ON SINGULAR INTEGRALS WITH ROUGH KERNELS IN TRIEBEL-LIZORKIN WEIGHTED SPACES

HUNG VIET LE* Faculty of Science and Technology Hoa Sen University Quang Trung Software Park, Section 10 Ward Tan Chanh Hiep, District 12 Ho Chi Minh City Viet Nam

(Communicated by Palle Jorgensen)

Abstract

Let $\Omega \in L^1(S^{n-1})$ have mean value zero and satisfy the condition

$$\sup_{\zeta' \in S^{n-1}} \int_{S^{n-1}} |\Omega(y')| (\ln |\zeta' \cdot y'|^{-1})^{(\ln(e+\ln |\zeta' \cdot y'|^{-1}))^{\beta}} d\sigma(y') < \infty \text{ for some } \beta > 0.$$

Under certain conditions on the measurable function h, we show that the singular integral

$$Tf(x) = p. v. \int_{\mathbb{R}^n} \frac{h(|y|)\Omega(y')}{|y|^n} f(x-y) dy$$

is bounded on the Triebel-Lizorkin weighted spaces $\dot{F}_{p,q}^{\alpha,w}(\mathbb{R}^n)$. We also study the Marcinkiewicz integral (with the same kernel Ω as above) in the L^p - weighted spaces.

AMS Subject Classification: 42B20, 42B25, 42B30, 42B35.

Keywords: Singular integrals, Marcinkiewicz integrals, Maximal functions, Weighted spaces, Hardy spaces, Triebel-Lizorkin spaces, Besov spaces.

1 Introduction

In this note, we always assume that the kernel $\Omega \in L^1(S^{n-1})$ $(n \ge 2)$ satisfies the mean value zero property. Consider the singular integral Tf (with $h \equiv 1$) as defined in the abstract. Calderón and Zygmund [3] proved that T is a bounded operator on $L^p(\mathbb{R}^n)$ for $1 if <math>\Omega \in L\log^+ L(S^{n-1})$. Afterward, Connett [6] and Ricci and Weiss [16] independently obtained the same result with the condition $\Omega \in H^1(S^{n-1})$, where $H^1(S^{n-1})$ is the Hardy

^{*}E-mail address: hung.leviet@hoasen.edu.vn

space on the unit sphere. Later on, Fan and Pan [10] obtained the result for a more general class of operators.

Recently, Grafakos and Stefanov [13] proved that if $h \equiv 1$, and $\Omega \in L^1(S^{n-1})$ satisfies the condition

(1)
$$\sup_{\zeta'\in S^{n-1}} \int_{S^{n-1}} |\Omega(y')| (\log \frac{1}{|\zeta' \cdot y'|})^{1+\alpha} d\sigma(y') < \infty \text{ for some } \alpha > 1,$$

then

$$||Tf||_{L^{p}(\mathbb{R}^{n})} \le C ||f||_{L^{p}(\mathbb{R}^{n})} \text{ for } |\frac{1}{2} - \frac{1}{p}| < \frac{\alpha}{2(2+\alpha)}.$$

Subsequently, this result was extended by Fan, Guo and Pan [11], where $\frac{\alpha}{2(2+\alpha)}$ is replaced by $\frac{\alpha}{2(1+\alpha)}$. Note that for every α satisfying $0 \le \alpha < 1$, Grafakos, Honzík, and Ryabogin [14] proved that there is an even integrable function Ω on S^{n-1} with mean value zero that satisfies a condition similar to condition (1) (where $\sup_{\zeta' \in S^{n-1}}$ is replaced by $\operatorname{essup}_{\zeta' \in S^{n-1}}$) such that the singular integral

$$T_{\Omega}f(x) = p. v. \int_{\mathbb{R}^n} \frac{\Omega(y')}{|y|^n} f(x-y) dy$$

is unbounded on $L^p(\mathbb{R}^n)$ whenever $|\frac{1}{2} - \frac{1}{p}| > \frac{\alpha}{1+\alpha}$. In particular, there is a function Ω such that T_{Ω} is bounded on $L^p(\mathbb{R}^n)$ exactly when p = 2.

It may be possible that for $\alpha > 1$, T_{Ω} is bounded on $L^{p}(\mathbb{R}^{n})$ for $1 , whenever <math>\Omega$ satisfies condition (1). However, this is still unknown at the present. The best result we can infer from [13] is that T_{Ω} is bounded on $L^{p}(\mathbb{R}^{n})$ for $1 , if <math>\Omega$ satisfies condition (1) for all $\alpha > 0$. In fact, under the hypothesis that Ω satisfies condition (1) for all $\alpha > 0$, Jiecheng Chen and Chunjie Zhang [4] have obtained the boundedness of T_{Ω} on the homogeneous Triebel-Lizorkin space $\dot{F}_{p,q}^{s}(\mathbb{R}^{n})$ for $1 < p, q < \infty, s \in \mathbb{R}$.

The purpose of this paper is to find an alternative condition on Ω so that the singular integral Tf (as defined in the abstract) is bounded on the homogeneous Triebel-Lizorkin weighted space $\dot{F}_{p,q}^{s,w}(\mathbb{R}^n)$ for $1 < p, q < \infty, s \in \mathbb{R}$, and for some appropriate weight w. It should be remarked that the proof in this paper follows some basic ideas in [5], which are different from those in [4]. In [4], the authors used the "vector-valued inequalities" approach, based on some ideas of Hofmann [15]. It is not obvious that we could obtain the boundedness of T on the homogeneous Triebel-Lizorkin weighted space $\dot{F}_{p,q}^{s,w}(\mathbb{R}^n)$ for $1 < p, q < \infty, s \in \mathbb{R}$, by applying their techniques. We state our results in section 3, and the proof will be given in section 4. Section 2 deals with some preliminary background and notations.

104

2 Background

2.1 $A_p(\mathbb{R}^n)$ weights.

Recall that $A_p(\mathbb{R}^n)$ (p > 1) is the class of all weights *w*, which are non-negative and locally integrable, such that

$$\left(\frac{1}{|Q|}\int_{Q}w\right)\left(\frac{1}{|Q|}\int_{Q}w^{-1/(p-1)}\right)^{p-1} \le A < \infty.$$

Here |Q| denotes the Lebesgue measure of the cube Q in \mathbb{R}^n . Note that A_p is the class of all weights $w \ge 0$ for which the Hardy-Littlewood maximal operator M is bounded on $L^p(w)$. A_1 is the class of weights $w \ge 0$ for which M satisfies a weak-type estimate on $L^1(w)$, i.e., $Mw(x) \le Cw(x)$ a. e. for some positive constant C (see [12, 17] etc.).

Now let $\tilde{A}_p(\mathbb{R}^+)$ denote the class of all radial weights w(x) such that

 $w(x) = w(|x|) = v_1(|x|) v_2^{1-p}(|x|)$, where either $v_i \in A_1(\mathbb{R}^+)$ and is decreasing or $v_i^2 \in A_1(\mathbb{R}^+)$, i = 1, 2 (see [9]). By (8) in [9], the Hardy-Littlewood maximal function Mf(x) is bounded on $L^p(w)$ for $w \in \tilde{A}_p(\mathbb{R}^+)$ and for all p > 1. Thus if $w \in \tilde{A}_p(\mathbb{R}^+)$, then $w \in A_p(\mathbb{R}^n)$ (see [17]). Moreover, by the properties of A_p weights and by the definition of $\tilde{A}_p(\mathbb{R}^+)$, we observe the following facts:

a) $w \in \tilde{A}_p(\mathbb{R}^+) \iff w^{1-p'} \in \tilde{A}_{p'}(\mathbb{R}^+), 1$ $b) <math>w \in \tilde{A}_p(\mathbb{R}^+) \Longrightarrow \exists \epsilon > 0 \ni w^{1+\epsilon} \in \tilde{A}_p(\mathbb{R}^+), 1$ $c) <math>w \in \tilde{A}_p(\mathbb{R}^+) \Longrightarrow \exists \epsilon > 0 \ni w \in \tilde{A}_{p-\epsilon}(\mathbb{R}^+), 1 and$ $d) <math>w \in \tilde{A}_p(\mathbb{R}^+) \Longrightarrow w \in \tilde{A}_q(\mathbb{R}^+)$ for 1

2.2 The Triebel-Lizorkin weighted space $\dot{F}_{p,q}^{\alpha,w}(\mathbb{R}^n)$.

Fix a radial Schwartz function $\Phi \in \mathscr{S}(\mathbb{R}^n)$ such that $\operatorname{supp} \hat{\Phi} \subset \{\xi \in \mathbb{R}^n : \frac{1}{2} \le |\xi| \le 2\}, \hat{\Phi}(\xi) \ge 0,$ $\hat{\Phi}(\xi) \ge c > 0, \text{ if } \frac{3}{5} \le |\xi| \le \frac{5}{3}.$ Denote $\hat{\Phi}_t(\xi) = \hat{\Phi}(t\xi), t \in \mathbb{R}$, so that $\Phi_t(x) = t^{-n}\Phi(x/t), x \in \mathbb{R}^n$. For $1 < p, q < \infty, \alpha \in \mathbb{R}$, and $w(x) \in A_p(\mathbb{R}^n)$, the homogeneous Triebel-Lizorkin weighted space $\dot{F}_{p,q}^{\alpha,w}(\mathbb{R}^n)$ is the space of all tempered distributions $f \in \mathscr{S}'(\mathbb{R}^n)/\mathscr{P}(\mathbb{R}^n)$ with the norm defined by

$$\begin{split} \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} &\sim \left\{ \int_{\mathbb{R}^n} \left(\int_0^\infty |t^{-\alpha} \Phi_t * f(x)|^q \frac{dt}{t} \right)^{p/q} w(x) dx \right\}^{1/p} \\ &\equiv \left\| \left(\int_0^\infty |t^{-\alpha} \Phi_t * f(x)|^q \frac{dt}{t} \right)^{1/q} \right\|_{L^p(w)} < \infty. \end{split}$$

The homogeneous Besov-Lipschitz weighted space $\dot{B}_{p,q}^{\alpha,w}(\mathbb{R}^n)$ is the space of all tempered distributions $f \in \mathscr{S}'(\mathbb{R}^n)/\mathscr{P}(\mathbb{R}^n)$ with the norm defined by

$$\|f\|_{\dot{B}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \sim \left(\int_0^\infty \left(t^{-\alpha} \|\Phi_t * f(x)\|_{L^p(w)}\right)^q \frac{dt}{t}\right)^{1/q} < \infty$$

See [1, 2, 19] for more information on this subject. We will denote the homogeneous Triebel-Lizorkin unweighted space and the homogeneous Besov unweighted space by the

symbols $\dot{F}_{p,q}^{\alpha}(\mathbb{R}^n)$ and $\dot{B}_{p,q}^{\alpha}(\mathbb{R}^n)$ respectively. Observe that by interpolation (see [19], p. 64, p. 244), we have

$$\left(\dot{F}_{p,q_o}^{\alpha_o}(\mathbb{R}^n),\ \dot{F}_{p,q_1}^{\alpha_1}(\mathbb{R}^n)\right)_{\theta,q}=\dot{B}_{p,q}^{\alpha}(\mathbb{R}^n).$$

Also, it is well known that the set

$$\mathcal{Z}(\mathbb{R}^n) = \left\{ \phi \in \mathscr{S}(\mathbb{R}^n) : (D^{\alpha} \hat{\phi}) = 0 \text{ for every multi-index } \alpha \right\},\$$

or equivalently the set

$$\mathcal{S}_{\infty}(\mathbb{R}^n) = \bigcap_{\alpha \in (\mathbb{N} \cup \{0\})^n} \left\{ f \in \mathscr{S}(\mathbb{R}^n) : \int_{\mathbb{R}^n} x^{\alpha} f(x) dx = 0 \right\}$$

is dense in both $\dot{F}^{\alpha}_{p,q}(\mathbb{R}^n)$ and $\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)$ for $\alpha \in \mathbb{R}$, $1 < p, q < \infty$ (see [19], p. 240). Let $H^p_w(\mathbb{R}^n)$ denote the Hardy weighted space of all tempered distributions $f \in \mathscr{S}'(\mathbb{R}^n)$ for which

$$||f||_{H^p_w(\mathbb{R}^n)} = ||\sup_{t>0} |\psi_t * f||_{L^p(w)} < \infty,$$

where ψ is a fixed function in $\mathscr{S}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} \psi(x) dx = 1$, and $\psi_t(x) = t^{-n} \psi(x/t)$. By [1], we know that $\dot{F}_{p,2}^{0,w}(\mathbb{R}^n) = H_w^p(\mathbb{R}^n)$ (modulo polynomials), $w \in A_{\infty}(\mathbb{R}^n)$. Moreover, if $1 and <math>w \in A_p(\mathbb{R}^n)$, then $H_w^p(\mathbb{R}^n) = L^p(w)$ (see [1]). For a function g(x,t), $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, we define the mixed norm $||g||_{L^p(w,L^q(\mathbb{R}))}$ as

$$||g||_{L^{p}(w, L^{q}(\mathbb{R}))} = \left\| \left(\int_{\mathbb{R}} |g(x, t)|^{q} dt \right)^{1/q} \right\|_{L^{p}(w)} < \infty.$$

For the rest of this paper, the letter C will denote a positive constant which may vary at each occurrence, but it is independent of the essential variables.

3 Main Theorems

Let \mathbb{R}^+ denote the interval $(0, \infty)$. For 1 , let <math>p' stand for the conjugate of p, i.e., $\frac{1}{p} + \frac{1}{p'} = 1$. Let h be a measurable function on $[0, \infty)$. In the sequel, we assume that Ω satisfies either one of the following conditions:

(2) $\sup_{\zeta' \in S^{n-1}} \int_{S^{n-1}} |\Omega(y')| (\ln |\zeta' \cdot y'|^{-1})^{(\ln(e+\ln |\zeta' \cdot y'|^{-1}))^{\beta}} d\sigma(y') \le C_1 < \infty \text{ for some } \beta > 0.$ (3) $\sup_{\zeta' \in S^{n-1}} \sup_{\beta > 0} \int_{S^{n-1}} |\Omega(y')| (\ln |\zeta' \cdot y'|^{-1})^{\beta} d\sigma(y') \le C_2 < \infty.$

For a Schwartz function $f \in \mathscr{S}(\mathbb{R}^n)$ $(n \ge 2)$, we define the singular integral Tf as

$$Tf(x) = p. v. \int_{\mathbb{R}^n} \frac{h(|y|)\Omega(y')}{|y|^n} f(x-y) \, dy.$$

Also we define the function $\mu_{\Omega,q}(f)$ by

$$\mu_{\Omega,q}(f)(x) = \left(\int_0^\infty |F_{\Omega}(x,t)|^q \frac{dt}{t^{q+1}}\right)^{1/q}, \text{ where } F_{\Omega}(x,t) = \int_{|y| \le t} \frac{h(|y|)\Omega(y')}{|y|^{n-1}} f(x-y) \, dy.$$

Observe that $\mu_{\Omega,2}(f)$ is the usual Marcinkiewicz integral. We have the following theorems.

Theorem 3.1. Let $h \in C^1([0, \infty))$ be a measurable bounded function. Assume that either h is monotonic on $[0, \infty)$ or $h' \in L^1(\mathbb{R}^+)$. Let Ω satisfy the mean value zero property. Assume that either Ω satisfies either condition (2) or condition (3). If $w(|x|) \in \tilde{A}_{p/q}(\mathbb{R}^+)$, then $||Tf||_{\dot{F}^{\alpha,w}_{n,q}(\mathbb{R}^n)} \leq C ||f||_{\dot{F}^{\alpha,w}_{n,q}(\mathbb{R}^n)}$ for $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$.

If $w(|x|)^{1-p'} \in \tilde{A}_{p'/q'}(\mathbb{R}^+)$, then $||Tf||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \leq C ||f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)}$ for 1 .In particular, we have

 $||Tf||_{\dot{F}^{\alpha}_{n,q}(\mathbb{R}^n)} \leq C ||f||_{\dot{F}^{\alpha}_{n,q}(\mathbb{R}^n)} \text{ for } 1 < p, q < \infty, \alpha \in \mathbb{R}, \text{ and }$

 $\|Tf\|_{\dot{B}^{\alpha}_{n,\sigma}(\mathbb{R}^{n})} \leq C \|f\|_{\dot{B}^{\alpha}_{n,\sigma}(\mathbb{R}^{n})} \text{ for } 1 < p, q < \infty, \alpha \in \mathbb{R}.$

Theorem 3.2. Let h and Ω be given as in Theorem 1. If $w(|x|) \in \tilde{A}_{p/q}(\mathbb{R}^+)$, then

 $\|\mu_{\Omega,q}(f)\|_{L^{p}(w)} \leq C \|f\|_{\dot{F}^{0,w}_{r,\infty}(\mathbb{R}^{n})} \text{ for } 1 < q \leq p < \infty.$

If $w(|x|)^{1-p'} \in \tilde{A}_{p'/q'}(\mathbb{R}^+)$, then $\|\mu_{\Omega,q}(f)\|_{L^p(w)} \leq C \|f\|_{\dot{F}^{0,w}_{p,q}(\mathbb{R}^n)}$ for 1 . $In particular, <math>\|\mu_{\Omega,2}(f)\|_{L^p(w)} \leq C \|f\|_{L^p(w)}$ for $1 < 2 \leq p < \infty$ if $w \in \tilde{A}_{p/2}(\mathbb{R}^+)$ and for $1 if <math>w^{-p'/p} \in \tilde{A}_{p'/2}(\mathbb{R}^+)$.

Remark 3.3. 1) Notice that the weights *w* appeared in Theorems 1 and 2 are radial weights. 2) See [7, 8] for the $L^p(w)$ - boundedness of the Marcinkiewicz integral under various conditions on the kernels Ω and the weights *w*.

3) Let a > 0. Let $w^{1+a} \in \tilde{A}_2(\mathbb{R}^n)$ if $p \ge 2$; otherwise, let w satisfy $w^{1+a} \in \tilde{A}_2(\mathbb{R}^n)$ and $w^2 \in \tilde{A}_1(\mathbb{R}^n)$ if $1 . Under these weights' conditions, the authors in [21] we obtained the boundedness of the fractional Marcinkiewicz integral from the space <math>\dot{F}_{p,q}^{\alpha,w}(\mathbb{R}^n)$ for a certain range of α . It is interesting to note that if $0 < \alpha < C_1$ (C_1 depends on p, q, and a), then Ω is only required to be integrable and to satisfy the cancellation condition (see Theorem 2 [21]). On the other hand, if $C_2 < \alpha < 0$ (C_2 depends on p, q, and a), then although the moment condition on Ω can be relaxed, Ω is imposed by a condition which is stronger than condition (2) in this paper (see (1.19) in [21]). Finally, when $\alpha = 0$, the authors in [21] obtained the results for the case of $\Omega \in L\log^+ L(S^{n-1})$. Observe that the condition that $\Omega \in L\log^+ L(S^{n-1})$ implies that

$$\sup_{\zeta'\in S^{n-1}}\int_{S^{n-1}}|\Omega(y')|\log\frac{1}{|\zeta'\cdot y'|}\,d\sigma(y')<\infty.$$

The interested readers can view [20, 21] for more information on this subject.

4 Proofs of Theorems

4.1 **Proof of Theorem 1**

It suffices to prove the theorem for $f \in S_{\infty}(\mathbb{R}^n)$. We choose a real-valued, radial function $\phi \in \mathscr{S}(\mathbb{R}^n)$ such that $\operatorname{supp} \hat{\phi} \subset \{\xi \in \mathbb{R}^n : \frac{1}{2} \le |\xi| \le 2\}, \, \hat{\phi}(\xi) \ge 0, \, \hat{\phi}(\xi) \ge c > 0, \text{ if } \frac{3}{5} \le |\xi| \le \frac{5}{3}; \text{ and}$ for all $\xi \ne 0, \, \int_{\mathbb{R}} |\hat{\phi}_{2^t}(\xi)|^2 \, dt = 1$, where $\hat{\phi}_{2^t}(\xi) = \hat{\phi}(2^t\xi), \, t \in \mathbb{R}$. Note that $\phi_{2^t}(x) = 2^{-nt}\phi(2^{-t}x)$,

 $x \in \mathbb{R}^n$. Denote $S_{2^t} f = \phi_{2^t} * f$. Then for $f \in \mathcal{S}_{\infty}(\mathbb{R}^n)$, $f = \int_{\mathbb{R}} S_{2^t}(S_{2^t} f) dt$. Also for $f \in \mathcal{S}_{\infty}(\mathbb{R}^n)$ and for each fixed $x \in \mathbb{R}^n$, we have

$$Tf(x) = \int_{\mathbb{R}^n} \frac{h(|y|)\Omega(y')}{|y|^n} f(x-y) dy$$

=
$$\int_{\mathbb{R}} \int_{\mathbb{R}^n} \frac{h(|y|)\Omega(y')}{|y|^n} \chi_{2'}(|y|) f(x-y) dy dt \equiv \int_{\mathbb{R}} \sigma_{2'} * f(x) dt,$$

where

$$\sigma_{2^{t}} * f(x) = \int_{\mathbb{R}^{n}} \frac{h(|y|)\Omega(y')}{|y|^{n}} \chi_{2^{t}}(|y|) f(x-y) dy$$

and $\chi_{2^t}(|y|) \equiv \chi_{[2^t, 2^{t+1})}(|y|)$ is the characteristic function on the interval $[2^t, 2^{t+1}), t \in \mathbb{R}$. Note that the Fourier transform of the measures σ_{2^t} is

$$\hat{\sigma}_{2^t}(\xi) = \int_{\mathbb{R}^n} \frac{h(|y|)\Omega(y')}{|y|^n} e^{i\xi \cdot y} \chi_{2^t}(|y|) dy.$$

We have the following estimates for $\hat{\sigma}_{2^t}(\xi)$.

Lemma 4.1. If Ω satisfies condition (2), then

$$|\hat{\sigma}_{2^{t}}(\xi)| \le C \min\left\{ |2^{t}\xi|, \ (\ln(e^{2}|2^{t}\xi|^{1/2}))^{-(\ln(e+\ln(e^{2}|2^{t}\xi|^{1/2})))^{\beta}} \right\}.$$
(4.1)

If Ω satisfies condition (3), then

$$|\hat{\sigma}_{2^{t}}(\xi)| \le C \min\left\{ |2^{t}\xi|, \ |2^{t}\xi|^{-1/2} \right\}.$$
(4.2)

Proof. By the cancellation property of Ω , we have

$$\begin{aligned} |\hat{\sigma}_{2^{t}}(\xi)| &\leq \||h\|_{\infty} \int_{2^{t}}^{2^{(t+1)}} \int_{S^{n-1}} |\Omega(y')(e^{i|\xi|r(\xi' \cdot y')} - 1)| \, d\sigma(y') \frac{dr}{r} \\ &\leq C \|\Omega\|_{L^{1}(S^{n-1})} |2^{t+1}\xi| \leq C |2^{t}\xi|. \end{aligned}$$

Fix $0 < \delta < 1$. This δ will be chosen later. We write

$$\hat{\sigma}_{2'}(\xi) = \int_{S^{n-1}} \Omega(y') K_{\xi}(y') d\sigma(y')$$

=
$$\int_{A} \Omega(y') K_{\xi}(y') d\sigma(y') + \int_{B} \Omega(y') K_{\xi}(y') d\sigma(y')$$

=
$$J_{1} + J_{2}, \text{ where}$$

 $K_{\xi}(y') = \int_{1}^{2} h(2^{t}r)e^{i|2^{t}\xi|(\xi'\cdot y')r}\frac{dr}{r}, A = \left\{y' \in S^{n-1} : |\xi' \cdot y'| \ge \frac{\delta}{e^{2}}\right\}, \text{ and } B = S^{n-1} \setminus A.$ By the hypothesis of *h*, it follows that

$$|K_{\xi}(y')| \le C \min\left\{1, \ |2^{t}\xi|^{-1}|\xi' \cdot y'|^{-1}\right\}.$$
(4.3)

It is clear that inequality (4.3) implies $|J_1| \leq \frac{C}{\delta |2^t \xi|}$. If Ω satisfies condition (2), then from inequality (4.3), we obtain $|J_2| \leq C (\ln(e^2 \delta^{-1}))^{-(\ln(e+\ln(e^2 \delta^{-1})))^{\beta}}$ for some $\beta > 0$. Observe that on the set *B*,

$$(\ln(|\xi' \cdot y'|^{-1}))^{\alpha_{\delta}} > (\ln(e^{2}\delta^{-1}))^{\alpha_{\delta}} = e^{2}\delta^{-1} > \delta^{-1}, \text{ where } \alpha_{\delta} = \frac{\ln(e^{2}\delta^{-1})}{\ln(\ln(e^{2}\delta^{-1}))}.$$

So if Ω satisfies condition (3), then

$$|J_2| \le \delta \int_B |\Omega(y')| (\ln(|\xi' \cdot y'|^{-1}))^{\alpha_\delta} d\sigma(y') \le C \,\delta$$

Thus we can obtain the estimates of $\hat{\sigma}_{2^t}(\xi)$ by choosing $\delta = |2^t \xi|^{-1/2}$. Lemma 1 is proved.

For the remaining part of this article, we will prove for the case Ω satisfying condition (2). The proof of the remaining case is handled in the same manner. We write

$$Tf = \int_{\mathbb{R}} (\sigma_{2^{t}} * f) dt = \int_{\mathbb{R}} \sigma_{2^{t}} * \left(\int_{\mathbb{R}} S_{2^{(t+s)}} S_{2^{(t+s)}} f ds \right) dt$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} S_{2^{(t+s)}} (\sigma_{2^{t}} * S_{2^{(t+s)}} f) dt ds \equiv \int_{\mathbb{R}} T_{s} f ds,$$
(4.4)

where

$$T_{s}f = \int_{\mathbb{R}} S_{2^{(t+s)}}(\sigma_{2^{t}} * S_{2^{(t+s)}}f) dt.$$
(4.5)

Observe that

$$\|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^{n})} \sim \left\| \left(\int_{0}^{\infty} |t^{-\alpha}\phi_{t} * f|^{q} \frac{dt}{t} \right)^{1/q} \right\|_{L^{p}(w)} \sim \left\| \left(\int_{\mathbb{R}} |2^{-t\alpha}S_{2^{t}}f|^{q} dt \right)^{1/q} \right\|_{L^{p}(w)}$$
(4.6)

Thus for any function $g \in \dot{F}_{p',q'}^{-\alpha,w^{-p'/p}}(\mathbb{R}^n)$, we have

$$\begin{aligned} |\langle T_{s}f,g\rangle| &= \left\| \int_{\mathbb{R}^{n}} \int_{\mathbb{R}} S_{2^{(t+s)}}(\sigma_{2^{t}} * S_{2^{(t+s)}}f)(x)g(x)dtdx \right\| \\ &\leq \int_{\mathbb{R}^{n}} \left\| \int_{\mathbb{R}} (\sigma_{2^{t}} * S_{2^{(t+s)}}f)(x)\tilde{S}_{2^{(t+s)}}g(x)dt \right\| dx \\ &\leq \left\| \left\| \left(\int_{\mathbb{R}} |2^{-(t+s)\alpha}\sigma_{2^{t}} * S_{2^{(t+s)}}f|^{q}dt \right)^{1/q} \right\|_{L^{p}(w)} \\ &\times \left\| \left(\int_{\mathbb{R}} |2^{(t+s)\alpha}\tilde{S}_{2^{(t+s)}}g|^{q'}dt \right)^{1/q'} \right\|_{L^{p}(w^{-p'/p})} \\ &\leq C \|g\|_{\dot{F}^{-\alpha,w^{-p'/p}}_{p',q'}(\mathbb{R}^{n})} \left\| \left(\int_{\mathbb{R}} |2^{-(t+s)\alpha}\sigma_{2^{t}} * S_{2^{(t+s)}}f|^{q}dt \right)^{1/q} \right\|_{L^{p}(w)}, \end{aligned}$$

where $\tilde{S}_{2^{(t+s)}}$ is the dual operator of $S_{2^{(t+s)}}$. That is, $\tilde{S}_{2^{(t+s)}}g(x) = S_{2^{(t+s)}}(\tilde{g})(-x)$, and $\tilde{g}(x) = g(-x)$. Taking the supremum over all $g \in \dot{F}_{p',q'}^{-\alpha,w^{-p'/p}}(\mathbb{R}^n)$ with $\|g\|_{\dot{F}_{p',q'}^{-\alpha,w^{-p'/p}}(\mathbb{R}^n)} \leq 1$ yields

$$||T_s f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C \left\| \left(\int_{\mathbb{R}} |2^{-(t+s)\alpha} \sigma_{2^t} * S_{2^{(t+s)}} f|^q dt \right)^{1/q} \right\|_{L^p(w)}.$$
(4.7)

Substituting p = q = 2 and w = 1 in (4.7), we obtain

$$\|T_s f\|_{\dot{F}^{\alpha}_{2,2}(\mathbb{R}^n)}^2 \le C \int_{\mathbb{R}} \int_{D_{t+s}} |2^{-(t+s)\alpha} \hat{\sigma}_{2'}(\xi) \hat{\phi}(2^{(t+s)}\xi) \hat{f}(\xi)|^2 d\xi dt,$$
(4.8)

where $D_{t+s} = \{\xi \in \mathbb{R}^n : \frac{1}{2} \le |2^{(t+s)}\xi| \le 2\}$. If $s \ge 0$, inequalities (4.1), (4.6) and (4.8) imply that

$$\begin{aligned} \|T_{s}f\|_{\dot{F}^{\alpha}_{2,2}(\mathbb{R}^{n})} &\leq C 2^{-s} \left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}} |2^{-(t+s)\alpha} \phi_{2^{(t+s)}} * f(x)|^{2} dt dx \right)^{1/2} \\ &\leq C 2^{-s} \|f\|_{\dot{F}^{\alpha}_{2,2}(\mathbb{R}^{n})} \end{aligned}$$
(4.9)

If s < 0, by inequality (4.1) in Lemma 1, inequality (4.8) becomes

$$||T_s f||_{\dot{F}^{\alpha}_{2,2}(\mathbb{R}^n)} \le C \, 2^{-(\ln(c_1 + c_2 |s|))^{1+\beta}} ||f||_{\dot{F}^{\alpha}_{2,2}(\mathbb{R}^n)},\tag{4.10}$$

where $c_1 = 2 - \frac{\ln 2}{2}$ and $c_2 = \frac{\ln 2}{2}$. In order to estimate the norm $||T_s f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)}$, we need the following lemma.

Lemma 4.2. Denote $L_t(f)(x) = \int_{\mathbb{R}^n} \frac{|\Omega(y')|}{|y|^n} f(x-y)\chi_{2^t}(|y|) dy$, and denote \tilde{L}_t the dual operator of L_t , i.e., $\tilde{L}_t(f)(x) = L_t(\tilde{f})(-x)$, where $\tilde{f}(x) = f(-x)$ and $t \in \mathbb{R}$. Then

$$|\sigma_{2^{t}} * S_{2^{(t+s)}} f(x)| \le C ||\Omega||_{L^{1}(S^{n-1})}^{1/q'} \left(L_{t}(|S_{2^{(t+s)}} f|^{q})(x) \right)^{1/q}$$
(4.11)

$$\|\sigma_{2^{t}} * S_{2^{(t+s)}} f\|_{L^{q}(w)} \le C \|\Omega\|_{L^{1}(S^{n-1})} \|S_{2^{(t+s)}} f\|_{L^{q}(w)}, and$$
(4.12)

$$\|\sup_{t \in \mathbb{R}} L_t(|f|)\|_{L^p(w)} \le C \|\Omega\|_{L^1(S^{n-1})} \|f\|_{L^p(w)} \text{ for } 1 (4.13)$$

Proof. By Hölder's inequality, we have

$$\begin{aligned} |\sigma_{2^{t}} * S_{2^{(t+s)}} f(x)| &= \left| \int_{\mathbb{R}^{n}} \frac{h(|y|)\Omega(y')}{|y|^{n}} \chi_{2^{t}}(|y|) S_{2^{(t+s)}} f(x-y) dy \right| \\ &\leq \left(\int_{\mathbb{R}^{n}} \frac{|h(|y|)|^{q'}}{|y|^{n}} |\Omega(y')| \chi_{2^{t}}(|y|) dy \right)^{1/q'} \\ &\times \left(\int_{\mathbb{R}^{n}} \frac{|\Omega(y')|}{|y|^{n}} |S_{2^{(t+s)}} f(x-y)|^{q} \chi_{2^{t}}(|y|) dy \right)^{1/q} \\ &\leq C ||\Omega||_{L^{1}(S^{n-1})}^{1/q'} (L_{t}(|S_{2^{(t+s)}} f|^{q})(x))^{1/q}. \end{aligned}$$

This proves inequality (4.11). Moreover, we have

$$|\sigma_{2^{t}} * S_{2^{(t+s)}} f(x)| \le ||h||_{\infty} \int_{S^{n-1}} |\Omega(y')| \left(\int_{2^{t}}^{2^{(t+1)}} |S_{2^{(t+s)}} f(x-ry')| \frac{dr}{r} \right) d\sigma(y').$$

Observe that

$$\int_{2^{t}}^{2^{(t+1)}} |S_{2^{(t+s)}}f(x-ry')| \frac{dr}{r} \leq 2 \sup_{r>0} \left\{ \frac{1}{r} \int_{0}^{r} |S_{2^{(t+s)}}f(x-\tau y')| d\tau \right\}$$

$$\equiv 2M_{y'}S_{2^{(t+s)}}f(x), \text{ for all } t \in \mathbb{R}.$$

Here $M_{y'}S_{2^{(t+s)}}f(x)$ is the Hardy-Littlewood maximal function in the direction $y' \in S^{n-1}$. Thus

$$|\sigma_{2^{t}} * S_{2^{(t+s)}} f(x)| \le C ||h||_{\infty} \int_{S^{n-1}} |\Omega(y')| M_{y'} S_{2^{(t+s)}} f(x) d\sigma(y').$$

By Minskowski's inequality, it follows that

$$\begin{aligned} \|\sigma_{2^{t}} * S_{2^{(t+s)}} f\|_{L^{q}(w)} &\leq C \int_{S^{n-1}} |\Omega(y')| \|M_{y'} S_{2^{(t+s)}} f\|_{L^{q}(w)} d\sigma(y') \\ &\leq C \int_{S^{n-1}} |\Omega(y')| \|S_{2^{(t+s)}} f\|_{L^{q}(w)} d\sigma(y') \\ &\leq C \|\Omega\|_{L^{1}(S^{n-1})} \|S_{2^{(t+s)}} f\|_{L^{q}(w)}, \end{aligned}$$

where the second inequality follows from (8) in [9], and the bound *C* is independent of the direction vector $y' \in S^{n-1}$. Inequality (4.12) is proved.

It remains to prove inequality (4.13). Using the same techniques as in the proof of inequality (4.12), we obtain

$$\sup_{t\in\mathbb{R}}L_t(|f|)(x)\leq C\int_{S^{n-1}}|\Omega(y')|M_{y'}f(x)d\sigma(y').$$

Recall that by (8) in [9], $M_{y'}f$ is bounded in $L^p(w)$ for $1 , <math>w \in \tilde{A}_p(\mathbb{R}^+)$; and the bound is independent of the direction vector $y' \in S^{n-1}$. Hence, an application of Minskowski's inequality yields (4.13). Lemma 2 is proved.

We now estimate the norm $||T_s f||_{\dot{F}_{p,q}^{\alpha,w}(\mathbb{R}^n)}$. When p = q, from inequalities (4.6), (4.7) and (4.12) we obtain

$$\begin{aligned} \|T_{s}f\|_{\dot{F}^{\alpha,w}_{q,q}(\mathbb{R}^{n})} &\leq C \|\Omega\|_{L^{1}(S^{n-1})} \left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}} |2^{-(t+s)\alpha} S_{2^{(t+s)}}f(x)|^{q} dt w dx \right)^{1/q} \\ &\leq C \|\Omega\|_{L^{1}(S^{n-1})} \|f\|_{\dot{F}^{\alpha,w}_{q,q}(\mathbb{R}^{n})} \leq C \|f\|_{\dot{F}^{\alpha,w}_{q,q}(\mathbb{R}^{n})}. \end{aligned}$$
(4.14)

If p > q, inequality (4.7) implies that there exists a non-negative function $g \in L^{r'}(w^{1-r'})$

(r = p/q) with unit norm such that $||T_s f||^q_{\dot{F}^{q,w}_{p,q}(\mathbb{R}^n)}$

$$\leq C \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} |2^{-(t+s)\alpha} \sigma_{2^{t}} * S_{2^{(t+s)}} f(x)|^{q} g(x) dx dt$$

$$\leq C ||\Omega||_{L^{1}(S^{n-1})}^{q/q'} \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} 2^{-(t+s)\alpha q} L_{t}(|S_{2^{(t+s)}} f|^{q})(x) g(x) dx dt$$

$$= C ||\Omega||_{L^{1}(S^{n-1})}^{q/q'} \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} |2^{-(t+s)\alpha} S_{2^{(t+s)}} f(x)|^{q} \tilde{L}_{t} g(x) dx dt$$

$$\leq C ||\Omega||_{L^{1}(S^{n-1})}^{q/q'} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}} |2^{-(t+s)\alpha} S_{2^{(t+s)}} f(x)|^{q} dt \right) \sup_{t \in \mathbb{R}} \tilde{L}_{t} g(x) dx$$

$$\leq C ||\Omega||_{L^{1}(S^{n-1})}^{q/q'} \left(\int_{\mathbb{R}^{n}} (\int_{\mathbb{R}} |2^{-(t+s)\alpha} S_{2^{(t+s)}} f(x)|^{q} dt)^{r} w(|x|) dx \right)^{1/r}$$

$$\times \left(\int_{\mathbb{R}^{n}} |\sup_{t \in \mathbb{R}} \tilde{L}_{t} g(x)|^{r'} w^{1-r'} (|x|) dx \right)^{1/r'}$$

$$\leq C ||\Omega||_{L^{1}(S^{n-1})}^{1+q/q'} ||f||_{F_{p,q}^{\alpha,w}(\mathbb{R}^{n})}^{q} ||g||_{L^{r'}(w^{1-r'})},$$

where the second and the last inequalities follow from Lemma 2. Therefore,

$$||T_s f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C ||\Omega||_{L^1(S^{n-1})} ||f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C ||f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)}$$

for $1 < q < p < \infty$, $\alpha \in \mathbb{R}$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$, which together with inequality (4.14) yield

$$\|T_s f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \text{ for } 1 < q \le p < \infty, \alpha \in \mathbb{R}, \text{ and } w \in \tilde{A}_{p/q}(\mathbb{R}^+).$$

$$(4.15)$$

Now set q = 2 and w = 1 in (4.15) and by applying duality, we obtain

$$\|T_s f\|_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)} \le C \|f\|_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)} \text{ for } 1
$$(4.16)$$$$

Interpolating (4.9)-(4.16) and (4.10)-(4.16) (with w = 1) gives

$$||T_s f||_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)} \le C 2^{-s\theta_1} ||f||_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)}$$
(4.17)

for $0 < \theta_1 \le 1$, $s \ge 0$, $1 , <math>\alpha \in \mathbb{R}$, and

$$\|T_s f\|_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)} \le C 2^{-\delta_1 (\ln(c_1 + c_2|s|))^{1+\beta}} \|f\|_{\dot{F}^{\alpha}_{p,2}(\mathbb{R}^n)}$$
(4.18)

for $0 < \delta_1 \le 1$, s < 0, $1 , <math>\alpha \in \mathbb{R}$. Interpolating (4.15)-(4.17) and (4.15)-(4.18) (with w = 1) gives

$$||T_s f||_{\dot{F}^{\alpha}_{p,q}(\mathbb{R}^n)} \le C \, 2^{-s\theta_2} \, ||f||_{\dot{F}^{\alpha}_{p,q}(\mathbb{R}^n)} \tag{4.19}$$

for $0 < \theta_2 \le \theta_1 \le 1$, $s \ge 0$, $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$, and

$$||T_s f||_{\dot{F}^{\alpha}_{p,q}(\mathbb{R}^n)} \le C \, 2^{-\delta_2 (\ln(c_1 + c_2|s|))^{1+\beta}} \, ||f||_{\dot{F}^{\alpha}_{p,q}(\mathbb{R}^n)} \tag{4.20}$$

for $0 < \delta_2 \le \delta_1 \le 1$, s < 0, $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$. Since $p \ge q > 1$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+) \Rightarrow w \in \tilde{A}_p(\mathbb{R}^+)$, and thus there exists an $\epsilon > 0$ such that $w^{1+\epsilon} \in \tilde{A}_p(\mathbb{R}^+)$. Hence inequality (4.15) implies that

$$\|T_s f\|_{\dot{F}^{\alpha,w^{1+\epsilon}}_{p,q}(\mathbb{R}^n)} \le C \|f\|_{\dot{F}^{\alpha,w^{1+\epsilon}}_{p,q}(\mathbb{R}^n)} \text{ for } 1 < q \le p < \infty, \alpha \in \mathbb{R}.$$

$$(4.21)$$

By interpolating (4.19)-(4.21) and (4.20)-(4.21) with the same p and q, but with change of measures (see [18]), we have

$$\|T_s f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C 2^{-s\theta_3} \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)}$$
(4.22)

for $s \ge 0, 0 < \theta_3 = \frac{\theta_2 \epsilon}{1 + \epsilon} < 1, 1 < q \le p < \infty, \alpha \in \mathbb{R}$, and

$$||T_s f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C \, 2^{-\delta_3(\ln(c_1 + c_2|s|))^{1+\beta}} ||f||_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \tag{4.23}$$

for s < 0, $0 < \delta_3 = \frac{\delta_2 \epsilon}{1 + \epsilon} < 1$, $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$. It follows from (4.4), (4.22) and (4.23) that

$$\|Tf\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le \int_{\mathbb{R}} \|T_s f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} ds \le C \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)}$$
(4.24)

for $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$, and $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$. We define the truncated singular integral $T^{\epsilon}f$ by

$$T^{\epsilon}f(x) = \int_{|y|>\epsilon} \frac{h(|y|)\Omega(y')}{|y|^n} f(x-y) dy,$$

$$\equiv \int_{\mathbb{R}^n} \frac{h_{\epsilon}(|y|)\Omega(y')}{|y|^n} f(x-y) dy$$

where $h_{\epsilon}(|y|) = h(|y|)\chi_{\epsilon}(|y|)$, and $\chi_{\epsilon}(|y|)$ is the characteristic function defined on the set $\{y \in \mathbb{R}^n : |y| > \epsilon\}$. Note that $||h_{\epsilon}||_{\infty} \le ||h||_{\infty}$ for all $\epsilon > 0$. Thus it follows from (4.24) that

$$\|T^{\epsilon}f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \le C \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \tag{4.25}$$

for $1 < q \le p < \infty$, $\alpha \in \mathbb{R}$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$, and *C* is independent of $\epsilon > 0$. Now suppose $w^{1-p'} \in \tilde{A}_{p'/q'}(\mathbb{R}^+)$ with 1 . An application of duality to inequality (4.25) yields

$$\|T^{\epsilon}f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \leq C \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \text{ for } 1$$

and the constant *C* is again independent of $\epsilon > 0$. Passing to the limit as $\epsilon \longrightarrow 0$, we finally obtain

$$\|Tf\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \leq C \|f\|_{\dot{F}^{\alpha,w}_{p,q}(\mathbb{R}^n)} \text{ for } 1$$

For the unweighted case, we simply set w = 1 to obtain the results for the Triebel-Lizorkin unweighted spaces. Moreover by interpolation (see [19]), we also get the results for the Besov unweighted spaces, finishing the proof of Theorem 1.

4.2 **Proof of Theorem 2**

Since the proof of this theorem is essentially similar to the proof of Theorem 1, we will only outline some necessary steps in order to obtain the following inequality:

$$\|\mu_{\Omega,q}(f)\|_{L^{p}(w)} \le C \|f\|_{\dot{F}^{0,w}_{p,q}(\mathbb{R}^{n})} \text{ for } 1 < q \le p < \infty \text{ if } w(|x|) \in \tilde{A}_{p/q}(\mathbb{R}^{+}),$$

and for $1 if <math>w(|x|)^{1-p'} \in \tilde{A}_{p'/q'}(\mathbb{R}^+)$. Define the measures $\{\sigma_{2^t}\}_{t \in \mathbb{R}}$ by

$$\sigma_{2^{t}} * f(x) = 2^{-t} \int_{|y| \le 2^{t}} \frac{h(|y|)\Omega(y')}{|y|^{n-1}} f(x-y) \, dy.$$

Then

$$\mu_{\Omega,q}(f)(x) \sim \left(\int_{\mathbb{R}} |\sigma_{2^{t}} * f(x)|^{q} dt\right)^{1/q}.$$

By a similar calculation as in the proof of Theorem 1, we obtain the same estimates for $\hat{\sigma}_{2'}(\xi)$ as in Lemma 1. Moreover, we also have the following results

$$|\sigma_{2^{t}} * S_{2^{(t+s)}} f(x)| \le C \|\Omega\|_{L^{1}(S^{n-1})}^{1/q'} \left(N_{t}(|S_{2^{(t+s)}} f|^{q})(x)\right)^{1/q},$$
(4.26)

$$\|\sigma_{2^{t}} * S_{2^{(t+s)}} f\|_{L^{q}(w)} \le C \|\Omega\|_{L^{1}(S^{n-1})} \|S_{2^{(t+s)}} f\|_{L^{q}(w)}, \text{ and}$$

$$(4.27)$$

$$\|\sup_{t \in \mathbb{R}} N_t(|f|)\|_{L^p(w)} \le C \|\Omega\|_{L^1(S^{n-1})} \|f\|_{L^p(w)} \text{ for } 1 (4.28)$$

Here $S_{2^{(t+s)}}f = \phi_{2^{(t+s)}} * f$, and

$$N_t(f)(x) = 2^{-t} \int_{|y| \le 2^t} \frac{|\Omega(y')|}{|y|^{n-1}} f(x-y) \, dy.$$

The function ϕ is as in proof of Theorem 1, except for a slight modification that

$$\int_{\mathbb{R}} \hat{\phi}_{2^t}(\xi) \, dt = 1$$

for all $\xi \neq 0$, instead of

$$\int_{\mathbb{R}} |\hat{\phi}_{2^t}(\xi)|^2 dt = 1.$$

Observe that

$$\sigma_{2^t} * f = \int_{\mathbb{R}} \sigma_{2^t} * S_{2^{(t+s)}} f \, ds.$$

By Minskowski's inequality, we have

$$\|\sigma_{2^t} * f\|_{L^q(\mathbb{R})} \leq \int_{\mathbb{R}} \|\sigma_{2^t} * S_{2^{(t+s)}} f\|_{L^q(\mathbb{R})} ds \equiv \int_{\mathbb{R}} I_{q,s} f ds,$$

where

$$I_{q,s}f(x) = \left(\int_{\mathbb{R}} |\sigma_{2^{t}} * S_{2^{(t+s)}}f(x)|^{q} dt\right)^{1/q}.$$

By using similar arguments as in the proof of Theorem 1, we obtain

$$||I_{q,s}f||_{L^{p}(w)} \leq C 2^{-\epsilon_{1}s} ||f||_{\dot{F}^{0,w}_{p,q}(\mathbb{R}^{n})}$$

for some $\epsilon_1 > 0$, $s \ge 0$, $1 < q \le p < \infty$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$, and

$$||I_{q,s}f||_{L^{p}(w)} \leq C \, 2^{-\epsilon_{2}(\ln(c_{1}+c_{2}|s|))^{1+\beta}} \, ||f||_{\dot{F}^{0,w}_{p,q}(\mathbb{R}^{n})}$$

for some $\epsilon_2 > 0$, s < 0, $1 < q \le p < \infty$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$. It follows that for $1 < q \le p < \infty$,

$$\|\sigma_{2^{t}} * f\|_{L^{p}(w, L^{q}(\mathbb{R}))} \leq \int_{\mathbb{R}} \|I_{q, s}f\|_{L^{p}(w)} ds \leq C \|f\|_{\dot{F}^{0, w}_{p, q}(\mathbb{R}^{n})}.$$

Thus

$$\|\mu_{\Omega_m,q}(f)\|_{L^p(w)} \le C \|\sigma_{2^t} * f\|_{L^p(w,L^q(\mathbb{R}))} \le C \|f\|_{\dot{F}^{0,w}_{p,q}(\mathbb{R}^n)}$$

for $1 < q \le p < \infty$, $w \in \tilde{A}_{p/q}(\mathbb{R}^+)$, and an application of duality yields the remaining results.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments.

References

- [1] H. Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method. *Hiroshima Math. J.* **12** (1982), pp 581-605.
- [2] H. Q. Bui, M. Paluszyński and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. *Studia Mathematica* **119**, no. 3 (1996), pp 219-246.
- [3] A. P. Calderón and A. Zygmund, On singular integrals. Amer. J. Math. 78 (1956), pp 289-309.
- [4] J. Chen and C. Zhang, Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. *Journal of Mathematical Analysis and Applications* 337 (2008), pp 1048-1052.
- [5] J. Chen, D. Fan and Y. Ying, Singular integral operators on function spaces. J. Math. Anal. Appl. 276, no. 2 (2002), pp 691-708.
- [6] W. C. Connett, Singular integrals near L1. Proc. Sympos. Pure Math. of the Amer. Math. Soc. (S. Wainger and G. Weiss, eds) 35 I (1979), pp 163-165.
- [7] Y. Ding, D. Fan and Y. Pan, Weighted Boundedness for a Class of Rough Marcinkiewicz Integrals. *Indiana University Mathematics Journal* 48, no. 3 (1999), pp 1037-1055.

- [8] Y. Ding, Q. Xue and K. Yabuta, Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces. *Tohoku Math. J.* **62** (2010), pp 233-262.
- [9] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals. *Trans. Amer. Math. Soc.* **336**, no. 2 (1992), pp 869-880.
- [10] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties. *Amer. J. Math.* **119** (1997), pp 799-839.
- [11] D. Fan, K. Guo and Y. Pan, A note of a rough singular integral operator. *Math. Ineq. and Appl.* 2 (1999), pp 73-81.
- [12] G. Garcia and J. L. Rubio de Francia, Weighted norm inequalities and related topics. *North-Holland* (1985).
- [13] L. Grafakos and A. Stefanov, L^p bounds for singular integrals and maximal singular integrals with rough kernel. *India. Univ. Math. J.* 47 (1998), pp 455-469.
- [14] L. Grafakos, P. Honzik and D. Ryabogin, On the *p*-independence boundedness property of Calderón-Zygmund theory. *Journal für die Reine und Angewandte Mathematik* (*Crelles Journal*) 602 (2007), pp 227-234.
- [15] S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators. *Indiana Univ. Math. J.* **42** (1993), pp 1-14.
- [16] F. Ricci and G. Weiss, A characterization of H¹(Sⁿ⁻¹). Proc. Sympos. Pure Math. of Amer. Math. Soc. (S. Wainger and G. Weiss, eds) 35 I (1979), pp 289-294.
- [17] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. *Princeton University Press* (1993). 87, (1958), no. 1, pp 159-172.
- [18] E. M. Stein and G. Weiss, Interpolation of operators with change of measures. *Trans. Amer. Math. Soc.* 87, (1958), no. 1, pp 159-172.
- [19] Hans Triebel, Theory of Function Spaces. *Monographs in Mathematics* **78** *Birkhäuser Verlag, Basel* (1983).
- [20] 2425 Y. Sawano and K. Yabuta, Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces. http://www.esi.ac.at/preprints/ESI-Preprints.html.
- [21] 2426 Y. Sawano and Κ. Yabuta, Weighted Estimates for Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces. http://www.esi.ac.at/preprints/ESI-Preprints.html.