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Abstract

We prove the existence of transmission eigenvalues in the case when the perturbation
of the index of refraction may have singularity or degeneration on the boundary of its
support. This singularity or degeneration is measured in terms of the distance to the
boundary.
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1 Introduction

The scattering of a time-harmonic plane waygin an inhomogeneous medium can be
modeled by the scattering problem for the Helmholtz equation. The total wave

u(x) = Uo(X) + Us(X) (1.1)
satisfies the Helmholtz equation
(A+K@A+mX)u(x) =0, xeR", n>2, (1.2)

wherek > 0 fixed and functionrm(x) denotes the perturbation of the index of refraction. We
assume thain(x) is compactly supported in some bounded doniain R" and belongs to
LP(D) for someJ < p < co.

Underug(x) we understand the solution of the free Helmholtz equation

(A+K)up(x) =0, xeR",
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in the form of Herglotz function, i.e.

Uo(x) = f 0N gy (9) (1.3)

§n-1

with some functiorge(s9) € L2(S"1). HereS" 1 is the unit sphere iR". The justification of
such choice (1.3) of the set of solutions of the free Helmholtz equation can be found out in
[15], [16], [24], [2]. The set of all such solutions we denotelly. This are incident waves
or free waves.
We introduce the Sommerfeld radiation condition at the infinity
n-1 (6f(x)

rI|_r)rgor 2 7—|kf(x))=o, r=1x. (1.4)

By Ugc we denote the set of all solutions of the non-homogeneous Helmholtz equation
(A+ KL+ m(X))u(x) = f(X) (1.5)

with compactly supported functiohwhich belongs to the spad;@szl, wherep is the same
as for functionrm. And this solution must satisfy the Sommerfeld radiation condition (1.4).
This are outgoing solutions or scattered waves.

By U, we denote the set of all solutions of the homogeneous Helmholtz equation (1.2)
in the form (1.1) such thalp € Ug andugc € Ug.. It is equivalent to the fact

(A+K*(1+m(x))use(X) = —k?m(X)uo(X)

with the right hand side from the spabeszl(D).
The following result is actually proved in [23].

2
Theorem 1.1. For every compactly supportedeprTpl (R"), § < p< o, there exists a unique
outgoing solution u to the equation

(A +KA)u(x) = F(x)
2p
such that u belongs to the weighted spacg' (R") with 6 = 0 for § < p < ”%1 and with
6> 32— ’11;[)1 for 2 < p < co. Moreover there is a constant €0 depending on k such that

i 2 <Clifll 2 . (1.6)
I__pé—l (R”) Lp+l (Rn)

Corollary 1.2. For any w € Uo, Up # 0, and for me LP(D), 5 < p < o, there exists a unique
Usc € Usc Which satisfies the equation

(A +K2(1+ m(X)us(X) = —k?m(X)up(X) (1.7)
and such that
lusdl 22 < ClimllLp(p), (1.8)
LR (R

where constant C depends on k.
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2p
p-1

It can be easily concluded (see, for example, [24]) thatugreyUo belongs td_”

for any 5 < p < co and with the same as in Theorem 1.1.

(RT)

Corollary 1.3. For any me LP(D), 5 < p < oo, there exists a uniquenpie Ur, of the form
(1.1) and such that
) (1.9)

2p
—1
PR

lumll 2 < C(lImlLep) + 1)llUol]
LP &) L

where constant C depends on k.

Remarkl.4. There are the numerous of publications concerning the scattering theory for
the Schodinger operator with the potentials frdrfj . space. But we consider the potentials
from LI‘;C spaces. That is why we have restricted the bibliographical remarks to the works
that are of interest from the viewpoint of the present article. The reason is the result of The-
orem 1.1 allows us to consider the index of refractiosuch that it has the degenerations

or the singularities (see Corollary 1.3 and Theorem 3.3 of present paper).

Using these results and analogously to Theorem 2.2 of [24] we can prove in our case
the following fact.

Theorem 1.5. Every total wave g € Uy, has a unique decomposition into an incident wave
Up € Ug plus a scattered wavesgle U, and every incident wavey¥e Ug has a unique
decomposition as a total wave, ¥ U, minus a scattered wavege Ugc

Um(X) = Up(X) +Usc(X),  Vo(X) = Vm(X) — Vs(X).

In present paper we will consider the interior transmission problem (the problem of
existence of transmission eigenvalues). In other words we consider the positive values of
parametek for which there is a non-trivial paiu(v) solving

Au(X) + K21+ m(X))u(x) =0, xeD,
AV(X)+k*v(X) =0, xeD,
ou ov
u(x) = v(x), E(X) = E/(X)’ xe dD.

This problem arises naturally in inverse scattering theory. Namedysihot a transmission
eigenvalue then the far field pattern operator (it has basic importance in inverse scattering
theory) is injective with dense range (see [8], [10]). In that case one can apply the Kirsch’s
characterization method and can define unknown domdsee, for example, [17]). That’s

why the elimination of the values & which are the transmission eigenvalues is very im-
portant.

The study of the interior transmission problem and transmission eigenvalues has quite
long history. We restrict the bibliographical remarks to the works that are of interest from
the viewpoint of the present article.

This problem was first introduced in 1988 by Colton and Monk [9] in connection with
an inverse scattering problem for the reduced wave equation. The discreteness of the set of
transmission eigenvalues was established by Colton, Kirsch andrinta [7]. The prob-
lem of existence of transmission eigenvalues, however, has been remained unsolved long
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time until Faivarinta and Sylvester [24] proved the first existence result. Let us mentioned
here the paper of ColtonaRarinta and Sylvester [10] where the characterization of real
transmission eigenvalues was obtained. The existence of an infinite set of transmission
eigenvalues was established by Cakoni, Gintides and Haddar [4]. We also mention some
results on transmission eigenvalues for Maxwell's equations and for the Helmholtz equation
in presence of cavities [5], [18], [6], as well as very resent and very interesting results on
transmission eigenvalues for elliptic operators of arbitrary order with constafiicieets

of Hitrik, Krupchyk, Ola and Rivarinta [12], [13], [14].

The big interest to the problem of transmission eigenvalues is connected to the fact that
the knowledge of the transmission eigenvalues uniquely determines a radial scatterer [20],
[21], [24]. For non-radial scatterers, transmission eigenvalues have also been used to infer
simple properties of the scatterer [3].

All results of the mentioned works were obtained under the hypothesis that the perturba-
tion of the index of refractiom does not change sign and satisfies the condjtipr 6 > 0
(in the paper [7] in three dimensional case it was allowed that funot{ci has the degen-
eration of the typéx—y|¢,y € dD, with 1 < a < 3). It can be mentioned here that the problem
when the perturbation of index of refractiomchanges the sign (even it is bounded) is still
open and it is under the consideration by many researchers (see, for example, [19]).

The main result of this paper is Theorem 3.3, where the existence of the transmission
eigenvalues are proved for the perturbation of the index of refraatitirat may have the
singularities or degenerations at the boundary of the domain or at some points inside of the
domain.

The approach in present work is closed to the approach which was appeared in [24].

2 The Interior Transmission Problem

In this section we assume that the perturbation of the index of refrattitas special form

m(x) = cop(Xy’, >0, B#0, B>-1, xeD, (2.1)

wherep(X) = iry‘Dlx—yl is the distance to the boundary bf We assume that this function
ye

m(x) > O for all xe D. We define the weighted spab%ﬁ(D) as the closure of;’(D) with
respect to the norm

2 _ - 2 -B-2 2 -p-4 2

||f||H§(D)—f[p BZIc?Vf(x)I +p PAVEYP+p P ()17 | dx (2.2)
D lyl=2

This norm is justified by Hardy inequality (see, for example, [22] and [26]).

Lemma 2.1. (Hardy inequality) Let us assume that> 1. Then there is a constant €0
such that for all fe C3(D)

f p7If(X)?dx< C f P TV E(X)>dx (2.3)

D D
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If o > 3then in addition

f p TV E(X)Pdx< C Z f p 7Y £ (X))2 dx. (2.4)
D y1=2p
These two inequalities fg& > —1 imply the imbedding
H&GHCL;JD)
Moreover, it can be easily seen that for —1 the following embeddings hold

H3 5(D) © W3 4(D) < L%(D), (2.5)

where the embedding t?(D) is compact. Here and later on by the symwgo(D) for
positive integett ands > 1 we denote the closure &7’(D) with respect to the norm of
Sobolev spac®/(D).

Definition 2.2. We say that a wave numbgr> 0 is a transmission eigenvalue wx) =
cop(X)P € LP(D), 3 < p < o if any of the conditions below are satisfied.
1) There existip € Ug, Ug # 0, andum, € U, Um # 0, such that

%—WEWEJMOH&Q) (2.6)

P10
2) There existsin € Um, Um # 0, such that the unique outgoing solutiog to the equation
(A +K?)usc = —k?muy, (2.7)
2 2
belongs thpszl’O(D) N HO’B(D).
3) There existim € Um,Um # 0, andv € W2, (DN Hgﬁ(D) such that
N )
(A+K2)v = —kK2mup, (2.8)
4) There existsly € Ug, U # 0, such that the unique outgoing solutiog to the equation
(A+K2(1+m))use = —k2muy (2.9)
2 2
belongs thp%o(D) NHg4(D).
5) There existig € Ug, Up # 0, andv € sz_pl ,(D)N Hgﬁ(D) such that
—
(A+ KL+ m))v = —k®mup. (2.10)
Theorem 2.3. These 5 conditions (2.6)-(2.10) are equivalent.

Proof. Obviously 2) implies 3). AnWVZZ_pl O(D) N Hgﬁ(D)-squtionvto the equation
1

(A+ K2V = —-k’mum



134 Valery Serov

extended to be zero iR"\ D, is outgoing. But since outgoing solution is unique (see
Theorem 1.5 of present article) theis this solution. Thus, 3) implies 2). That is 2) and 3)
are equivalent.

Obviously 4) implies 5). But uniqueness of the outgoing solution to the equation

(A+K(Q+m)v = -Kmu

implies that any\N2 (D) NH ﬂ(D) -solution of the latter equation, extended by zero in

R™\ D, must beusc,pso 5) implies 4). Thus 4) and 5) are also equivalent.
Due to the unigue decomposition (see Theorem 1.5 of present article) the unique out-
going solution to the equation

(A + K?)usc = —k?mum,
is also the unique outgoing solution to the equation
(A +K2(1+m))use = —k?mup.
It means that 4) and 2) are equivalent. The last step is: Theorem 1.5 gives that
Usc = Um — Up.

This equality shows that the left hand side |s\/kr‘1°-2 (D) NH B(D) if and only if the

right hand side is. Hence, 1) and 2) are equwalent Therefore Theorem 2.3 is completely
proved. O

Remark2.4. If 8> 0 the functionm = cop? belongs toL*(D) and in this case we will

conS|derH2ﬁ(D) instead ofW2, o (DN Hgﬁ(D) since the following equality holds in that

case (see (2.2)) g

(D) N HG4(D) = W2,(D) N HE 4(D) = H3 4(D).

2p 0
If —1 < < 0 the functionrm = cop? belongs td_P(D) for any p from the interval
n n-1

§< p<—7, nx>2. (211)

In this case we need to considA/i2 (D) NH B(D) for these values of.
P

Theorem 2.5. (Characterization) k- 0 is a transmission eigenvalue of the function m (2.1)
if and only if there is a function & Hgﬁ(D),u # 0, such that the following equality

f % (A +K2(1+m))u(X)(A + k?)p(x)dx = 0 (2.12)
D

holds for anyy € H ﬁ(D)
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Proof. 1) Letk > 0 is a transmission eigenvalue of the function Then due to Theorem
2.3 there existsi, € Uy, such that the unique outgoing solution to the equation

(A +Kk%)u = —k?muy,
belongs to
W%’O(D) NH4(D) € H34(D).

Let us prove that this solutiansatisfies (2.12). Indeed, it is easy to see that (2.12) converges
for thisuandy € HS’B(D). Moreover we can integrate by parts and get

f % (A + K21+ m)u()(A + kD)p(X) dx = f u(A +k?) (% (A+K(1+ m))<p(x)) dx
D D

= f (A+ kz)u% (A+K2(1+m))p(X)dx = —k? f Um(A + k?(1 + m))e(X) dx
D D

-2 f (A +K2(L+ M) (X (x) dx = 0.
D

2) Let there isu e Hgﬁ(D) such that (2.12) holds for anye Hgﬁ(D). Integration by parts
in (2.12) shows that

(A+K?) (%(A +k2(1+ m))u(x)) =0

in the sense of distributions (the left hand side is an elemehtﬁ‘étD) = (Hgﬁ(D))*). It
means that there i € Ug, ug # 0, such that

(A+K2(L+m)u = —k®mu.

2|
This equality implies that € LF—P'l(D) (see Theorem 1.1 in present article). If we rewrite
the latter equality as

(A +Kk?)u = —k?mu-k?muy
then in order to finish the proof of this theorem it is enough to establishribéelongs to

2
Lprl(D) since the regularity arguments for the operaterk? provides the needed result. It

is not so dificult to check (see Hardy inequality (2.3)-(2.4)) that Hgﬁ(D) is equivalent

to p‘/% ue Wio. This implies (using Sobolev embedding) that
p2uel®(D), n=23 prucl’(D), n>4 (2.13)

wherer < oo for n=4 andr = 2% for n> 4. Next, we can representuas

mu= cop? (o~2u).

This representation and embeddings (2.13) allow us to conclude that in thg sdséhe
functionmue L%(D). In the casg8 < 0 we need to assume in addition to the conditions
(2.11) that in two-dimensional cage- —%. Then using lder inequality we may conclude

2]
that the functiommue Lprl(D) for some] < p < co. Therefore, this theorem is completely
proved. O
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Remark2.6. All results that were proved above will be also true for the case
m(X) = colx— o,

wherexg is an arbitrary fixed point from domaib.

3 Existence of Transmission Eigenvalues

In this section we assume that the functiorsatisfies either the conditions (2.1) or the
conditions of Remark 2.6. Theorem 2.2 tells us tkat 0 is a transmission eigenvalue
whenever the operator (which is understood in the sense of quadratic forms)

(A+K?) (% (A+ K21+ m))) = (A+K3(1+m)) (% (A+ k2)) (3.1)

has a non-trivial kernel ingﬁ(D). We will investigate the existence of this kernel by

examining the spectrum of the operatokdshanges. We denot€ by 7,k? = 7.
The following theorem asserts that this operator (3.1), with the appropriate domain,
defines a semi-bounded self-adjoint operator.

Theorem 3.1. The quadratic form @ defined by

1 1
Q:(u) = < f o PIAUPdx+T f (ap‘ﬁ(uAU+UAu)+UAu dx+
D D

+72 f (C—lop-ﬂ +)u2dx (3.2)
D

with form domain rgﬁ(D), is densely defined, closed semi-bounded quadratic form on
L2 (D) with the norm
5+2

2 | a2
110y = [ P

2 D
The unique self-adjoint operator associated with this norms@qual to

L=(A+ kz)(%(A+ K2(1+ m))) =(A+K*(1+ m))(%(A+ k2)) (3.3)
on the domain

D(L) = {f € H34(D) : Lf € L*(D)}.

In addition, the spectrum of this self-adjoint operator is pure discrete of finite multiplicity
having only one accumulation point at infinity.

Proof. Let us first prove so-called Garding’s inequality. Using inequadlty< ca® + 4—th
we obtain from (3.2)

Qi) > S(1-26) f pPIAURdxs =2 = 1) f pPluRdx
@ D @ “3
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—coifpﬁlulzdxjtfmlzdx (3.4)
D )

Choosinge = 4—1T and using the conditiog > —2, we obtain from (3.4)

Qr(u) > if/O‘ﬁIAUIZdX—S—Tzd“f/fﬁ“‘lulzdx—
T = 2¢ ) o )

—C0T2d2'8+4 fp—,B—4|u|2 dX,
D

whered = diamD. Now Hardy inequality (2.3)-(2.4) implies that there is a cons@it1
such that Garding’s inequality holds

1 2 3r? 4 2 4) 2
L(U) > ——|u — | =—d*+ cor?d?®**|||u . 3.5

This inequality implies that for some> 0

1
2 2

L u,u) 2 = u
M L2(D) C

SinceHgﬁ(D) c L?(D) and this embedding is compact (see (2.5)), we may conclude from
this inequality that there is a unique self-adjoint operator

L' L*(D) - L*(D)

with pure discrete spectrum of finite multiplicity. Thus, we can obtain self-adjoint operator
L (3.3) as follows:

L= (LY =P

Due to the compact imbedding (2.5) the spectrum of the opera;éﬁl is pure discrete
of finite multiplicity having only one accumulation point at infinity. But since the operator

L;l P

is also compact we have the same fact for the spectrum of the operaidwus, Theorem
3.1is proved. O

The next theorem can be considered as a particular case of the previous one but it is
actually what we need for the existence (and non-existence) transmission eigenvalues.
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Theorem 3.2. The quadratic form @ defined by

1
Qo(v) = Df pPlAuf dx (3.6)

with form domain Pgﬁ(D), is densely defined, closed positive quadratic form D). The
unigue self-adjoint operator associated with this norgifequal to

Lo = A(%A) (3.7)

on the domain
D(Lo) = {f € H§4(D) : Lof € L*(D)}.

Moreover, this self-adjoint operator has pure discrete nonnegative spegign0, s =
0,1,2,... of finite multiplicity having only one accumulation point at infinity.

We need some notations. First, we recall the min-max characterization of the eigenval-
uesus of a self-adjoint operatdry defined by a quadratic form (3.6) (see [25], p. 71)

=max min o(U), 3.8
HMs VCVsUG\AIIUIILz(D)=1Q (u) (3.8)

whereVs denotes the co-dimensi@subspaces of the form domdﬂgﬁ(D). Let us denote
by Sﬁ the following value

S; = max mEL () |u(x)|? dx (3.9)
ueH3 ,(D).llull, 2.p)=1 v

And finally, by 1o we denote the first eigenvalue oA with Dirichlet boundary conditions.
The Rayleigh-Ritz characterization of the first Dirichlet eigenvalue and embedding (2.5)

imply
o= inf f IVu(x)>dx <

UGH&(D),”UHLZ(D):I )

< inf f IVu(x)|?dx (3.10)
=1
)

ueH3 ,(D).llull, 2o

Theorem 3.3. Suppose that function m satisfies all conditions of Remark 2.4 or Remark
2.6. If
Ao
k2
< 1+S;

(3.11)

Ao
1+S/§

1022@(,/1+s[;+ \/575) (3.12)

where § is as in (3.9), then k O is not a transmission eigenvalue. f % and
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whereus and % are as in (3.8) and (3.9), respectively, then there exisfLgransmission
eigenvalues k with

Ao—2+/iis /s,g— \/45—410\/;75 IS5 —4us
<K<

2(1+Syp)
Ao—2 /s /sﬁ-+ \/13—440\/;1: /s/;—4us
< . A
- 2(1+Sp) (3.13)

Proof. The quadratic fornQ; (3.2) can be rewritten as

Q. (u) = f(A+ K21+ m))(nlq(A+ K21+ m)))u-de—
D

-2 [ (A+K*(1+m))u-Tdx
/

Integration by parts in both integrals yields

1
Q:(u) = | =IA+KA+m)udx+k? | [Vuldx—k* | (1+m)u?dx
E [roe]

Thus, using (3.9) and (3.10) we obtain
Q:(U) = Tl —7*(1+S)).

This inequality implies that ifr satisfies (3.11) then the quadratic form (3.2) is strictly
positive and therefore sudt> 0 is not a transmission eigenvalue.

To prove the second part of the theorem we estimate the quadratic form (3.2) from above
as follows (using also integration by parts in the second integral):

1 1
Q,(u)sa f p PIAUPdx+ 2t f ap—ﬁ|u||Au|dx—T f IVul? dx+
D D D

+7 f (ép‘ﬁ +Duffdx (3.14)
D

Restricting td|ull 2p) = 1 and using the Cauchy-Schwartz inequality we obtain from (3.10)
and (3.14)

2
1 1 1
() <= | pP|AuPdx+2 f— P|AuP dx f— PBluldx| -
Q()Cofpll T[DCOPII DCOpII

D

1
—T/lo+7'2+7'2f—p_'8|u|2dx
J Co
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Restricting now tdvs (see (3.8)) and using (3.9) we obtain from the latter inequality

Q.(U) < T2(1+s,;)-7(10—2\/ﬁs\/§,g)+ s

A0-2+Hs[S;
We minimize the right hand-side of this inequality by choosihe %S‘{_ﬁ to obtain
B
2
(/10 2V /sﬁ-)

This inequality shows tha,- restricted toVs is non-positive if the right hand-side of
(3.15) is non-positive. But it is equivalent to (3.12). Using the continuity argumer@s of
with respect tor (see, for example, Lemmas 5.3-5.5 of [24]) we may conclude now that
if the conditions (3.12) and (3.13) are satisfied then there are atdeakttransmission
eigenvalues. Thus Theorems 3.3 is completely proved. O
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