
Communications in Mathematical Analysis
Volume 15, Number 2, pp. 103–116 (2013)
ISSN

www.math-res-pub.org/cma

O S I  R K 
T-LW S

H V L∗
Faculty of Science and Technology

Hoa Sen University
Quang Trung Software Park, Section 10

Ward Tan Chanh Hiep, District 12
Ho Chi Minh City

Viet Nam

(Communicated by Palle Jorgensen)

Abstract

Let Ω ∈ L1(S n−1) have mean value zero and satisfy the condition

sup
ζ′∈S n−1

∫
S n−1
|Ω(y′)|(ln |ζ′ · y′|−1)(ln(e+ln |ζ′·y′ |−1))β dσ(y′) <∞ for some β > 0.

Under certain conditions on the measurable function h, we show that the singular
integral

T f (x) = p. v.
∫
Rn

h(|y|)Ω(y′)
|y|n

f (x− y)dy

is bounded on the Triebel-Lizorkin weighted spaces Ḟα,w
p,q (Rn). We also study the

Marcinkiewicz integral (with the same kernel Ω as above) in the Lp- weighted spaces.

AMS Subject Classification: 42B20, 42B25, 42B30, 42B35.
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1 Introduction

In this note, we always assume that the kernel Ω ∈ L1(S n−1) (n ≥ 2) satisfies the mean value
zero property. Consider the singular integral T f (with h ≡ 1) as defined in the abstract.
Calderón and Zygmund [3] proved that T is a bounded operator on Lp(Rn) for 1 < p <
∞ if Ω ∈ L log+ L(S n−1). Afterward, Connett [6] and Ricci and Weiss [16] independently
obtained the same result with the condition Ω ∈ H1(S n−1), where H1(S n−1) is the Hardy
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space on the unit sphere. Later on, Fan and Pan [10] obtained the result for a more general
class of operators.

Recently, Grafakos and Stefanov [13] proved that if h ≡ 1, and Ω ∈ L1(S n−1) satisfies the
condition

(1) sup
ζ′∈S n−1

∫
S n−1
|Ω(y′)|(log

1
|ζ′ · y′|

)1+α dσ(y′) <∞ for some α > 1,

then

||T f ||Lp(Rn) ≤C || f ||Lp(Rn) for |
1
2
−

1
p
| <

α

2(2+α)
.

Subsequently, this result was extended by Fan, Guo and Pan [11], where
α

2(2+α)
is replaced

by
α

2(1+α)
. Note that for every α satisfying 0 ≤ α < 1, Grafakos, Honzík, and Ryabogin

[14] proved that there is an even integrable function Ω on S n−1 with mean value zero that
satisfies a condition similar to condition (1) ( where sup

ζ′∈S n−1
is replaced by essupζ′∈S n−1) such

that the singular integral

TΩ f (x) = p. v.
∫
Rn

Ω(y′)
|y|n

f (x− y)dy

is unbounded on Lp(Rn) whenever |
1
2
−

1
p
| >

α

1+α
. In particular, there is a function Ω such

that TΩ is bounded on Lp(Rn) exactly when p = 2.

It may be possible that for α > 1, TΩ is bounded on Lp(Rn) for 1 < p < ∞, whenever Ω
satisfies condition (1). However, this is still unknown at the present. The best result we can
infer from [13] is that TΩ is bounded on Lp(Rn) for 1< p<∞, ifΩ satisfies condition (1) for
all α > 0. In fact, under the hypothesis that Ω satisfies condition (1) for all α > 0, Jiecheng
Chen and Chunjie Zhang [4] have obtained the boundedness of TΩ on the homogeneous
Triebel-Lizorkin space Ḟ s

p,q(Rn) for 1 < p, q <∞, s ∈ R.

The purpose of this paper is to find an alternative condition onΩ so that the singular integral
T f (as defined in the abstract) is bounded on the homogeneous Triebel-Lizorkin weighted
space Ḟ s,w

p,q (Rn) for 1 < p, q < ∞, s ∈ R, and for some appropriate weight w. It should be
remarked that the proof in this paper follows some basic ideas in [5], which are different
from those in [4]. In [4], the authors used the ”vector-valued inequalities” approach, based
on some ideas of Hofmann [15]. It is not obvious that we could obtain the boundedness of
T on the homogeneous Triebel-Lizorkin weighted space Ḟ s,w

p,q (Rn) for 1 < p, q <∞, s ∈ R,
by applying their techniques. We state our results in section 3, and the proof will be given
in section 4. Section 2 deals with some preliminary background and notations.
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2 Background

2.1 Ap(Rn) weights.

Recall that Ap(Rn) (p > 1) is the class of all weights w, which are non-negative and locally
integrable, such that (

1
|Q|

∫
Q

w
) (

1
|Q|

∫
Q

w−1/(p−1)
)p−1

≤ A <∞.

Here |Q| denotes the Lebesgue measure of the cube Q in Rn. Note that Ap is the class of all
weights w ≥ 0 for which the Hardy-Littlewood maximal operator M is bounded on Lp(w).
A1 is the class of weights w ≥ 0 for which M satisfies a weak-type estimate on L1(w), i.e.,
Mw(x) ≤C w(x) a. e. for some positive constant C (see [12, 17] etc.).
Now let Ãp(R+) denote the class of all radial weights w(x) such that
w(x) = w(|x|) = v1(|x|)v1−p

2 (|x|), where either vi ∈ A1(R+) and is decreasing or v2
i ∈ A1(R+),

i = 1, 2 (see [9]). By (8) in [9], the Hardy-Littlewood maximal function M f (x) is bounded
on Lp(w) for w ∈ Ãp(R+) and for all p > 1. Thus if w ∈ Ãp(R+), then w ∈ Ap(Rn) (see [17]).
Moreover, by the properties of Ap weights and by the definition of Ãp(R+), we observe the
following facts:
a) w ∈ Ãp(R+)⇐⇒ w1−p′ ∈ Ãp′(R+), 1 < p <∞,
b) w ∈ Ãp(R+) =⇒∃ ε > 0 3 w1+ε ∈ Ãp(R+), 1 < p <∞,
c) w ∈ Ãp(R+) =⇒∃ ε > 0 3 w ∈ Ãp−ε(R+), 1 < p <∞, and
d) w ∈ Ãp(R+) =⇒ w ∈ Ãq(R+) for 1 < p < q <∞.

2.2 The Triebel-Lizorkin weighted space Ḟα,w
p,q (Rn).

Fix a radial Schwartz functionΦ ∈S (Rn) such that supp Φ̂⊂
{
ξ ∈ Rn : 1

2 ≤ |ξ| ≤ 2
}
, Φ̂(ξ)≥ 0,

Φ̂(ξ) ≥ c > 0, if 3
5 ≤ |ξ| ≤

5
3 . Denote Φ̂t(ξ) = Φ̂(tξ), t ∈ R, so that Φt(x) = t−nΦ(x/t), x ∈ Rn.

For 1 < p, q <∞, α ∈ R, and w(x) ∈ Ap(Rn), the homogeneous Triebel-Lizorkin weighted
space Ḟα,w

p,q (Rn) is the space of all tempered distributions f ∈S ′(Rn)/P(Rn) with the norm
defined by

|| f ||Ḟα,w
p,q (Rn) ∼


∫
Rn

(∫ ∞

0
|t−αΦt ∗ f (x)|q

dt
t

)p/q

w(x)dx


1/p

≡

∥∥∥∥∥∥∥
(∫ ∞

0
|t−αΦt ∗ f (x)|q

dt
t

)1/q
∥∥∥∥∥∥∥

Lp(w)

< ∞.

The homogeneous Besov-Lipschitz weighted space Ḃα,wp,q (Rn) is the space of all tempered
distributions f ∈S ′(Rn)/P(Rn) with the norm defined by

|| f ||Ḃα,wp,q (Rn) ∼

(∫ ∞

0

(
t−α ||Φt ∗ f (x)||Lp(w)

)q dt
t

)1/q

<∞.

See [1, 2, 19] for more information on this subject. We will denote the homogeneous
Triebel-Lizorkin unweighted space and the homogeneous Besov unweighted space by the



106 H. V. Le

symbols Ḟα
p,q(Rn) and Ḃαp,q(Rn) respectively. Observe that by interpolation (see [19], p. 64,

p. 244), we have (
Ḟαo

p,qo(Rn), Ḟα1
p,q1

(Rn)
)
θ,q
= Ḃαp,q(Rn).

Also, it is well known that the set

Z(Rn) =
{
φ ∈S (Rn) : (Dαφ̂) = 0 for every multi-index α

}
,

or equivalently the set

S∞(Rn) =
⋂

α∈(N∪{0})n

{
f ∈S (Rn) :

∫
Rn

xα f (x)dx = 0
}

is dense in both Ḟα
p,q(Rn) and Ḃαp,q(Rn) for α ∈ R, 1 < p, q <∞ (see [19], p. 240).

Let Hp
w(Rn) denote the Hardy weighted space of all tempered distributions f ∈S ′(Rn) for

which
|| f ||Hp

w(Rn) = ||sup
t>0
|ψt ∗ f | ||Lp(w) <∞,

where ψ is a fixed function in S (Rn),
∫
Rn
ψ(x)dx = 1, and ψt(x) = t−nψ(x/t). By [1], we

know that Ḟ0,w
p,2 (Rn) = Hp

w(Rn) (modulo polynomials), w ∈ A∞(Rn). Moreover, if 1 < p <∞
and w ∈ Ap(Rn), then Hp

w(Rn) = Lp(w) (see [1]). For a function g(x, t), x ∈ Rn, t ∈ R, we
define the mixed norm ||g||Lp(w,Lq(R)) as

||g||Lp(w,Lq(R)) =

∥∥∥∥∥∥∥
(∫
R
|g(x, t)|q dt

)1/q
∥∥∥∥∥∥∥

Lp(w)

<∞.

For the rest of this paper, the letter C will denote a positive constant which may vary at each
occurrence, but it is independent of the essential variables.

3 Main Theorems

Let R+ denote the interval (0,∞). For 1 < p < ∞, let p′ stand for the conjugate of p, i.e.,
1
p
+

1
p′
= 1. Let h be a measurable function on [0,∞). In the sequel, we assume that Ω

satisfies either one of the following conditions:

(2) sup
ζ′∈S n−1

∫
S n−1
|Ω(y′)|(ln |ζ′ · y′|−1)(ln(e+ln |ζ′·y′ |−1))β dσ(y′) ≤C1 <∞ for some β > 0.

(3) sup
ζ′∈S n−1

sup
β>0

∫
S n−1
|Ω(y′)|(ln |ζ′ · y′|−1)β dσ(y′) ≤C2 <∞.

For a Schwartz function f ∈S (Rn) (n ≥ 2), we define the singular integral T f as

T f (x) = p. v.
∫
Rn

h(|y|)Ω(y′)
|y|n

f (x− y)dy.

Also we define the function µΩ,q( f ) by

µΩ,q( f )(x) =
(∫ ∞

0
|FΩ(x, t)|q

dt
tq+1

)1/q

, where FΩ(x, t) =
∫
|y|≤t

h(|y|)Ω(y′)
|y|n−1 f (x− y)dy.

Observe that µΩ,2( f ) is the usual Marcinkiewicz integral. We have the following theorems.
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Theorem 3.1. Let h ∈ C1([0,∞)) be a measurable bounded function. Assume that either h
is monotonic on [0,∞) or h′ ∈ L1(R+). Let Ω satisfy the mean value zero property. Assume
that either Ω satisfies either condition (2) or condition (3).
If w(|x|) ∈ Ãp/q(R+), then ||T f ||Ḟα,w

p,q (Rn) ≤C || f ||Ḟα,w
p,q (Rn) for 1 < q ≤ p <∞, α ∈ R.

If w(|x|)1−p′ ∈ Ãp′/q′(R+), then ||T f ||Ḟα,w
p,q (Rn) ≤C || f ||Ḟα,w

p,q (Rn) for 1 < p < q <∞, α ∈ R.
In particular, we have

||T f ||Ḟα
p,q(Rn) ≤C || f ||Ḟα

p,q(Rn) for 1 < p, q <∞, α ∈ R, and

||T f ||Ḃαp,q(Rn) ≤C || f ||Ḃαp,q(Rn) for 1 < p, q <∞, α ∈ R.

Theorem 3.2. Let h and Ω be given as in Theorem 1. If w(|x|) ∈ Ãp/q(R+), then

||µΩ,q( f )||Lp(w) ≤C || f ||Ḟ0,w
p,q (Rn) for 1 < q ≤ p <∞.

If w(|x|)1−p′ ∈ Ãp′/q′(R+), then ||µΩ,q( f )||Lp(w) ≤C || f ||Ḟ0,w
p,q (Rn) for 1 < p < q <∞.

In particular, ||µΩ,2( f )||Lp(w) ≤C || f ||Lp(w) for 1 < 2 ≤ p <∞ if w ∈ Ãp/2(R+) and for 1 < p < 2
if w−p′/p ∈ Ãp′/2(R+).

Remark 3.3. 1) Notice that the weights w appeared in Theorems 1 and 2 are radial weights.
2) See [7, 8] for the Lp(w)− boundedness of the Marcinkiewicz integral under various con-
ditions on the kernels Ω and the weights w.
3) Let a > 0. Let w1+a ∈ Ã2(Rn) if p ≥ 2; otherwise, let w satisfy w1+a ∈ Ã2(Rn) and w2 ∈

Ã1(Rn) if 1 < p < 2. Under these weights’ conditions, the authors in [21] have obtained the
boundedness of the fractional Marcinkiewicz integral from the space Ḟα,w

p,q (Rn) for a certain
range of α. It is interesting to note that if 0 < α < C1 (C1 depends on p, q, and a), then
Ω is only required to be integrable and to satisfy the cancellation condition (see Theorem
2 [21]). On the other hand, if C2 < α < 0 (C2 depends on p, q, and a), then although the
moment condition on Ω can be relaxed, Ω is imposed by a condition which is stronger
than condition (2) in this paper (see (1.19) in [21]). Finally, when α = 0, the authors in
[21] obtained the results for the case of Ω ∈ L log+ L(S n−1). Observe that the condition that
Ω ∈ L log+ L(S n−1) implies that

sup
ζ′∈S n−1

∫
S n−1
|Ω(y′)| log

1
|ζ′ · y′|

dσ(y′) <∞.

The interested readers can view [20, 21] for more information on this subject.

4 Proofs of Theorems

4.1 Proof of Theorem 1

It suffices to prove the theorem for f ∈ S∞(Rn). We choose a real-valued, radial function
φ ∈S (Rn) such that supp φ̂ ⊂

{
ξ ∈ Rn : 1

2 ≤ |ξ| ≤ 2
}
, φ̂(ξ) ≥ 0, φ̂(ξ) ≥ c > 0, if 3

5 ≤ |ξ| ≤
5
3 ; and

for all ξ , 0,
∫
R
|φ̂2t (ξ)|2 dt = 1, where φ̂2t (ξ) = φ̂(2tξ), t ∈ R. Note that φ2t (x) = 2−ntφ(2−t x),
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x ∈Rn.Denote S 2t f = φ2t ∗ f . Then for f ∈S∞(Rn), f =
∫
R

S 2t (S 2t f )dt. Also for f ∈S∞(Rn)

and for each fixed x ∈ Rn, we have

T f (x) =
∫
Rn

h(|y|)Ω(y′)
|y|n

f (x− y)dy

=

∫
R

∫
Rn

h(|y|)Ω(y′)
|y|n

χ2t (|y|) f (x− y)dydt ≡
∫
R
σ2t ∗ f (x)dt,

where

σ2t ∗ f (x) =
∫
Rn

h(|y|)Ω(y′)
|y|n

χ2t (|y|) f (x− y)dy,

and χ2t (|y|) ≡ χ[2t ,2t+1)(|y|) is the characteristic function on the interval [2t,2t+1), t ∈ R. Note
that the Fourier transform of the measures σ2t is

σ̂2t (ξ) =
∫
Rn

h(|y|)Ω(y′)
|y|n

eiξ·yχ2t (|y|)dy.

We have the following estimates for σ̂2t (ξ).

Lemma 4.1. If Ω satisfies condition (2), then

|σ̂2t (ξ)| ≤C min
{
|2tξ|, (ln(e2|2tξ|1/2))−(ln(e+ln(e2 |2tξ|1/2)))β

}
. (4.1)

If Ω satisfies condition (3), then

|σ̂2t (ξ)| ≤C min
{
|2tξ|, |2tξ|−1/2

}
. (4.2)

Proof. By the cancellation property of Ω, we have

|σ̂2t (ξ)| ≤ ||h||∞

∫ 2(t+1)

2t

∫
S n−1
|Ω(y′)(ei|ξ|r(ξ′·y′)−1)|dσ(y′)

dr
r

≤ C ||Ω||L1(S n−1)|2
t+1ξ| ≤C |2tξ|.

Fix 0 < δ < 1. This δ will be chosen later. We write

σ̂2t (ξ) =
∫

S n−1
Ω(y′) Kξ(y′)dσ(y′)

=

∫
A
Ω(y′) Kξ(y′)dσ(y′)+

∫
B
Ω(y′) Kξ(y′)dσ(y′)

≡ J1+ J2, where

Kξ(y′) =
∫ 2

1
h(2tr)ei|2tξ|(ξ′·y′)r dr

r
, A =

{
y′ ∈ S n−1 : |ξ′ · y′| ≥

δ

e2

}
, and B = S n−1�A.

By the hypothesis of h, it follows that

|Kξ(y′)| ≤C min
{
1, |2tξ|−1|ξ′ · y′|−1

}
. (4.3)
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It is clear that inequality (4.3) implies |J1| ≤
C

δ |2tξ|
. If Ω satisfies condition (2), then from

inequality (4.3), we obtain |J2| ≤ C (ln(e2δ−1))−(ln(e+ln(e2δ−1)))β for some β > 0. Observe that
on the set B,

(ln(|ξ′ · y′|−1))αδ > (ln(e2δ−1))αδ = e2δ−1 > δ−1, where αδ =
ln(e2δ−1)

ln(ln(e2δ−1))
.

So if Ω satisfies condition (3), then

|J2| ≤ δ

∫
B
|Ω(y′)| (ln(|ξ′ · y′|−1))αδdσ(y′) ≤C δ.

Thus we can obtain the estimates of σ̂2t (ξ) by choosing δ = |2tξ|−1/2. Lemma 1 is proved.
�

For the remaining part of this article, we will prove for the case Ω satisfying condition (2).
The proof of the remaining case is handled in the same manner. We write

T f =

∫
R

(σ2t ∗ f )dt =
∫
R
σ2t ∗

(∫
R

S 2(t+s)S 2(t+s) f ds
)

dt

=

∫
R

∫
R

S 2(t+s)(σ2t ∗S 2(t+s) f )dt ds ≡
∫
R

Ts f ds, (4.4)

where

Ts f =
∫
R

S 2(t+s)(σ2t ∗S 2(t+s) f )dt. (4.5)

Observe that

|| f ||Ḟα,w
p,q (Rn) ∼

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫ ∞

0
|t−αφt ∗ f |q

dt
t

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w)

∼

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫
R
|2−tαS 2t f |q dt

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w)

(4.6)

Thus for any function g ∈ Ḟ−α,w
−p′/p

p′,q′ (Rn), we have

|〈Ts f ,g〉| =
∣∣∣∣∣∫
Rn

∫
R

S 2(t+s)(σ2t ∗S 2(t+s) f )(x)g(x)dt dx
∣∣∣∣∣

≤

∫
Rn

∣∣∣∣∣∫
R

(σ2t ∗S 2(t+s) f )(x) S̃ 2(t+s)g(x)dt
∣∣∣∣∣ dx

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫
R
|2−(t+s)ασ2t ∗S 2(t+s) f |q dt

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w)

×

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫
R
|2(t+s)αS̃ 2(t+s)g|q

′

dt
)1/q′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w−p′/p)

≤ C ||g||
Ḟ−α,w

−p′/p

p′ ,q′ (Rn)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫
R
|2−(t+s)ασ2t ∗S 2(t+s) f |q dt

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w)

,
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where S̃ 2(t+s) is the dual operator of S 2(t+s) . That is, S̃ 2(t+s)g(x) = S 2(t+s)(g̃)(−x), and
g̃(x) = g(−x). Taking the supremum over all g ∈ Ḟ−α,w

−p′/p

p′,q′ (Rn) with
||g||

Ḟ−α,w
−p′/p

p′ ,q′ (Rn)
≤ 1 yields

||Ts f ||Ḟα,w
p,q (Rn) ≤C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫
R
|2−(t+s)ασ2t ∗S 2(t+s) f |q dt

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(w)

. (4.7)

Substituting p = q = 2 and w = 1 in (4.7), we obtain

||Ts f ||2Ḟα
2,2(Rn) ≤C

∫
R

∫
Dt+s

|2−(t+s)ασ̂2t (ξ) φ̂(2(t+s)ξ) f̂ (ξ)|2 dξdt, (4.8)

where Dt+s =
{
ξ ∈ Rn : 1

2 ≤ |2
(t+s)ξ| ≤ 2

}
.

If s ≥ 0, inequalities (4.1), (4.6) and (4.8) imply that

||Ts f ||Ḟα
2,2(Rn) ≤ C 2−s

(∫
Rn

∫
R
|2−(t+s)αφ2(t+s) ∗ f (x)|2 dt dx

)1/2

≤ C 2−s|| f ||Ḟα
2,2(Rn) (4.9)

If s < 0, by inequality (4.1) in Lemma 1, inequality (4.8) becomes

||Ts f ||Ḟα
2,2(Rn) ≤C 2−(ln(c1+c2 |s|))1+β

|| f ||Ḟα
2,2(Rn), (4.10)

where c1 = 2−
ln2
2

and c2 =
ln2
2

. In order to estimate the norm ||Ts f ||Ḟα,w
p,q (Rn), we need the

following lemma.

Lemma 4.2. Denote Lt( f )(x) =
∫
Rn

|Ω(y′)|
|y|n

f (x− y)χ2t (|y|)dy, and denote L̃t the dual oper-

ator of Lt, i.e., L̃t( f )(x) = Lt( f̃ )(−x), where f̃ (x) = f (−x) and t ∈ R. Then

|σ2t ∗S 2(t+s) f (x)| ≤C ||Ω||1/q
′

L1(S n−1)

(
Lt(|S 2(t+s) f |q)(x)

)1/q (4.11)

||σ2t ∗S 2(t+s) f ||Lq(w) ≤C ||Ω||L1(S n−1)||S 2(t+s) f ||Lq(w), and (4.12)

||sup
t∈R

Lt(| f |)||Lp(w) ≤C ||Ω||L1(S n−1)|| f ||Lp(w) for 1 < p <∞, w ∈ Ãp(R+). (4.13)

Proof. By Hölder’s inequality, we have

|σ2t ∗S 2(t+s) f (x)| =
∣∣∣∣∣∫
Rn

h(|y|)Ω(y′)
|y|n

χ2t (|y|)S 2(t+s) f (x− y)dy
∣∣∣∣∣

≤

(∫
Rn

|h(|y|)|q
′

|y|n
|Ω(y′)|χ2t (|y|)dy

)1/q′

×

(∫
Rn

|Ω(y′)|
|y|n

|S 2(t+s) f (x− y)|qχ2t (|y|)dy
)1/q

≤ C ||Ω||1/q
′

L1(S n−1)

(
Lt(|S 2(t+s) f |q)(x)

)1/q .
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This proves inequality (4.11). Moreover, we have

|σ2t ∗S 2(t+s) f (x)| ≤ ||h||∞

∫
S n−1
|Ω(y′)|

∫ 2(t+1)

2t
|S 2(t+s) f (x− ry′)|

dr
r

 dσ(y′).

Observe that

∫ 2(t+1)

2t
|S 2(t+s) f (x− ry′)|

dr
r
≤ 2sup

r>0

{
1
r

∫ r

0
|S 2(t+s) f (x−τy′)|dτ

}
≡ 2My′S 2(t+s) f (x), for all t ∈ R.

Here My′S 2(t+s) f (x) is the Hardy-Littlewood maximal function in the direction y′ ∈ S n−1.

Thus

|σ2t ∗S 2(t+s) f (x)| ≤C ||h||∞

∫
S n−1
|Ω(y′)|My′S 2(t+s) f (x)dσ(y′).

By Minskowski’s inequality, it follows that

||σ2t ∗S 2(t+s) f ||Lq(w) ≤ C
∫

S n−1
|Ω(y′)| ||My′S 2(t+s) f ||Lq(w) dσ(y′)

≤ C
∫

S n−1
|Ω(y′)| ||S 2(t+s) f ||Lq(w) dσ(y′)

≤ C ||Ω||L1(S n−1)||S 2(t+s) f ||Lq(w),

where the second inequality follows from (8) in [9], and the bound C is independent of the
direction vector y′ ∈ S n−1. Inequality (4.12) is proved.
It remains to prove inequality (4.13). Using the same techniques as in the proof of inequality
(4.12), we obtain

sup
t∈R

Lt(| f |)(x) ≤C
∫

S n−1
|Ω(y′)|My′ f (x)dσ(y′).

Recall that by (8) in [9] , My′ f is bounded in Lp(w) for 1< p<∞,w ∈ Ãp(R+); and the bound
is independent of the direction vector y′ ∈ S n−1. Hence, an application of Minskowski’s
inequality yields (4.13). Lemma 2 is proved. �

We now estimate the norm ||Ts f ||Ḟα,w
p,q (Rn). When p = q, from inequalities (4.6), (4.7) and

(4.12) we obtain

||Ts f ||Ḟα,w
q,q (Rn) ≤ C ||Ω||L1(S n−1)

(∫
Rn

∫
R
|2−(t+s)αS 2(t+s) f (x)|q dt wdx

)1/q

≤ C ||Ω||L1(S n−1)|| f ||Ḟα,w
q,q (Rn) ≤C || f ||Ḟα,w

q,q (Rn). (4.14)

If p > q, inequality (4.7) implies that there exists a non-negative function g ∈ Lr′(w1−r′)
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(r = p/q) with unit norm such that ||Ts f ||q
Ḟα,w

p,q (Rn)

≤ C
∫
R

∫
Rn
|2−(t+s)ασ2t ∗S 2(t+s) f (x)|q g(x)dxdt

≤ C ||Ω||q/q
′

L1(S n−1)

∫
R

∫
Rn

2−(t+s)αqLt(|S 2(t+s) f |q)(x)g(x)dxdt

= C ||Ω||q/q
′

L1(S n−1)

∫
R

∫
Rn
|2−(t+s)αS 2(t+s) f (x)|qL̃tg(x)dxdt

≤ C ||Ω||q/q
′

L1(S n−1)

∫
Rn

(∫
R
|2−(t+s)αS 2(t+s) f (x)|qdt

)
sup
t∈R

L̃tg(x)dx

≤ C ||Ω||q/q
′

L1(S n−1)

(∫
Rn

(
∫
R
|2−(t+s)αS 2(t+s) f (x)|qdt)r w(|x|)dx

)1/r

×

(∫
Rn
|sup

t∈R
L̃tg(x)|r

′

w1−r′(|x|)dx
)1/r′

≤ C ||Ω||1+q/q′

L1(S n−1)
|| f ||q

Ḟα,w
p,q (Rn)

||g||Lr′ (w1−r′ ),

where the second and the last inequalities follow from Lemma 2. Therefore,

||Ts f ||Ḟα,w
p,q (Rn) ≤C ||Ω||L1(S n−1)|| f ||Ḟα,w

p,q (Rn) ≤C || f ||Ḟα,w
p,q (Rn)

for 1 < q < p <∞, α ∈ R, w ∈ Ãp/q(R+), which together with inequality (4.14) yield

||Ts f ||Ḟα,w
p,q (Rn) ≤C || f ||Ḟα,w

p,q (Rn) for1 < q ≤ p <∞,α ∈ R, andw ∈ Ãp/q(R+). (4.15)

Now set q = 2 and w = 1 in (4.15) and by applying duality, we obtain

||Ts f ||Ḟα
p,2(Rn) ≤C || f ||Ḟα

p,2(Rn) for 1 < p <∞, α ∈ R. (4.16)

Interpolating (4.9)-(4.16) and (4.10)-(4.16) (with w = 1) gives

||Ts f ||Ḟα
p,2(Rn) ≤C 2−sθ1 || f ||Ḟα

p,2(Rn) (4.17)

for 0 < θ1 ≤ 1, s ≥ 0, 1 < p <∞, α ∈ R, and

||Ts f ||Ḟα
p,2(Rn) ≤C 2−δ1(ln(c1+c2 |s|))1+β

|| f ||Ḟα
p,2(Rn) (4.18)

for 0 < δ1 ≤ 1, s < 0, 1 < p <∞, α ∈ R.
Interpolating (4.15)-(4.17) and (4.15)-(4.18) (with w = 1) gives

||Ts f ||Ḟα
p,q(Rn) ≤C 2−sθ2 || f ||Ḟα

p,q(Rn) (4.19)

for 0 < θ2 ≤ θ1 ≤ 1, s ≥ 0, 1 < q ≤ p <∞, α ∈ R, and

||Ts f ||Ḟα
p,q(Rn) ≤C 2−δ2(ln(c1+c2 |s|))1+β

|| f ||Ḟα
p,q(Rn) (4.20)
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for 0< δ2 ≤ δ1 ≤ 1, s< 0, 1< q≤ p<∞, α ∈R. Since p≥ q> 1, w ∈ Ãp/q(R+)⇒w ∈ Ãp(R+),
and thus there exists an ε > 0 such that w1+ε ∈ Ãp(R+). Hence inequality (4.15) implies that

||Ts f ||
Ḟα,w1+ε

p,q (Rn)
≤C || f ||

Ḟα,w1+ε
p,q (Rn)

for 1 < q ≤ p <∞, α ∈ R. (4.21)

By interpolating (4.19)-(4.21) and (4.20)-(4.21) with the same p and q, but with change of
measures (see [18]), we have

||Ts f ||Ḟα,w
p,q (Rn) ≤C 2−sθ3 || f ||Ḟα,w

p,q (Rn) (4.22)

for s ≥ 0, 0 < θ3 =
θ2ε

1+ ε
< 1, 1 < q ≤ p <∞, α ∈ R, and

||Ts f ||Ḟα,w
p,q (Rn) ≤C 2−δ3(ln(c1+c2 |s|))1+β

|| f ||Ḟα,w
p,q (Rn) (4.23)

for s < 0, 0 < δ3 =
δ2ε

1+ ε
< 1, 1 < q ≤ p <∞, α ∈ R. It follows from (4.4), (4.22) and (4.23)

that

||T f ||Ḟα,w
p,q (Rn) ≤

∫
R
||Ts f ||Ḟα,w

p,q (Rn)ds ≤C || f ||Ḟα,w
p,q (Rn) (4.24)

for 1 < q ≤ p <∞, α ∈ R, and w ∈ Ãp/q(R+).
We define the truncated singular integral T ε f by

T ε f (x) =
∫
|y|>ε

h(|y|)Ω(y′)
|y|n

f (x− y)dy,

≡

∫
Rn

hε(|y|)Ω(y′)
|y|n

f (x− y)dy

where hε(|y|) = h(|y|)χε(|y|), and χε(|y|) is the characteristic function defined on the set
{y ∈ Rn : |y| > ε} . Note that ||hε ||∞ ≤ ||h||∞ for all ε > 0. Thus it follows from (4.24) that

||T ε f ||Ḟα,w
p,q (Rn) ≤C || f ||Ḟα,w

p,q (Rn) (4.25)

for 1 < q ≤ p < ∞, α ∈ R, w ∈ Ãp/q(R+), and C is independent of ε > 0. Now suppose
w1−p′ ∈ Ãp′/q′(R+) with 1 < p < q <∞. An application of duality to inequality (4.25) yields

||T ε f ||Ḟα,w
p,q (Rn) ≤C || f ||Ḟα,w

p,q (Rn) for 1 < p < q <∞, α ∈ R,

and the constant C is again independent of ε > 0. Passing to the limit as ε −→ 0, we finally
obtain

||T f ||Ḟα,w
p,q (Rn) ≤C || f ||Ḟα,w

p,q (Rn) for 1 < p < q <∞, α ∈ R, and w1−p′ ∈ Ãp′/q′(R+).

For the unweighted case, we simply set w = 1 to obtain the results for the Triebel-Lizorkin
unweighted spaces. Moreover by interpolation (see [19]), we also get the results for the
Besov unweighted spaces, finishing the proof of Theorem 1.
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4.2 Proof of Theorem 2

Since the proof of this theorem is essentially similar to the proof of Theorem 1, we will
only outline some necessary steps in order to obtain the following inequality:

||µΩ,q( f )||Lp(w) ≤C || f ||Ḟ0,w
p,q (Rn) for 1 < q ≤ p <∞ if w(|x|) ∈ Ãp/q(R+),

and for 1 < p < q <∞ if w(|x|)1−p′ ∈ Ãp′/q′(R+). Define the measures {σ2t }t∈R by

σ2t ∗ f (x) = 2−t
∫
|y|≤2t

h(|y|)Ω(y′)
|y|n−1 f (x− y)dy.

Then

µΩ,q( f )(x) ∼
(∫
R
|σ2t ∗ f (x)|q dt

)1/q

.

By a similar calculation as in the proof of Theorem 1, we obtain the same estimates for
σ̂2t (ξ) as in Lemma 1. Moreover, we also have the following results

|σ2t ∗S 2(t+s) f (x)| ≤C ||Ω||1/q
′

L1(S n−1)

(
Nt(|S 2(t+s) f |q)(x)

)1/q , (4.26)

||σ2t ∗S 2(t+s) f ||Lq(w) ≤C ||Ω||L1(S n−1)||S 2(t+s) f ||Lq(w), and (4.27)

||sup
t∈R

Nt(| f |)||Lp(w) ≤C ||Ω||L1(S n−1) || f ||Lp(w) for 1 < p <∞, w ∈ Ãp(R+). (4.28)

Here S 2(t+s) f = φ2(t+s) ∗ f , and

Nt( f )(x) = 2−t
∫
|y|≤2t

|Ω(y′)|
|y|n−1 f (x− y)dy.

The function φ is as in proof of Theorem 1, except for a slight modification that∫
R
φ̂2t (ξ)dt = 1

for all ξ , 0, instead of ∫
R
|φ̂2t (ξ)|2 dt = 1.

Observe that

σ2t ∗ f =
∫
R
σ2t ∗S 2(t+s) f ds.

By Minskowski’s inequality, we have

||σ2t ∗ f ||Lq(R) ≤

∫
R
||σ2t ∗S 2(t+s) f ||Lq(R)ds ≡

∫
R

Iq, s f ds,

where

Iq, s f (x) =
(∫
R
|σ2t ∗S 2(t+s) f (x)|q dt

)1/q

.
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By using similar arguments as in the proof of Theorem 1, we obtain

||Iq, s f ||Lp(w) ≤C 2−ε1 s || f ||Ḟ0,w
p,q (Rn)

for some ε1 > 0, s ≥ 0, 1 < q ≤ p <∞, w ∈ Ãp/q(R+), and

||Iq, s f ||Lp(w) ≤C 2−ε2(ln(c1+c2 |s|))1+β
|| f ||Ḟ0,w

p,q (Rn)

for some ε2 > 0, s < 0, 1 < q ≤ p <∞, w ∈ Ãp/q(R+). It follows that for 1 < q ≤ p <∞,

||σ2t ∗ f ||Lp(w,Lq(R)) ≤

∫
R
||Iq, s f ||Lp(w)ds ≤C || f ||Ḟ0,w

p,q (Rn).

Thus
||µΩm,q( f )||Lp(w) ≤C ||σ2t ∗ f ||Lp(w,Lq(R)) ≤C || f ||Ḟ0,w

p,q (Rn)

for 1 < q ≤ p <∞, w ∈ Ãp/q(R+), and an application of duality yields the remaining results.
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