C+ t).

The structure of the set C ∩ (C+ t) is given by Theorem 3.8 when t is translate equivalent

to a rational, and Lemma 3.1 when σt (k) = ±1 for all k. This additional structure allows

us to apply various methods for calculating the Hausdorff dimension and measure of C∩
(C+ t). If t is an arbitrary element of F such that σt (k) = ±1 for all k, the Hausdorff

dimension of C ∩ (C+ t) can be calculated by methods in [23] and [24]. Specifically, if

t = 0.nt1t2 · · · tktk+1 · · · tk+q and σt (k) = 1 for all k, then the Hausdorff dimension of C (t) is
1
q

∑q

j=1
logn #

(
D∩

(
D+ tk+ j

))
.

Remark 3.9. Assume the notation from Theorem 3.8. Furthermore, suppose D is sparse,

then s := lognq (#E) is the Hausdorff dimension of B and

H s (C∩ (C+ t)) = (µt (k))s ·H s (B) .

An algorithm for calculating the Hausdorff measure of B in a finite number of steps is

known, see [1], [19], and [20]. An estimate of the dimH (C∩ (C+ t))-dimensional Hausdorff

measure of C∩(C+ t) is given in [24] even when the set is is not a finite union of self-similar

sets.

Proposition 3.10 gives a formula for the Hausdorff measure of a deleted digits Cantor

set when D contains only two digits.

Proposition 3.10. Let n ≥ 3 and 0 ≤ a < b < n be non-negative integers. If D = {a,b} and

s := logn (2), thenH s
(
Cn,D

)
=

(
b−a
n−1

)s
.

Proof. Let n≥ 3 be given. We may assume D= {0,d}where d := b−a≥ 1 and ∆= {−d,0,d}.
If d ≥ 2 then D is sparse.

Since n−1
d
·D = {0,n−1} then B = Cn, n−1

d
·D is the self-similar Cantor set generated by

removing the open “middle” interval of length 1− 2 · 1
n
. This set is well known to have

measure H s (B) = 1, see e.g., [10], [12], [7], or [19]. Hence, d
n−1

B =
{∑∞

j=1

t j

n j | t j ∈ D
}
= C

andH s (C) =H s
(

d
n−1
·B

)
=

(
d

n−1

)s
. �

Example 3.11. Let C = C3,{0,2} denote the middle thirds Cantor set. Let t = 0.320 = 3
4

so

that q = 2 is a period of σt (k). By Theorem 3.8, C∩ (C+ t) is the self-similar set C9,{6,8}. If

s := log9 (2), thenH s (C∩ (C+ t)) = 4−s by Proposition 3.10.

3.4 Non-sparse digit sets.

Many of the results in Section 3 only require that t ∈ F satisfy σt (k) = ±1 for all k ∈ N0.

In this section we construct specific examples to apply these results when D is not a sparse

digits set. Example 3.12 constructs a family of values t ∈ F when D is not sparse.

Example 3.12. Let n = 10, D = {0,1,2,6,8}, and C = Cn,D. Then D is not sparse, yet

{2,8} ⊂∆\(∆−1) where \ denotes set subtraction. Thus, any t ∈Cn,{2,8} is such thatσt (k)= 1

for all k by definition of σ. Let t = 0.102 = 2
9
. Since D∩ (D+2) = {2,8} then C∩ (C+ t) =

{0.nx1x2 . . . | xk ∈ {2,8}} =Cn,{2,8}. If s := logn (2) thenH s (C∩ (C+ t)) =
(

2
3

)s
by Proposition

3.10.
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In specific cases, these methods can be applied to analyze values t ∈ F when D is not

sparse and σt (k) , ±1 for some k.

Example 3.13. Let D = {0,2,4,7, . . . ,4+3r} for some r > 2 and n > 4+ 3(r+1). Choose

t = 0.n2 ∈ F. Note that D is not sparse and σt (k) = i for all k ≥ 1. For each k, Ck ∩ (Ck + btck)

contains 2k interval cases and r ·2k−1 potential interval cases, however the potential interval

cases never contain points in Cn,D ∩
(
Cn,D + t

)
since 2 is neither in n−∆ nor n−∆−1.

For each k, let Ik denote the collection of 2k interval cases of Ck ∩ (Ck + btck) so that

Cn,D∩
(
Cn,D + t

)⊂⋃
J∈Ik

J for each k. If E := {0,2,4}, then Ik consists of the same 2k intervals

chosen from the kth step in the construction of Cn,E ∩
(
Cn,E + t

)
. Since Cn,E ∩

(
Cn,E + t

)
=⋂∞

k=1

(⋃
J∈Ik

J
)

implies Cn,D ∩
(
Cn,D + t

) ⊆Cn,E ∩
(
Cn,E + t

)
, and E ⊂ D, then

Cn,D ∩
(
Cn,D + t

)
=Cn,E ∩

(
Cn,E + t

)
.

Since E is sparse, then Cn,E ∩
(
Cn,E + t

)
= Cn,{2,4} and H s

(
Cn,{2,4}

)
=

(
2

n−1

)s
when s :=

logn (2) by Proposition 3.10. Thus, for a specific choice of t, D, and n, we can apply our

method even though D is not sparse and σt (k) does not equal ±1 for any k.

4 Unions of Self-Similar Sets

In this section we prove the second half of Theorem 1.1.

Remark 4.1. A real number α ∈ [0,1] has a ∆ representation, if α =
∑∞

k=1
αk

nk = 0.nα1α2 . . .

and each αk is a digit of ∆ for all k. Let bαck = 0.nα1α2 . . .αk. Note ∆ representations allows

the digits αk to be positive for some k and negative for other k. It is easy to see that F is the

self-similar set {0.nα1α2 · · · | αk ∈ ∆}, see e.g., [23]. Throughout this paper we will denote ∆

representations as α, γ and reserve t, x, and y for n-ary representations.

The discussion in Section 2 holds for C ∩ (C+α) with ∆ representations of α in F.

Detailed proofs are in [24] for the case of n-ary representations. The key observations are

that ∆ = −∆, |h| ∈ ∆− 1 iff −|h| ∈ ∆+ 1, σα(k) only has values in {1, i}, and the geometric

configurations we called potentially empty cases in Section 2 are now potential interval

cases.

Remark 4.2. Suppose α ∈ F admits finite ∆ representation and let j,k ∈ Z satisfy α = bαck =
j

nk . We may define an n-ary representation t := 0.nt1t2 · · · tk = | j|nk so that C (t) =C (|α|) =C (α)

by definition of F. Thus, we may apply Theorem 3.1 of [24] so that C ∩ (C+α) = A∪ B,

where A and B are the sets defined in Remark 2.1. Hence, we will focus our analysis on

values α ∈ F which do not admit finite ∆ representations.

4.1 Translation Equivalence of ∆ representations.

The next result continues our investigation of translation equivalence. More precisely, we

describe translation equivalence in terms of the digit set D.

Theorem 4.3. Let n ≥ 3 and let D be a sparse digit set. Let α=
∑∞

k=1αkn−k, β =
∑∞

k=1βkn−k,

and δ =
∑∞

k=1 δkn−k. If D∩ (D+αk) = D∩ (D+βk)+ δk for all k ≥ 1, then C ∩ (C+α) =

(C∩ (C+β))+δ.
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Proof. Recall, if A is a set of real numbers and t is a real number then tA = {ta | a ∈ A} and

if A and B are two sets of real numbers then A+B = {a+b | a ∈ A,b ∈ B} .
Let C0 = [0,1]. The refinement is C1 =

1
n

(D+C0) = 1
n

D+ [0,1/n] . The refinement of C1

is C2 =
1
n

(D+C1) = 1
n

D+ 1
n2 D+ [0,1/n2]. Continuing in this manner we see that

Ck =
1

n
D+

1

n2
D+ · · ·+ 1

nk
D+

[
0,1/nk

]
=

k∑

i=1

1

ni
D+

[
0,1/nk

]
.

By sparsity of D the distance between any two of these intervals is `/nk for some integer

1 ≤ ` < nk. Therefore,

Ck +

k∑

i=1

αin
−i =

k∑

i=1

1

ni
(D+αi)+

[
0,1/nk

]

and consequently,

Ck ∩
Ck +

k∑

i=1

αin
−i

 =
k∑

i=1

1

ni
(D∩ (D+αi))+

[
0,1/nk

]
.

Using D∩ (D+αi) = (D∩ (D+βi))+δi for 1 ≤ i ≤ k, it follows that

Ck ∩
Ck +

k∑

i=1

αin
−i

 =
Ck ∩

Ck +

k∑

i=1

βin
−i



+
k∑

i=1

δin
−i

and that this is a collection of intervals each of length 1/nk. Let β(0) = β, and

β(k) =

k∑

i=1

αin
−i+

∞∑

i=k+1

βin
−i.

Using β(k)−∑k
i=1αin

−i = β(0) −∑k
i=1 βin

−i we conclude

Ck ∩
(
Ck +β

(k)
)
=

(
Ck ∩

(
Ck +β

(0)
))
+

k∑

i=1

δin
−i

is a collection of intervals each of length 1
nk

(
1−

∣∣∣∑∞
i=k+1 βin

−i
∣∣∣
)
. Repeatedly refining the

intervals in Ck we get

C j ∩
(
C j +β

(k)
)
=

(
C j ∩

(
C j +β

(0)
))
+

k∑

i=1

δin
−i

for j ≥ k. Consequently,

C∩
(
C+β(k)

)
=

(
C∩

(
C+β(0)

))
+

k∑

i=1

δin
−i.

Since β(k)→ α as k→∞ the result follows from Lemma 3.3. �



18 Steen Pedersen and Jason D. Phillips

Example 4.4 applies Theorem 4.3 to construct an uncountable set of values x ∈ F+

which are not only translation equivalent, but all generate the same set C∩ (C+ t).

Example 4.4. Let D = {0,5,7} and n = 8 so that ∆ = {−7,−5,−2,0,2,5,7} and C = Cn,D is

sparse. Choose t := 0.807. Then C∩ (C+ t) = C64,{7,47,63} has dimension s := log64 (3) and

measure 0 <H s (C∩ (C+ t)) <∞.

Note that D∩ (D+2) = {7}, D∩ (D+5) = {5}, and D∩ (D+7) = {7}. Let x ∈ [0,1] with

ternary representation x := 0.3x1 x2 . . .. Let f : [0,1]→ F such that f (x) = 0.8y1y2 . . . consists

of digits

y2k−1 := 0

y2k :=



2 if xk = 0

5 if xk = 1

7 if xk = 2.

Then, f (1) = t, σ f (x) (k) = 1 for all k, and f (x) is irrational whenever x is irrational. It

follows from Theorem 4.3 that (C∩ (C+ f (x)))+c =C∩ (C+ t) is self-similar, in particular,

f (x) is translation equivalent to t for all x ∈ [0,1]. It is, perhaps, interesting to note that since

D∩(D+2)=D∩(D+7) then C∩(C+ f (x))=C∩(C+ t) for any representation of x chosen

from the middle thirds Cantor set C3,{0,2}.

Define ∆+ := ∆∩ [0,∞). We say that α ∈ F has a ∆+ representation if α = 0.nα1α2 . . .

such that each αk ∈ ∆+ for all k. According to Corollary 4.5, when D is sparse, we can

restrict our analysis to ∆+ representations in F without loss of generality.

Corollary 4.5. Suppose D is sparse. If α ∈ F+ has ∆ representation α =
∑∞

k=1αkn−k, then

α is translation equivalent to α̃ :=
∑∞

k=1 |αk |n−k.

Proof. Let α ∈ F be given with ∆ representation α :=
∑∞

k=1αkn−k. If αk ≤ 0 for some k, then

αk,±|αk| are integers such that D∩ (D+αk) = D∩ (D+ |αk|)− |αk | . Hence α is translation

equivalent to α̃ =
∑∞

k=1 |αk |n−k by Theorem 4.3. �

Remark 4.6. For the middle thirds Cantor set this shows that any intersection C∩ (C+ t) is

a translate of an intersection C∩ (C+ s) with s in C.

4.2 Proof of Theorem 1.1.

In this section, we will prove the second part of Theorem 1.1. We begin by showing that

∆+ representations are unique.

Lemma 4.7. Let D be sparse. If α ∈ F+ has a representationα=
∑∞

k=1
αk

nk with digits αk ∈∆+
for all k, then this representation is unique.

Proof. Suppose the ∆+ representation α = 0.nα1α2 . . . is not unique. Any sequence {αk} ⊆
∆+ is also a sequence of {0,1, . . . ,n−1} so that

∑∞
k=1αkn−k is an n-ary representation of

α. Thus α has two n-ary representations with digits in ∆+, namely, 0.nα1 . . .αkb0 and

0.nα1 . . . αk (b−1)(n−1) for some k and 1 ≤ b ≤ n−1. Hence, b and b−1 are both elements

of ∆, which contradicts that D is sparse by assumption. Therefore, the n-ary representation

with digits in ∆+ is unique. �
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Since the ∆+ representation is unique whenever D is sparse, we can classify the set

C∩ (C+α) in terms of the digits {αk}.

Lemma 4.8. Let D be sparse. If α ∈ F has ∆+ representation α = 0.nα1α2 . . ., then

C∩ (C+α) = {0.nx1x2 . . . | xk ∈ D∩ (D+αk)} .

Proof. Let x ∈ C be arbitrary and choose y ∈ C such that x = y+α. Denote x := 0.nx1 x2 . . .

and y := 0.ny1y2 . . . such that xk,yk ∈ D. Suppose xk , yk +αk for some k. Without loss of

generality, suppose k−1 =min
{

j | x j , y j+α j

}
.

If yk +αk < n then x has two n-ary representations with digits strictly contained in D ⊆
∆+, which is a contradiction by Lemma 4.7.

If yk+αk ≥ n then 0≤ yk,αk < n implies 0≤ yk+αk−n< n. Thus, x= 0.nx1 . . . xk−1xk . . .=

0.nx1 . . . (xk−1+1)(yk +αk −n) . . . has two different n-ary representations. Therefore x j = n−
1 ∈D and y j+α j−n = 0 for all j≥ k. However, αk ∈∆ by definition and αk−1 = (n−1)−yk

is some element of D−D = ∆, which contradicts that D is sparse.

Hence, xk = yk +αk for each k and C∩ (C+α) ⊆ {0.nx1x2 · · · | xk ∈ D∩ (D+αk)} since x

is arbitrary. The reverse inclusion follows immediately since C = {0.nx1x2 · · · | xk ∈ D}. �

When α has ∆+ representation, then inf (C∩ (C+α)) =
∑∞

k=1 n−k ·min(D∩ (D+αk)) ac-

cording to Lemma 4.8. For each δ ∈ ∆+, define Dδ := D∩ (D+δ)−min(D∩ (D+δ)) so that

0 ∈ Dδ ⊆ ∆+ and

C(α) =C∩ (C+α)−
∞∑

k=1

min(D∩ (D+αk))

nk
=


∞∑

k=1

xk

nk
| xk ∈ Dαk

 . (4.1)

This leads to the following Corollary to Theorem 4.3:

Corollary 4.9. Let D be sparse and suppose 0.nα1α2 . . . is a ∆+ representation for α. Then

C (α) =C (γ) if and only if Dαk
= Dγk

for all k.

We now prove the second part of Theorem 1.1 when C (α) is a finite set.

Lemma 4.10. Let D be sparse and α ∈ F given. If C(α) is a finite set then α is equivalent

to a rational. In this case, C∩ (C+α) is the finite, disjoint union of trivial self-similar sets.

Proof. Suppose C(α) is finite and let K :=
{
k | {0} & Dαk

}
. Suppose K = {k1 < k2 < · · · } is an

infinite subset of N. For any x = 0.2x1x2 . . . in [0,1] with xk ∈ {0,1}, define

f (x) :=

∞∑

j=1

( x j

nk j
·min

{
a > 0 | a ∈ Dαk j

})
.

Thus, f (x) ∈ C(α) for all x ∈ [0,1] and f (x) , f (y) for any x , y so that f ([0,1]) is an

uncountably infinite subset of C (α). This contradicts the assumption that C(α) is finite,

hence K is either a finite subset of N or empty. If K is empty then Dαk
= {0} for all k and

C(α) = {0} =C
(

dm

n−1

)
.

Suppose K is finite. Let k = max(K) and define γ := 0.nα1α2 · · ·αkdm so that D ∩(
D+α j

)
= D∩

(
D+γ j

)
for each j ≤ k. Since D∩

(
D+α j

)
=

{
di j

}
and D∩

(
D+γ j

)
= {dm}

for j > k then Dα j
= {0} = Dγ j

. Hence, C(α) = C(γ) so that α is translation equivalent to

γ. �
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The proof of Lemma 4.10 shows that C∩ (C+α) is either finite or uncountably infinite.

Note that α need not admit finite n-ary representation in the proof of Lemma 4.10. Example

4.11 exhibits an irrational number α such that C (α) is finite.

Example 4.11. Let D = {0,5,7}, n = 8, and α = 0.n07 so that C ∩ (C+α) =
{

1
8
, 3

4
,1

}
. By

defining γ such that γk = αk except γ2k = 2 on a sparse set of k’s (larger than 1) then C∩
(C+γ) =C∩ (C+α) by Theorem 4.3 yet γ does not admit finite n-ary representation.

Lemma 4.12. Let D be sparse and α ∈ F given. There exist non-negative integers k,q such

that Dα j
⊆ Dα j+q

for all j > k if and only if α is translation equivalent to a rational number.

Proof. Suppose Dα j
⊆ Dα j+q

for all j > k. Since Dα j
⊂ {0,1, . . . ,dm} for all j, then for each

1 ≤ i ≤ q there exists a chain

Dαk+i
⊆ Dαk+i+q

⊆ ·· · ⊆ Dαk+i+ jq
⊆ {0,1, . . . ,dm} .

Therefore equality holds for all Dαk+i+ jq
after a certain point. For each i, let hi be a value

such that Dαk+i+hiq
= Dαk+i+(hi+ j)q

for all j ≥ 0. If h := maxi (hi) then Dαk+i+hq
= Dαk+i+(h+ j)q

for

all 1 ≤ i ≤ q and j ≥ 0. Let γ := 0.nα1 · · ·αk+hqαk+hq+1 · · ·αk+(h+1)q. Then Dα j
= Dγ j

for all

j ∈N so that C (α) =C (γ).

Conversely, suppose γ = 0.nγ1 · · ·γkγk+1 · · ·γk+q is translation equivalent to α. Then

C (α) =C (γ) and Dα j
= Dγ j

for all j ∈N by equation (4.1). Thus, Dα j
= Dγ j

= Dγ j+q
= Dα j+q

for all j > k. �

We now have the tools required to prove the second half of Theorem 1.1.

Theorem 4.13. Let D be sparse and α ∈ F be given. Suppose there exists ε > 0 such that

C(α)∩ [0,ε] is a self-similar set generated by similarities f j(x) = r jx+b j where ri = n−qi for

some qi ∈ Z. Then α is translation equivalent to a rational number.

Proof. According to Corollary 4.5 we may assume α has a ∆+ representation. Let ε > 0 be a

value such that C (α)∩ [0,ε] = T is a self-similar set. We may assume that b1 < b2 < · · · < b`
so that b1 = 0 and f1 (x) = x · n−q1 . Choose k ∈ N such that ε ≥ n−k > 0 and let j > k be

arbitrary. Let d ∈ Dα j
be arbitrary so that d · n− j ∈ T ⊂ C(α) by equation (4.1). We note

that the representation d · n− j is unique by Lemma 4.7. Thus, f1
(
d ·n− j

)
= d · r1 · n− j =

d ·n−( j+q1) ∈C (α) and d ∈ Dα j+q1
. Since j and d are arbitrary, then Dα j

⊆ Dα j+q1
for all j > k

and α is translation equivalent to a rational number by Lemma 4.12. �

This completes the proof of Theorem 1.1. Theorem 4.13 shows that if C(α)∩ [0,ε] is

constructed by specific similarity mappings, then α is translation equivalent to a rational

number and, by Theorem 3.8, can be expressed as

C∩ (C+α) =

N⋃

j=1

(
Cn2p ,E +η j

)

for some η1 < η2 < · · · < ηN .
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4.3 When is C(α) self-similar?

Essentially, half of the answer to this question is provided by a calculation on page 307 of

[18] and the other half by an elaboration on the proof of Theorem 4.13.

Note that, if C(α) is self-similar, then we may choose k = 0 in the proof of Theorem

4.13. Hence, this proof shows that for some q > 0 we have

Dα j
⊆ Dα j+q

for all j > 0. (4.2)

But this condition is not sufficient for C(α) to be self-similar. For this we need the stronger

condition that α is strongly periodic in the sense that there exists D̃α j
such that

Dα j
+ D̃α j

= Dα j+q
for all j > 0. (4.3)

Clearly, whether of not a given α satisfies (4.2) or (4.3) depends on the set D.

The following is a restatement of Theorem 1.2.

Theorem 4.14. If D is sparse, then C∩ (C +α) is self-similar generated by a finite set of

similarities f j(x) = n−qx+b j with q ∈ N if and only if α is strongly periodic.

Proof. Suppose (4.3) holds. Since (4.3) implies (4.2) it follows that Dα j
= Dα j+q

for all

sufficiently large j. Hence, for some p > 0, we have

Dα j
+ D̃α j

= Dα j+pq
when j ≤ pq and Dα j

= Dα j+pq
when j > pq.

Consequently,

Dα j+pqr
= Dα j

+ D̃α j
, when j ≤ pq and r ≥ 1. (4.4)

It follows now from the calculation on the top half of page 307 of [18] that, C(α) is a self-

similar set. For the convenience of the reader we sketch the details. Let x ∈C(α). Use (4.1)

to write x =
∑

k xkn−k, with xk ∈ Dαk
. By (4.4) we can write

xk+pqr = yr,k + zr,k,yr,k ∈ Dαk
,zr,k ∈ D̃αk

when 1≤k≤pq, 1≤r

and y0,k = xk when 1 ≤ k ≤ pq. Then

∑

k

xkn−k =

∞∑

r=0

pq∑

k=1

xk+pqrn
−(k+pqr)

=

pq∑

k=1

y0,kn−k +

∞∑

r=1

n−pqr

pq∑

k=1

(yr,k + zr,k)n−k

=

∞∑

r=0


pq∑

k=1

(
yr,k + zr+1n−pq)n−k

n−pqr.

It follows that C(α) is generated by the similarities

fb(x) = n−pqx+b,b ∈ B,

where B =
{∑pq

k=1

(
yk+ zkn−pq)n−k

∣∣∣yk ∈ Dαk
,zk ∈ D̃αk

}
.
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On the other hand, suppose C(α) is generated by the similarities f j(x) = n−qx+ b j, j =

1,2, . . . ,L. Since 0 is in C(α) it follows that b j is in C(α) for all j. Write

b j =
∑

k

b j,kn−k, with b j,k ∈ Dαk
.

Let D̃αk
=

{
b j,k+q | j = 1,2, . . . ,L

}
. For any x =

∑
k xkn−k, xk ∈ Dαk

we have

f j(x) =

q∑

k=1

b j,kn−k +

∞∑

k=1

(
b j,k+q+ xk

)
n−(k+q).

Since D is sparse it follows that b j,k+q+ xk is in Dαk+q
. Consequently, D̃αk

+Dαk
⊆ Dαk+q

. If

one of these inclusions is strict, then
⋃

j f j (C(α)) would be a strict subset of C(α), by (4.1).

Hence, (4.3) holds. �

Example 4.15. Let D = {0,2,4,6}, n = 7, and α = 0.20. Then it follows from Theorem 4.14

that C(α) is self-similar. However, the self-similarities constructed in the proof of Theorem

4.14 do not satisfy the open set condition. Hence, C(α) is perhaps better understood in

terms of Theorem 1.3 where C(α) is described as a finite union of disjoint translates of a

deleted digits Cantor set.

Remark 4.16. After we circulated the first version of this paper, containing a version of

Theorem 4.14 valid for uniform sets, Derong Kong asked us to provide a set of similarities

for the set C(α), when D = {0,2,4,8}, n = 9, and α = 0.20. This is not possible, since α

satisfies (4.2), but does not satisfy (4.3). We replied to Derong Kong query that we had a

proof of Theorem 4.14 as stated above. Subsequently Derong Kong sent us a preliminary

version of the manuscript [14] containing a similar result. Our Theorem 4.14 is similar to

[14, Theorem 2.3], however [14, Theorem 2.3] shows that C(α) is generated by similarities

fb(x) = n−qx+ b from the assumption that C(α) is generated by similarities fb(x) = rx+ b,

0 < |r| < 1.

5 A Construction of Numbers not Translation Equivalent to a

Rational

The structure of C∩(C+α) is determined by the previous sections whenever α is translation

equivalent to a rational number. However, there exist many elements α in F such that C (α)

is not a finite union of self-similar sets in the sense of Theorem 1.3. Lemma 4.12 allows

us to construct a family of values γ ∈ F+ which are not translation equivalent to a rational

number. In fact, the proof below associates such an uncountable family of such γ to any

rational α for which C∩ (C+α) is infinite.

Proposition 5.1. Let D be sparse. There exists an uncountably infinite family of values

γ ∈ F+ which are not translate equivalent to any rational number.

Proof. Let α be a rational such that C∩(C+α) is not finite. We may assume α := 0.nα1 . . .αp

by Lemma 3.1. Fix i ∈N according to the proof of 4.10 such that 1≤ i≤ p and {0}& Dαi
and
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let δ ∈ {
δ ∈ ∆+ | Dαi

* Dδ

}
be arbitrary (this set is nonempty since Ddm

= {0} for any digits

set). Suppose x ∈ [0,1] has binary representation x := 0.2x1 x2 . . . and define f : [0,1]→ F

such that f (x) = 0.nγ1γ2 . . . consists of digits

γ j :=


xh+1 ·α j + (1− xh+1) ·δ if j = i+hp for some h ∈N0

α j otherwise.

Thus, {0}& Dγi+ jp
= Dαi+ jp

if x j+1 = 1 and Dγi+ jp
= Dδ if x j+1 = 0 so that f (x) is irrational

whenever x is irrational. Since C∩ (C+α) is infinite then

{
j | x j+1 = 1

}
=

{
j | Dγi+ jp

= Dαi+ jp

}
(5.1)

is an infinite subset of N.

Suppose τ := 0.nτ1τ2 · · · τhτh+1 · · ·τh+q is translate equivalent to f (x) for some h ∈N and

period q. Then Dγh+ j
=Dγh+ j+q

for all j> 0 according to Corollary 4.9. If a and b are positive

integers satisfying h+a = bp, then for each integer j > b,

Dγi+ jp
= Dγh+a+i+( j−b)p

= Dγh+a+i+( j−b)p+pq
= Dγi+( j+q)p

.

Equivalently, x j+1 = x j+q+1 for all j> b by equation (5.1) so that x is rational with period

q. �

If K ⊆ Rn is an arbitrary compact set with dimH (K)-dimensional Hausdorff measure

0 or ∞, then K is not a self-similar set, see e.g., [7] and [12]. In particular, such a set K

cannot be expressed as the finite union of self-similar sets. In [24], a method was given for

constructing values y ∈ F which satisfy 0< s := dimH (C (y))< logn (m) andH s (C (y)) = 0 so

that such elements y are not translation equivalent to any rational. Example 5.2 constructs

γ ∈ F which is not translation equivalent to a rational, yet 0 <H s (C (γ)) <∞.

Example 5.2. Let D= {0,3,6,12} and n= 17. Choose α := 0.n3 so that C∩ (C+α) =Cn,{3,6}
is self-similar with Hausdorff dimension s := logn (2) and Hausdorffmeasure

H s (C∩ (C+α)) =

(
3

16

)s

.

Since D3 = {0,3} and D6 = {0,6}, define γ := 0.nγ1γ2 . . . such that γ j = 3 = a j except γk = 6

on a sufficiently sparse set of k’s. Thus, γ is irrational and not translate equivalent to any

rational by Proposition 5.1 so that C∩ (C+γ)∩ [0,ε] is not self-similar for any ε > 0. Note,

however, that µα (k) = µγ (k) for all k. According to [24], Lt = 1 and 1
4
≤H s (C∩ (C+γ))≤ 1.

6 Uniform Sets

In this section we consider uniform digits sets and prove Theorem 1.4. This allows us to

prove Theorem 4.13 with fewer restrictions on the similitudes and to establish connections

to some of the results in the papers mentioned in the introduction.

The next lemma is a step in that direction. The lemma also allows us to consider certain

β-expansions with non-uniform digit sets.
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Lemma 6.1. Let D be sparse, N := dm + 1, and C = CN,D . Fix β ∈
(
0, 1

N

]
and suppose

α := 0.Nα1α2 . . . is a ∆+ representation. If there exists ε > 0 such that (C∩ (C+α))∩
[0,ε] =

{∑∞
k=1 xk

(
1
N

)k | xk ∈ D∩ (D+αk)

}
∩ [0,ε] is a self-similar set generated by similari-

ties
{

f j

}`
j=1

, then there exists δ > 0 such that


∞∑

k=1

xkβ
k | xk ∈ D∩ (D+αk)

∩ [0,δ]

is also a self-similar set.

Proof. Let D be sparse, N := dm + 1, and α ∈ F+ be fixed. The result is trivial if β = N−1,

so suppose β ∈
(
0, 1

N

)
and (C∩ (C+α))∩ [0,ε] = T is self-similar for some ε > 0. Since

C∩ (C+α) is compact, we may assume ε = sup(T ) ∈C without loss of generality.

Each γ ∈C has a unique representation 0.Nγ1γ2 · · · where each γk ∈D by equation (1.1)

and Lemma 4.7. Define gβ : C→ R such that

gβ


∞∑

k=1

γk

Nk

 =
∞∑

k=1

γkβ
k.

The function gβ is both continuous and increasing on C, and gβ (X)∪gβ (Y) = gβ (X∪Y) for

any X,Y ⊆ C. By equation (4.1), gβ (C∩ (C+α)) =
{∑∞

k=1 xk ·βk | xk ∈ D∩ (D+αk)
}
. Since

any ε < γ ∈ C implies gβ (ε) < gβ (γ) then gβ (T ) = gβ (C∩ (C+α))∩ [0,δ] where δ := gβ (ε).

For arbitrary elements γ , ξ in C, there exists k ∈N such that γk , ξk and gβ (γ), gβ (ξ).

Hence, gβ has unique inverse for any element of gβ (C) =
{∑∞

k=1 xk ·βk | xk ∈ D
}

and

⋃̀

j=1

(
gβ ◦ f j ◦g−1

β

)(
gβ (T )

)
=

⋃̀

j=1

gβ
(

f j (T )
)

= gβ


⋃̀

j=1

f j (T )



= gβ (T ) .

Therefore, gβ (T ) is a self-similar set generated by similarities
{
gβ ◦ f j ◦g−1

β

}`
j=1

. �

Corollary 6.2. Let D be sparse, N := dm+ 1, β ∈
(
0, 1

N

]
, and α have ∆ representation. The

β-expansion Cantor set gβ (C∩ (C+α)) can be expressed as the disjoint union

⋃̀

j=1

(
gβ

(
Cn2p ,E

)
+η j

)

for some η1 < η2 < · · · < η` if and only if there exist integers k,q such that D|α j| ⊆ D|α j+q| for

all j > k.
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The additional structure of uniform sets allows us to prove Theorem 1.1 with fewer

restrictions on the similitudes. Theorem 4.13 requires the contraction ratios to be of the

form r j = n−q j for some integers q j, however, when D is uniform we require only that the

contraction ratios r j are positive.

Theorem 6.3. Let D be uniform and α have ∆+ representation. Suppose there exists ε > 0

such that C(α)∩ [0,ε] is a self-similar set generated by similarities f j(x) = r jx+ b j where

r j > 0. Then α is translation equivalent to a rational number.

Proof. Since D is uniform, then there exists d ≥ 2 such that d j = ( j−1)d ∈ D for each

1 ≤ j ≤ m < n. Furthermore, Dαi
= {a−αi | a ∈ D and a ≥ αi} ⊆ D by Remark 6.4 so that

C(α) ⊆C and if ( j−1)d ∈ Dαi
for some i and j then (k−1)d ∈ Dαi

for all 1≤ k ≤ j. We may

assume that b1 < b2 < · · · < b` so that b1 = 0 and f1 (x) = r1 · x.

We only need show that there exist integers k,q such that Dα j
⊆ Dα j+q

for all j > k by

Lemma 4.12. According to Lemma 6.1, the result holds if there exists an n > dm such that

Dα j
⊆ Dα j+q

for all sufficiently large j. Suppose n > dm · (m−1).

Let ε > 0 be a value such that C(α)∩ [0,ε] = T is a self-similar set. We may assume by

Lemma 4.10 that C(α) is not a finite set and K :=
{
k | {0} & Dαk

}
is an infinite subset of N.

Choose k ∈N such that ε ≥ n−k and let j > k be an arbitrary element of K. Then d ∈ Dα j

so that d ·n− j ∈ T ⊆C(α). Thus, d · r1 ·n− j ∈ T ⊂C and d · r1 ·n− j =
∑∞

i=1 xi ·n−i has a unique

expression with each xi ∈ D by definition of C and Lemma 4.7. Now, 0 < r1 < 1 so that

d · r1 =
∑∞

i=1 xi ·n j−i < d and xi = 0 for all 1 ≤ i ≤ j. Since each xi ∈ D we can write the n-ary

representation r1 = 0.nr1,1r1,2 . . . where r1,i =
xi− j

d
∈ {0,1, . . . ,m−1} for each i ∈N.

Suppose there exists q ∈N such that r1,q ≥ 2. Let a1 :=max
(
Dα j

)
> 0 so that a1 ·n− j ∈ T .

We will inductively define a sequence {ah} ⊆ D so suppose ah ∈ Dα j+q(h−1)
for some h. Then

0 < ah ≤ dm and 1 < r1,i ≤ m− 1 so that ah · r1,i ≤ dm · (m−1) for all i. Hence, ah

n j+q(h−1) · r1 =∑∞
i=1 ah · r1,i ·n−i− j−q(h−1) and ah < ah · r1,q ∈ Dα j+qh

. Define ah+1 :=max
(
Dα j+q·h

)
> ah.

Thus, we have defined a1 < a2 < .. . < am such that ah =max
(
Dα j+q·h

)
∈ D for all 1 ≤ h ≤

m. Since D is a uniform set containing m elements then D = {a1,a2, . . . ,am}. This leads to a

contradiction since a1 > 0 yet 0 ∈ D.

Therefore, r1,i ∈ {0,1} for all i ∈ N and there exists q such that r1,q = 1 since r1 > 0. If

di ∈ Dα j
for some 1 ≤ i ≤ m, then r1 ·di ·n− j ∈Cα and di ∈ Dα j+q

. Hence, Dα j
⊆ Dα j+q

for all

j > k. �

It is a simple consequence of the proof of Theorem 6.3 that each element q ∈ {
i | r1,i = 1

}

is a period of the rational number that is translation equivalent to α. It is also interesting

to note that the proof of Theorem 3.8 constructs a collection
{
f j (x) = r jx+b j

}`
j=1

where

each r1 = r2 = · · · = r` = n−q for some q ∈N, however the set
{
i | r1,i = 1

}
could be countably

infinite in the proof of Theorem 6.3.

Remark 6.4. Suppose D is a uniform digit set. Then Dα j
=

{
a−α j | a ∈ D and a ≥ α j

}
for

each α j ∈ ∆+ and Dα j
⊆ D for all j by definition of uniform sets so that C (α) ⊆C. This also

implies that Dα j
=

{
0,d, . . . ,d

(
dm−α j

)}
=max

{
Dα j

}
−Dα j

for all j so that C(α) = z−C(α)

is centrally symmetric when z :=
∑∞

j=1

(
max

{
Dα j

}
·n− j

)
.
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When D is regular, but not uniform, then C (α) need not be a subset of C. For example,

we can choose D = {0,4,6,8}, n ≥ 9, and α := 2
n
. Thus, Dα1

= {0,2} so that α ∈ C(α) yet

α < C.

According to Remark 6.4, if D is uniform and C (α) is a self-similar set then we may

choose ε = 1 to obtain the following Corollary to Theorem 6.3:

Corollary 6.5. Let D be uniform and α have ∆+ representation. If C(α) is a self-similar

set generated by similarities f j(x) = r jx+ b j then α is translation equivalent to a rational

number.

Proof. It is sufficient to show that T :=C (α) can be generated by a collection of similarity

mappings with positive contraction ratios. Since T is centrally symmetric, then T = z−T

for some z ∈ [−1,1]. For each 1 ≤ j ≤ `, let h j (x) := −r jx+
(
b j+ z · r j

)
if r j < 0, otherwise

let h j (x) := f j (x). Then

⋃̀

j=1

h j (T ) =


⋃

r j<0

f j (z−T )

∪

⋃

r j>0

f j (T )

 =
⋃̀

j=1

f j (T ) = T.

�

This completes the proof of Theorem 1.4. A special case of Corollary 6.5 is proven in

[18] when dm = n−1.

6.1 Uniform sets and strongly periodic rationals

In this section we assume that D is a uniform digits set. Note that if α j ∈ ∆+ then Dα j
={

0,d, . . . ,
(
dm−α j

)}
so that (4.2) and (4.3) are equivalent when D is assumed to be a uniform

set. Thus, when D is uniform, a sequence {αk} ⊆ ∆+ is strongly periodic if and only if there

exists an integer q > 0 such that Dα j
⊆ Dα j+q

for all j > 0. We show that this is consistent

with the definition given in [4] and [18].

Proposition 6.6. Let D be uniform, n = dm + 1, and α = 0.nα1α2 . . . have ∆ representation.

Define α̂ := 0.nα̂1α̂2 · · · such that α̂k := dm − |αk| for each k. There exists an integer q > 0

such that D|α j| ⊆ D|α j+q| for all j> 0 if and only if there exist u,v ∈Dp for some integer p > 0

such that u j ≤ v j for all 1 ≤ j ≤ p and α̂ = 0.nu1 · · ·upv1 · · ·vp.

Proof. Suppose u,v ∈ Dp such that u j ≤ v j for all 1 ≤ j ≤ p and α̂ = 0.nu1 · · ·upv1 · · ·vp.

Since u j,v j ∈ D then the ∆+ representation of α̂ is unique, so that u j ≤ v j for all 1 ≤ j ≤ p is

equivalent to dm−
∣∣∣α j

∣∣∣≤ dm−
∣∣∣α j+p

∣∣∣ for all j> 0 by definition of α̂ j. Furthermore, dm−
∣∣∣α j

∣∣∣≤
dm−

∣∣∣α j+p

∣∣∣ if and only if D|α j| ⊆ D|α j+p| since D|α j| =
{
0,d, . . . ,

(
dm−

∣∣∣α j

∣∣∣
)}

for all α j ∈ ∆. �

Thus, when D is uniform, we extend the definition of strongly periodic to mean there

exists q > 0 such that D|α j| ⊆ D|α j+q| for all j > 0. We note that α need not be rational to

satisfy this equation, but any such α is translation equivalent to a rational.

Remark 6.7. Suppose D is uniform and α has a ∆+ representation. Since ∆+ = D, then

α ∈Cn,D ⊂ F and Dα j
= Dαi

if and only if α j = αi. Hence, an irrational value α ∈Cn,D is not

translation equivalent to any rational by Corollary 4.9 and Lemma 4.12.
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We point out that if D is uniform, then F contains three disjoint partitions:

1. According to Theorem 1.4, if α ∈ F is translation equivalent to a strongly periodic

rational then C (α)∩ [0,ε] is a self-similar set for ε = 1.

2. If α ∈ F is translation equivalent to a rational γ, but not to any strongly periodic

rational, then C (α)∩ [0,ε] is a self-similar set for some 0 < ε < 1.

3. Otherwise, if α ∈ F is not translation equivalent to any rational, then C (α)∩ [0,ε] is

not a self-similar set for any ε > 0

Example 6.8 illustrates a case when α is a strongly periodic rational.

Example 6.8. Let C = C3,{0,2} denote the middle thirds Cantor set and α := 0.3020. Then

C∩ (C+α) consists of µα (2) = 2 disjoint copies of 1
9C by Theorem 3.8. Let q = 2 so that

Dα j
⊆ Dα j+q

for all j > 0 and α is strongly periodic. Thus, C ∩ (C+α) is a self-similar

set composed of two “smaller” copies of C. Furthermore, the Hausdorff dimension of

C∩ (C+α) is s := log3 (2) and the Hausdorffmeasure isH s (C∩ (C+α)) = 1
2
.

Example 6.9 demonstrates a rational in F that is not strongly periodic.

Example 6.9. Let C =C3,{0,2} denote the middle thirds Cantor set and α := 0.30220. Then

C∩ (C+α) consists of µα (2) = 2 disjoint copies of 1
9C9,{6,8} by Theorem 3.8. If s := log9 (2)

thenH s (C∩ (C+α)) = 4−s according to Proposition 3.10. However, if q = 2k is even then

Dα1
= {0,2} and Dα1+2k

= {0}. Similarly, if q = 2k+ 1 then Dα4
= {0,2} and Dα4+2k+1

= {0}.
Hence, α is not translation equivalent to any strongly periodic rational and C ∩ (C+α) is

not a self-similar set.

6.2 β-expansion Cantor Sets

Let N ≥ 2, Ω ⊆ {0,1, . . . ,N −1} be an arbitrary set containing at least two elements, and

β ∈
(
0, 1

N

)
. If φd (x) := βx + d (1−β)/ (N −1), then the set generated by {φd | d ∈Ω} is the

β-expansion Cantor set

Γβ,Ω :=


∞∑

k=1

xkβ
k−1 (1−β)

(N −1)
| xk ∈Ω

 .

According to Lemma 6.1, if there exists an integer d ≥ 1 such that D = d ·Ω is a sparse

digits set and dm ≤ N −1, then Γβ,D can be expressed as

Γβ,D =
(1−β)

β (N −1)
·gβ

(
CN,D

)

for some sparse deleted digits Cantor set CN,D. Therefore, when β is small it is sufficient to

consider the structure of deleted digits Cantor sets. We point out that gβ only preserves the

structure of these sets; the Hausdorff dimension and measure are not necessarily preserved

since gβ
(
C3,{0,2}

)
has dimension log 1

β
(2) for any β ∈

(
0, 1

3

)
. Our results do not necessarily

hold for larger values of β since Γβ,Ω−Γβ,Ω may not satisfy the open set condition. We refer

to [29] and [13] for analysis of uniform β-expansion Cantor sets when β > 1
dm+1

.
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Many of our results support the idea that self-similarity structure is determined by the

sequence {αk}⊆Ω, sometimes called theΩ-code. If D is sparse and dm < n, then F satisfies

the open set condition and any ∆+ representations are unique by Lemma 4.7. We avoid

(direct) discussion ofΩ-codes to focus on the geometry of n-ary intervals J(h) ⊂Ck . Lemma

6.1 directly supports the idea that self-similarity is independent of the chosen base when β

is small.
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