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Abstract

In this paper we derive certain algebraic and ergodicity properties of the Berezin trans-
form defined onL2(By,dn’) whereBy is the open unit ball inCN,N > 1,N € Z,

dn’(2) = Kg, (z 2dv(2) is the Mobius invariant measur€g,, is the reproducing kernel

of the Bergman spade2(By,dv) anddv is the Lebesgue measure 6N, normalized

so thaty(Byn) = 1. We establish that the Berezin transfoBhis a contractive linear
operator on each of the spadeyBy,dn’(2)),1 < p < o0, B" — 0 in norm topology

andB is similar to a part of the adjoint of the unilateral shift. As a consequence of
these results we also derive certain algebraic and asymptotic properties of the integral
operator defined oh?[0, 1] associated with the Berezin transform.

AMS Subject Classification: 47B38, 31B05.
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1 Introduction

Let By be the open unit ball ofN N > 1,N € Z, with respect to the Euclidean met-
ric. The lettery denotes the Lebesgue measure®h normalized so that(By) = 1 and
LP(Bn,dv),1 < p < o are the usual Lebesgue spaces and the integration is with respect to
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the measure. WhenN = 1, dv = dA, the normalized area measure on the open unitisk
in the complex plan€. Consider the spade?(By, dv) for an integelN > 1. Let L2(By, dv)
be the Bergman space of holomorphic function&(By, dv) andKg, be the reproducing
kernel forLZ(By,dv). Notice that forz, A € By,

NI

Key(z 1) = m

(1.1)
wherez- 1= zjd; +--- + zyAn. For details see [15]. Laty'(2) = Kg, (2. 2)dv(2). The repro-
ducing kerneKg, (z w) of L2(By, dv) is holomorphic inz and antiholomorphic imv and

fB [Key 2 W)2av(W) = Ksy(2.2) > 0 (12)

for all ze By. Thus we define for eache By, a unit vectork, in Lg(BN) by

KBN (Zs /l)

VKe (L,A)

The Bergman spadeZ(By, dv) is a closed subspace [5], [23] bf(By, dv). Let P be the
orthogonal projection oE?(By,dv) onto L2(Bn,dv). For ¢ € L®(By), define the Toeplitz
operatorTy from L2(By) into itself asTyf = P(¢f). The operatoiT, is a bounded linear
operator andT|| < ||¢ll.. Toeplitz operators can also be defined for unbounded symbols.
Since the Bergman projectidd can be extended to the spac&By,dv), we also have
Tsf =P(¢f), f € H°(BN), even forg € L1(By,dv). Itis easy to see thai*(By), the space
of bounded analytic functions dby is dense inL3(By). The Berezin transform plays an
important role [22],[12] in the theory of Toeplitz and Hankel operators on the Bergman
space.

The group of all one-to-one holomorphic mapsBaf onto By (the automorphisms of
Bn) will be denoted byAut(By). It is generated by the unitary operators @N and the
involutions¢, of the form

ki(2) = (1.3)

a-Pz-(1-1a?):Qz
1-(za)

wherea € By, P is the orthogonal projection onto the space spanneal Qz= z— Pz,

$a(2) = (1.4)

(zay= ) za, andlal® = (a,a).
i=1

Let Gy be the isotropy subgroup éfut(By) at O; i.e.
Go = {y € Aut(Bn) : ¢(0) = 0}.

It is well known [21] thatGg is compact and tha® is a subgroup of the unitary grod@y
of CN. Giveny e Aut(By), leta = y~1(0), then we have,

Yo ¢a(0)=y(a) =0,
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thusy o ¢4 € Gg and so there exists a unitary mattixsuch thaty = U¢, whereU € Gg. It
is also not dificult to verify that the identity

(1-12%)(1-1wP)

1_ Z 2 =
A= e wp
holds and that the (real) Jacobiaryofis
B (l— |Z|2)N+1
(Jrd2)(W) = 1w N2

For details see [1] and [15].
The invariant Laplacian is defined [19] forf € C%(By) by

(a1)(@ = a(f 0 ¢2)(0),

wherea is the ordinary Laplacian. It commutes with everg Aut(By) :

(Af)oy = A(foy).

The M-harmonic functions iy are those for whicl f = 0. We recall that M-harmonic”
is the same as “harmonic” whe¥h = 1, but not wherN > 1. For more details see [1],[3]
and [2]. If Af = 0 then the mean value dfon spheres of radius< 1 is f(0). If f is also in
L1(Bn) it follows that

i (foy)dv = 1(y(0)) (1.5)

for everyy € Aut(By). It happens asf = 0 implies A(f o) = 0 for all y € Aut(By).

The property described in equation (1.5) is called the invariant mean value property. It is
invariant in the sense thdito y has it for everyy € Aut(By) wheneverf has it.

LetI'(s) stand for the usual Gamma function, which is an analytic functiagimthe whole
complex plane except for simple poles at the pojfits-1,-2,---}. In fact

1

e P = Z\"" :z
2= (1+_) o
@ Zn .

whereg is the Euler’s constant; its approximate value is 0.57722.
If feLl(Bn,dv), the Berezin transform of is defined by

(BHW) = fB FQkn(@Pd(2) (1.6)

whereky(2) is the normalized reproducing kernelvae By. Notice thatk, € L= (By) for

all w e By, so the definition makes sense aBf (W) = (T kw, ky) for f € L1(Bn,dv). Let

f(w) = (Bf)(w). The functionf is called the Berezin symbol of the Toeplitz operafeand

Bf is called the Berezin transform &f If f is a bounded\-harmonic function then since
(Tkw, kw) = (W) = (Bf)(W) = f(w), hence the Berezin symbol f is the functionf itself.
Ahern, Flores and Rudin [1] proved thatBff = f, f € L1(By,dv), thenf is M-harmonic if

N <11 butnotifN > 12 In what follows, we present some basic properties of the operator
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B. It is known [1] that if f is radial, f € L1(By,dv) and f(2) = g(|Z?) for all ze By then
Bf = f if and only if Tg= g whereT is the integral operator given by

TR0 =@-0% [ X g-ta @)

o (L-t)N*
Now
(1 _ |ZIZ)N+1

(Bf)(Z) = By |l—<Z,W> |2(N+1)

f (w)dv(w). (1.8)

Thus we obtain, iff is radial andf(2) = g(|z?) then

a- |Z|2)N+1
fBN 11— (zw)[2N+1) f(w)dv(w) = f

if and only if
N +tx

g = (21—t . mg('ﬁ)

tN-ldt = Tg(x). (1.9)

In this paper, we derive certain algebraic and ergodicity properties of the Berezin trans-
form. The layout of this paper is as follows.

In section 2 we establish certain algebraic properties of the Berezin transform. We
present an alternative formula f&f. Givena e By and f any measurable function on
Bn, we defineC,f = f(¢a(2)). We prove that the Berezin transforBr commutes with
all the composition operator§,, a € By and extending this result we also show that
C,B = BC, whereC,, is the composition operator defined biBy, dv) defined byC, f =
f oy, € Aut(Byn). We further show that the Berezin transfoilBnis a contractive linear
operator on each of the spade¥By,dr’(2),1 < p < . In this section we also show that
if feLY(D,dA) is radial thenBf is radial and iff € LY(D,dA) then f is real analytic on
D. As a consequence of these results we also derive certain algebraic properties of the in-
tegral operatoil defined onL'[0,1] associated with the Berezin transform. In section 3
we show that the Berezin transforBidefined onL2(By,dr’) into itself is a positive op-
erator and has spectral radius less than 1. We also show|Bhat @N(%) < 1 where
dN(y) = W,y € N. Further we establish th& is similar to a part of the adjoint
of the unilateral shift and" — O in norm topology. From these results we derive many
ergodicity properties of the Berezin transform and the corresponding integral op€rator
defined on_1[0, 1]. Applications of these results are also discussed.

2 Algebraic properties of the Berezin transform

In this section we establish certain algebraic properties of the Berezin transform. We present
an alternative formula fdB f. Givenae By andf any measurable function @y, we define

Caf = f(¢a(2)). We prove that the Berezin transfoiBfhcommutes with all the composition
operator<C,, a< By and extending this result we also show tagB = BC, whereCy, is

the composition operator defined ah(By,dv) defined byC, f = f o,y € Aut(By). We

further show that the Berezin transforis a contractive linear operator on each of the
spaced P(By,dn’(2)),1 < p < o. We also derive certain algebraic properties of the integral



Algebraic and Ergodicity Properties of the Berezin Transform 89

operatorT defined on_1[0, 1] associated with the Berezin transform. L&H) denote the
set of all bounded linear operators from the Hilbert spddato itself.

Lemma 2.1. The operator B satisfies the following algebraic properties:
() The operator B is a contraction in°t(By).
(i) If f >0,then Bf>0;if f > g, then Bf> Bg.
(i) Constants are fixed points of B oA(Bn,dv).
(iv) If f € LY(BN,dv), then
(BN (@ = fB . f(¢2(W))dv(w).
(v) Forevery fe L?(By,dv),ac By, BCyf = C,Bf. That is, B commutes with all the com-
position operators G a € By.
(vi) If ¥ e Aut(By), f € L1(Bn,dv) then(Bf) oW = B(f o P).

Proof. The proof of (i),(ii) and (iii) is a straightforward generalization of the unit disk case
given in [9]. We shall now establish (iv). For aMy e Aut(By), we denote byly(2) the
complex Jacobian determinant of the mappihgBy — Bn. If a € By, then by a result of
[15], [21] there exists a unimodular const&@fd) such that

Js.(2) = 6(a)ka(2)
for all ze By. In fact if a € By thend(a) = (-1)N. Thus|J,, (21 = [ka(2)I*. Hence Bf)(2) =

fB f (W) [kz(wW)|?dv(w) = &N(f o ¢7)(w)dv(w). Now we shall prove (v). By a change of vari-
able,

Bf(4a(2)

fB £ (W) lKey (W) Pl ()

[ #6atmi o satmPhauiian(o)
N
LetU = ¢y, (7 0 pac ¢2. ThenU € Aut(By), U(0) = 0 andU is unitary. Further,
P9a(2) © Pa = Upa0a2) = Uz
Taking the real Jacobian determinant of the above equation, we get
2 2 _ 2
|k¢a(z) 0 ¢a(W)|“TKa(W)|“ = [kz(W)|

for all a,z, andw in By. Therefore,

(Bf)(¢a(2) i f(a(W))lkz(w) Pclv(w)

B(f o ¢a)(2).
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ThusBC,f = C4Bf for f € L2(By,dv). We shall now establish (vi). For everge By, the
automorphismpy(; o ¥ o ¢, takes 0 to Ohence is some unitay. Thus

B(FoN@ = [ f(H@)dm
_ fB f (G Uw)dv(w)
= (Bf)(¥Y(?)
sinceyv is rotation invariant. O

It follows from Lemma 2.1 that iy;, g, € LY[0,1],91 > 0,0: > @ thenTg; > 0 and
Tag = Tg. We shall show below that the Berezin transform is a contractive linear operator
on LP(Bn,dn’(2)) wheredn’(2) = Kg, (2 2)dv(2), and 1< p < co.

Lemma 2.2. The Berezin transform B is a contractive linear operator on each of the spaces
LP(Bn,dn'(2),1< p < 0.

Proof. Notice thatL'(By,dr’) ¢ L1(Bn,dv). Since the Berezin transform is defined on the
spacell(By,dv) henceB is defined orL.1(By, dr’). Further

I(Bf)(w)| = ‘ fB f@)Ika(2Pdv(2)| < B(IF)(W).

Thus

IA

fB K, (i) fB N ( fB N|f(z)||kw(z)|2dv<z>) Ky (0 W)lv(w)

- [ |f(z)|( [ |KBN(z,w)|2dv<w))dv<z)

If(2|Kgy (z 2dv(2).

BN

The change of the order of integration being justified by the positivity of the integrand.
Hence it follows thatB is a contraction orL!(By,dy’). The same is true fok™(By) by
Lemma 2.1 and so the result follows from the Marcinkiewicz interpolation theoremo

Thus by Lemma 2.2, the integral operafors a contractive linear operator on each of

the space&P([0,1], %), 1<p<oo,N>1

Notice that the Berezin transforBidoes not carry.}(By, dv) into L1(Bn,dv), because

1— |72)N+1
By [1—(ZW)|7™

tends toco when|w| — 1. It is not difficult to verify [1], [4] thatB is bounded as an operator

from LY(Bn, dv) to LY(Bn, (1 - |2Z)dv). Again we know inD, the only measure left invariant

by all Mobius transformations is the pseudo-hyperbolic meadyi® = d_’?ézz))z. Therefore,

. o . (1
the only harmonic function i.P(D,dn) is constant zero. Thus even though one can show
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that every spackP((0,1), 1 ) —=),1 < p <~ is an invariant subspace [1], [8] of the operator

T (whenN = 1) but these spaces are no good in this context. This is because (except for
L*) the corresponding spacé&$(D,dn) do not contain nonzero harmonic functions, even
no nonzero constants. Similar is the caseBEQr

Lemma 2.3. (i) If a function fe LY(By,dv) is M-harmonic then Bf f.

(i) Suppose N:Z, and N< 11 If f € L1(By,dv) and Bf= f then f isM-harmonic.
(iii) If f € LY(Bn,dy’),N € Z,,N < 11then Bf= f if and only if f isM-harmonic.
(iv) If f € L2(Bn,dy’) is M-harmonic then = 0.

Proof. (i) If f e LY(By,dv) is M-harmonic, then so i$ o ¢, for anya € By; by the mean
value property,

(BH(2 = fB f(gz(w))dv(w) = (f 0 4,)(0) = (2).

(i) The result follows from [1]. (iii) SinceL(By,dn’) c LY(Bn,dv), the result follows.
(iv)Denote the unit sphere, the boundary of the open unitiiyalin CN by Sy. Let do be
the normalized surface-area measure (Hausdoeasure) oSy such thair(Sy) = 1. Let

M(r) = [ [f(r&)Pdo(€). Then

1f@Pdy’' (2)
BN

1
f M(r)Kg, (z. 22Nr2N-1dr
0

[

1 rZN—l
2N M(r)N! ——dr
[ MoN s

1 r2N—2

tNl

NN!f M(«f)(1 o dt

wheret = r2. So M(r) must tend to zero as— 1. Thus M(r) = 0. Hence sincef is M-
harmonic, by maximum principlé = 0. O

Corollary 2.4. If f € LY([0,1], (;“t)lgjl) NeZ,,N<11then Tf= f if and only if f is a
constant.

Proof. It is not difficult to verify that if f is a constant thef f = f. Now supposd f = f.
Let g(2) = f(12%). Thengis radial andBg = g. By Lemma 2.3g is M-harmonic. Since a
radial M-harmonic function oy is a constant, henagand thereforef is a constant. O

Lemma 2.5. (i) If f € LY(D,dA), thenf is real analytic onD.

(i) If f e LY(D,dA) is radial then Bf is radial.
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Proof. (i)Define a complex valued functidhonDx D by F(w, 2) = (T Kg, Kz> forw,zeD.
Here we are using the unnormalized reproducing keikgls) = K(z,w) = ﬁ Because
F is analytic in each variable separately, we conclude fhistholomorphic orb x D and
sincef(2) = (Trky k) = (1-122)2F(z 2), the functionf is real analytic orD.

(i) For f € LYD,dA), the Berezin transforrB f is defined as follows :

BHD = () = fD f (W) k(W) 2 AW).

We need to show iff € L1(D,dA) thenB(rad f) = rad (Bf). Because iff is radial then
rad f = f. Inthat caséBf = B(rad f) =rad (Bf). Therefore, this will implyBf is radial.

B(rad )2

fD rad (f)(w)lkeW)2dAW)

2” .
% j; ( jﬂ; f(we't)lkz(w)lsz(w))dt

_ f ( [ f(wét)|ketz(é‘w)|2dA(w))
_ f ( [ f(u)|ketz(u)|2dA(u))dt

_ 1 it
= o> fo f(d'2)dt
= rad(f)(@) =rad (Bf)(2).

ThusB(rad f) =rad (Bf). The theorem is proved. O

Recall that the invariant Laplacianis defined [19] forf € C3(By) by

E)@ = a(f o)(0),

wherea is the ordinary Laplacian. Le¥l = {f € L1(By,dv) : Bf = f}. If f € M thenf is
real analytic ad lies in the range oB. Thusaf exists for allf € M.
For f € LY(Bn,dv),ze By define

(A2

(N+1) f (1— WP) F(d2(w)) ()
(1-1ZHN2(1 - wi?) f (W)

By 11— (z w)[2N+2)

(N+1)

dv(w).

Itis shownin [1], [4] that|Al| < N+2 andAf = (
ABf. WhenN =1, letA=A;. Then

700 Bf. Further forf e LY (B, dv), BAf =

(Af)(@

2 f (1 IWP) F(d2(w)) dAw)
2 D(l—|¢>z(w)|2)f(w)lkz(w)|2dA(w).

We show below that iff is radial onD thenA; f is radial.
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Theorem 2.6. If f € L1(D,dA) is radial, then Af is radial.
Proof. Itis sufficient to show that foff € L1(D,dA), Ay(rad f) =rad (A f). Forze D,

Aq(rad f)(2)

ZL(l—Ifﬁz(W)lz)rad () (W) kz(W) Pd A(W)
2” .
= %L (ZfDf(Wét)IkZ(W)|2(l_|¢Z(W)|2)dA(W))dt
- % fo (2 Lf(Wét)|keitz(e'tW)I2(1—|¢étz(e"w)|2)dA(W))dt
- ” j 201 1 2
= Zﬂj(; (Z‘L;f(U)lkenz(u)l (1— gt (U)] )dA(u))dt

1 (™ :
= Zj(; (A1) (€' 2)dt
= rad (A.)(2).

Thus if f is radial, we havead f = f. HenceA; f = Ai(rad f) =rad (A¢f). ThereforeA, f
is radial. o

Theorem 2.7.1f f is radial, f € L1(By,dv) and f(2) = g(|2?) then Af= f if and only if

I N+1+tx

_ _ \N+2
g(x) =N(1-xX S —(1—tx)N+3

g(t)(1-t)tN-1dt.

Proof. We have seen that

1A2YN+201 2
(AD)@ = (N+1) f (=127 L= W) ¢y ()

By 1= (Zw)PN+2)

If f(w)=g(w?) = g(r?) then from [19] it follows that

(Af)@ = (1-1ZH"?2(N+ 1N f1|N+3(rZ)(1_ r2)r¥Ng(r?)dr
0

and

|N+3(rz) = FZ(N +2) k + l)r(k+ N + 1)

where we use polar coordinates= rp,p € Sy(the sphere that bounds,). Proceeding as
in [1], one can show thatXf)(2) = f(2) if and only if

IN+1) & T?k+N+2) oK
k;)r( Irz]

I N+1+ts

_ _ N+2
o9 =NL-9" | = ows

g1 -t)tN-1dt.
O

If Bis the Berezin transform dn'(D,dA), we haveBA; f = A;Bf for f e LY(D,dA). For
details see [1]. Iff € LY(D,dA) and f(2) = g(|Z?), theng € L1[0, 1]. Define forg e L0, 1],

L N+1+ts

(T20)(9) = N(1-9)"*2 . A9

g1 -t)tN-1dt. (2.1)
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Theorem 2.8.If T is the integral operator defined ort[0, 1] as

(TO() = (10N fo 1 (1N+XS o(9V1ds

_ XS)N+2
and Ty is the integral operator as defined in (2.1) then{GE T1T g for all ge L1[0, 1].

Proof. It is shown in [1] that forf € L1(By,dv), BAf = ABf. Hence if f(2) = g(|Z°) then
geLY0,1] andTT1g=T1Tg O

3 Norm of the Berezin transform

In this section we show that the Berezin transf@mdefined onL?(By,dry’) into itself is a
positive operator and has spectral radius less than 1. We also sthBnhatDN(%) <1

where®dy(y) = W,y eN.

Further we establish thd is similar to a part of the adjoint of the unilateral shift
andB" — 0 in norm topology. From these results we derive many ergodicity properties
of the Berezin transform and the corresponding integral opeftdefined onlL*[0, 1].
Applications of these results are also discussed.

Since the operatoB on L*(By) is the adjoint ofB on L1(By,dy’) and L®(By) =
(LY(Bn,dn’))*, the spectrum oB on L®(By) = spectrum ofB on LY(By,dr’). The spec-
trum of Bon L*(By) is [1] the set

{F(y+ DI(N+1-7v)

: < < .
TN+ D) )/EC,O_‘R)/_N}

Let dn(y) = F(“%zf\l(i\'l;l‘y) = sy [1)La(1 = 1). From Ahemn, Flores, Rudin [1], it follows
that |®n(y)| < 1 if 0 < Ry < N. Further®y(0) = ©n(N) = 1. Thus the spectrum dB on
LY(Bn,dy’) andL*(By) contains the point 1 and further sinBdixes the constants hence

||B|| = 1 and spectral radius @ is 1.

Theorem 3.1. Let B be the Berezin transform defined difty, dr’). Then B — 0in norm
topology and B is similar to a part of the adjoint of the unilateral shift.

Proof. By Lemma 2.2, the operatd is a contraction oi.?(By, dr’). FurtherB is a self-
adjoint operator om?(By, dr’). Because forf € L2(By,dr),
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®L6) = [ (ENDTEKa (22

- fB(B (fo¢z)(W)dv(W))ﬁKBN(z,z)dv(z)
- fB ( ] f(W)Ikz(w)lzdv(w))ﬁKBN(z,z)dv(z)

- fB WK, (2 W () T2

—|Kgy (ZW)?
KBN( )

_ f(W)dn’(W)( fE f(z)|KN(z)|2dv(z))

Bn

- (f,Bf).

It is known that in the spacE?(By, dr’), the Berezin transform is a Fourier multiplier
with respect to the Helgason-Fourier transform [13]. Consider the family of conical func-
tionse, p indexed byl € R andb € Sy given by

Niia
-2\ ™"
eA,b(X)Z(Hb_X”N ,XEBN.

f f(W)Kg,, (W, w)dy(w) f f—"—-dv(2)

On the spac&?(By,dr’), one defines the Helgason-Fourier transfdrof f as
)= [ f(ew(9dr .
There is also [13] an inversion formulaN
(9= [ [ Tlbleo(oiec)Pdba:
R Jsy

with some functiorc onR (the Harish-chandra c-function) adtd the Haar measure @\;
and a Plancheral isometry

2.7 _ ry; 2 2
fB 11609 = fR fs T b)e()dba

exists which establishes a unitary isomorphism betwedhy, dr’) and a subspac of
all functions inL?(R x Sy, |c(1)[?dbdl) satisfying a certain symmetry condition. Under
this isomorphism, an operator a(By,dr’) commuting with the action oAut(By) cor-
responds to the operator oW of multiplication by a certain function depending only on
A. That is, if B is the Berezin transform ohz(BN,dn ) then(E?)(/l, b) = m(1) ﬂA, b) where

o

((BT), )

7 2
fRfSN m()|T(4, b)2dbd
0

(BT, )

v
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1.
since the multiplier functiom(1) = (1% + %)#hém) HE\'ZZ (1— %M is positive. Thus the

operatorB is positive. This also gives the spectral decompositioB.ofet E(5) be the
resolution of identity for the self-adjoint operatBr Then||B"f||? = f |/3”|2d<E(B)f, f).
(0.1)

According to the Lebesgue monotone convergence theorem, this teffitls ®8(1-)) f||? =
||Pke,(B_.)f||2. Now ker( — B) = {0} since 1 is not in the spectrum & so||B"f|| tends to
zero.

It is well known [7] that the spectrum of a multiplication operator is the essential range
of its symbol. In the case of the Berezin transform the multiplier functionasid the range
of mis the sefm(1) : 1 € R} = {@n(1) : RA=§}. Thus in view of the spectral decompo-
sition of B on L?(By, dr’) given by the Helgason-Fourier transform, the spectrurB of
L2(Bn, dn’) consists of

N

{CDN('}’) tRy = E}-

From the properties of the Gamma function [1] it follows thatyo %+ it, t real, On(y)
decreases to 0 @adends to infinity, and has maximumtat 0. Hence||B|| = r(B) = cDN(%)
and thus is< 1 by the sub-multiplicativity (log-convexity) of the [1] Gamma function. Thus
B" — 0in norm ag|BJ| < 1 and it follows from [10] thaB is similar to a part of the adjoint
of the unilateral shift. i

Corollary 3.2. Let B be the Berezin transform defined frof(Ry,dr’) into itself. The
following assertions hold.
(@) 1IB"|| < Ba" for every n> 0, for some3 > 1andO< a < 1.

(i) )" IB"I* < oo for an arbitrary k> .
n=0

(iii) Z IB"f||X < co for all f € L2(By,dn’) and for an arbitrary k> 0.
n=0

(iv) Z (B f, )| < oo for all f,g e L2(By,dy’), for an arbitrary k> 1.
n=0

(v) The space RangeB is the set of adl (B, dr’) for which the seriesZ(l - B)kg
k=0

converges with respect to the norm of(By,,dr’). In this case if f= Z(I - B)¥g then

k=0
f € (kerB)* and Bf=g.

(vi) The function g= rangeB if and only ifZH(I - Bz)ggll2 < oo. Further, the series
k=0

Z(I - B?)*Bg converges and E(I - B?)*Bg= e then g= Be
ko0 k=0

Proof. The proof follows from [20] and [6].
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Corollary 3.3. Suppose N Z,. Consider the integral operator T on?([0, 1],%).
Then T — 0in norm.
Proof. It follows from Theorem 3.1 thdfT|| < 1 and the Corollary follows. O

Corollary 3.4. The following is true for the Berezin transform B as an operator &, dn) :
%Zﬂgé BX — 0in the strong operator topology as- .

Proof. The result follows from Theorem 3.1 and [17]. O
Corollary 3.15. The following is true for the integral operator T as an operator on
L2([0,1], ﬁ) : 1 ¥25TX - 0in the strong operator topology as- co.

Proof. The proof follows from corollary 3.3 and [17]. O

A continuous real-valued functiomis subharmonic ifD if and only if it satisfies the
inequality

1 i0
u(zo)st; u(zo +re'?)de

for every disk|z— 7| < r contained inD. For a more detailed discussion on subharmonic
functions see [11].

Definition 3.6. Supposef € L(D,dA) is a real-valued subharmonic function BnWe say
f admits an integrable harmonic majorant if there exists a funet®h®(D, dA) harmonic
onD and such that(x) > f(x) for all xe D.

Corollary 3.7. Assume that & L1(D,dA) is a real-valued, radial, subharmonic function on
D which is twice continuously gerentiable and admits an integrable harmonic majorant
u. Let f(2) = g(|2%). Then T"g — ¢, as m— oo, where c is a fixed constant and T is the
integral operator defined in (1.7).

Proof. From [9], it follows thatB™f — u, the least harmonic majorant &f The functionf
is radial and belong th'(D,dA). This impliesBf = Tg. We have already seen thatfifis
radial, therBf is radial. ThusB?f = B(Bf) = T(Bf) = T(Tg) = T?g. By induction, we can
show thatB™f = TMg. SinceB™f — u, the sequenc&™g — v, a radial harmonic function.
Hencev is a constant. That is,T™g — c. O

Theorem 3.8. Assume & L1(D,dA) is real-valued subharmonic function @which ad-
mits an integrable harmonic majorant Vhen the following hold:

(i) The functions Bf are subharmonic for all & N. Further, if f is radial, f(2) = g(|2?),
then the functions Mg are subharmonic for all ra N.

(i)If f e V(D) ={f e L*(D) : ess limy_1f(2) = 0} then B'f converges uniformly t6.
Moreover, if fe V(D) is radial and f(z) = g(|z?), then T"g converges t® uniformly.

(i) If f e C(D) then {B"f} converges uniformly to,hithe harmonic function whose
boundary values coincide withj;f whereT is the unit circle inC. Suppose & C(D) is
radial. Let f(2) = g(|z?) for all ze D. Then T"g converges to a constant.

Proof. The theorem follows from [9] and the fact thatfifz) = g(|2%) thenBf = Tg. |
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Corollary 3.9. Let S= 2B  Then §' — 0in norm in the space(L(By, dr’)).

Proof. Notice thatS"f = 4

+ (?)Bj f, f € L?(Bn,dn’) and hence

(r_') Bitlf
j

(j Tl)Bj f.f e LBy, dr).

n
j=0

N
M-

BS"f =

NY)

+

[
Nl
5o
N

j=

We may assume that= 2k is even, the case wheris odd being similar. Sinc€) = (",
andS B= BS, we obtain

S(I - B)f S"f—S"Bf = 2 {[f - B™ ]+ X" [(}) - (,",)1BI ]

#{[F =B 1+ XLI(5) - (2 )8/ - B,

Letr =sud||B'f —BIf|| i, j > 0}. Since() - (,",) > 0 for 1< j <k, we obtain by Stirling’s

formula (% ~ % asn — co)

IS"(1 - B)f]l

IA
|~ "3~
—_——
=
+
gl
e
[
—
—
—>
~—
fe
I =
=
S—
—_—
—_——

asn — co. Since Rangé(- B) = L?(Bn,dr’), henceS" — 0 strongly. We now show that
S" — 0in norm.

From [14], it follow thato(S)N{ze C : |4 = 1}  {1}. Now Rangel - B) = L?(By,dy’) if
and only if 1¢ o(B), the spectrum oB. This is true if and only if 1¢ o(S). That is, if and
only if o(S)N{ze C: |74 =1} = 0. Hence||S"|| - 0 asn — co. O

Corollary 3.10. If V is a linear power bounded operator fron3([By, dr’) into itself, V' —
0 strongly, VB= BV and S= (V%B) then ' — 0 strongly in£(L2(Bn, dry)).

Proof. We have already verified thgB|| < 1, hencd|B"|| < 1 for alln > 1. FurtherS B= BS.
Since Rangd(- B) = L?(By, dr’), it is sufficient to establish that lig,. [|S"(I - B) f|| =
liMpoeo [|S"f — BS"f|| = O for all f € L%(By,dn’). Notice that

nn L
B2 ((pe

j=0

(42"

Shf
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and

Hence

Let s=suf|IV'B! f —V¥B'f|| : i, j,k,| > O}. Notice thats is finite sinceV andB are power

S"(I - B)f

BS"f = 4%

- (I1-B)S"f

_ 1
= 7(an _
n
2]'1
=1
= Cn + Dn + En.

+ 1 (j’_‘l)BJ(vn—Jf—v”—Hlf)

bounded. It is not diicult to see thaflCp|| < = — 0 asn — co.
Without loss of generality we may assume that 2k is an even integer, the case of an
odd integein being similar. Using again the fact tHg) = (,",), we have

2

=1

n
|

e

Bz

J:

S,

NgE

Vil —vi-ign-itlg),
( )

k _
= 2[5
i) \i-1
k
n n n—k—j pk+j
' ;(kﬂ) (k+J— )]V o
k _
- n)—( : )v” iBif
k _
n n—k—j pk+j
i ;(k J) (—J+1)V o
k _
- ) ('_1)—( " )vigit
—\i/ \i-1
k _
+ Z ( vi-ign-i+ly
=1t
|

Il
[

e

e

99
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Hence

IIDnll

IA
"o
LD~

X
—
—_———
[ ]
S —
|
—_——
I =
H
S —
| S

QN
DS117
N .
=)
N—

I
Ny
]

)

asn — oo by Stirling’s formula.
To prove that|En|| — 0 asn — oo, we have

n
%Z(j fl)nvn"'f -V

1
1

IIEnll

IA

=]
(Rl

S5 —

1
N~

n . .
Jf i+l
(n_j_l)uv f-vivf

T
O

- 4 (j El)nvi f—VItLf.

o

Now sinceV" — 0 strongly, we obtaifV"f —V”_+1f|| — 0 asn — c and hence for any
givene > 0, there is an integemg > 0 such thaf|V! f — VI*1f|| < e for all j > no. It follows

that, forn > ng,
n-1 np—1
1 n n
Bl < { z(,-+1)+sz(,-+1)}

j=no j=0

1/ n
< E+SZ%(J'+1)'

j=0

Nn—oo

liMnseo [IS(1 = B) || = liMnoe |[S"f — BS"f|| = O for all f € L2(By, dry’). O

. 1 . . . .
Since Iim %(T) = 0, hence for every fixed integer> 0, we havenI|m||En|| = 0. Thus

Corollary 3.11. If the operator B is a convex combination of B and | i(L%(By,dn’))
then B} — O strongly.

Proof. Let 0< A < 1 andB, = (1- 1)l + AB. We claimB? — 0 strongly in.£(L?[Bn,dn’)).
First we consider the cased < % Letu =21 andB, = (1-pu)! +uB. The operatoB,, is
a power bounded operator singl| < 1 implies||B,|| = [I(1— )l +uBJl < (1—p) +pulBl| <
(1-p) +u = 1. Proceeding similarly as in Corollary 3.9, we haBg— 0 strongly since
By =(1- )l +AB= 3(I + B,). For A = 3, the Corollary follows from Corollary 3.9.

Now supposeV is as given in Corollary 3.10 and 91 < % Letyu=21<1and B){ =

\/
(1-w)V+uBandS, = VJ'ZB” . Then by Corollary 3.10,

S (3.1)
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\/
strongly whereS,, = V+ZBH = V+(1‘g)v+”8 = (1-A)V + AB. Now we prove the rest of the

claim in the corollary. Natice that the set of points of the fogim wherem> 1 andk =
1,2,---,2"-1, is dense in (Al). Hence we see that for everye (0,1), By = (1- )| +AB =
(1-B)B,+BB, where 0< g < % andu = 2—'§n < p (but close enough o) for some 1< k<2M-1
andm> 1. SinceB, is power bounded and 9 < % Bz — 0 strongly andB,B = BB, it
follows from (3.1) thatB) — 0 strongly inL(L?(By, dn")).

O

Corollary 3.12. If B is the Berezin transform defined fromM(By, dr’) into itself then (i)
ker(l — B) = ker(l — B)? = {0} and (ii)Rangél — B) = Rangél — B)? = L?(By, dr).

Proof. (i) The operatodl — B is invertible sincd|B|| < 1. Thus ker( — B)nRangel( - B) =
{0}. Let f e ker(l — B)2. Theng = (I — B)f is in the intersection of the spaces Ker(B)
and Rangd(- B) which is trivial. That is,g= (I —B)f = 0. Thus f € ker(l — B). Hence
ker(l — B)? C ker(l — B). The other inclusion is always true. (ii) By [16] is enough to prove
that Rangd(- B) +ker(l — B) is closed. Now Rangeé¢ B) = L%(By, dr’) and ker{ — B) = {0}.
Thus from [16], it follows that Range¢ B)? is closed and Rangk{ B) = Range( - B)? =
L2(Bn,dry). mi

Corollary 3.13. Let U e £(L?(Bn,dn’)) be unitary and B be the Berezin transform defined
on L%(Bn,dr’). Then

N N
1_®N(E)S U =Bl < 1+®N(§).

Proof. Let f € L%(By,dn’) be such thafif|| = 1. Then
IU-B)fI?=((1 + B*~U*B-BU)f, f) > 1+|Bf|? - 2|Bf|| = (1- IBf|)?.

But sinceB is positive,
inf ||Bf|| = inf (Bf, f)
=1 =1

and by Theorem 3.1,
sup||Bf|l = sup(Bf, f).

lIflI=1 lIf]1=1
Hence
U-B)I > H?hlgll—llBﬂH

= sup|l—(Bf,f)|
Ifli=1

= supl(l -B)f, f)|
Ifll=1

= |||—BIIZ|I|||—I|B||=1—®N(%).

This proves the left inequality. Again by Theorem 3.1,
(U =Bl supy=1 IV f - BAl

sup(1+|IBffl)

fll=1

sup((I +B)f, f)

Ifll=1

I+ Bl < lI1+11Bll = 1+ on (§).

Il IA I
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Thus we obtain

N N
1—®N(§) = |UlI- 1Bl < (U - B)l < lU]| +|IB]| = 1+®N(§)

and the result follows. O
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