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Abstract

The paper is devoted to the applications of the time-frequency integrals and the two-
dimensional stationary phase method for the problems of waves propagation from
moving sources in acoustic dispersive media. Applying the stationary phase method
we obtain the fective formula for the acoustic fields in the dispersive media generated
by non-uniformly moving modulated source.
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1 Introduction

The paper is devoted to the applications of the time-frequency integrals and the two-dimensional
stationary phase method for the problems of waves propagation from moving sources in
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acoustic dispersive media.
We consider the acoustic fields generated by moving in dispersive media modulated
sources of the form

F(t,w) = at)e™"'s(x — Xo(1)),t € R,X = (X1, X2, X3) € R®,

wherewg is an eigenfrequency of the sourckt) is a slowly varying amplitudexg(t) =
(%01(t), X02(t), Xo3(t)) is a vector-function defining the motion of the source.

Some assumptions with respect to the source allow us to introduce a large dimensionless
parametenl > 0 which characterizes simultaneously the slowness of the variations of: the
source amplitude, the velocity of the source, and a large distance between sources and
receivers. We obtain a representation of the fields as double oscillating integrals depending
on the parametet > 0

@, (t,x) = F(t,x, w,T, )5t gdr, (1.1)
RxR
whereF is the complex valued function arfél is the real-valued function fow| large
enough. Generally speaking integral (1.1) is divergent and we consider its regularization
which is called the oscillatory integral. The ph&e (1.1) is of the form

S, X, w,7) = %#(w) X —Xo(7)| — w(t —7) — wot

wherex(w) is the wave number in a dispersive medium depending on the frequency.

Applying to the integrals (1.1) the method of the stationary phase we obtain the asymp-
totics of the field for largel > 0.

This approach is applied for estimates of acoustic fields generated by non uniformly
moving sources in dispersive fluids and in acoustic waveguides filled by dispersive fluids.

We would like to note that the asymptotic estimatesié-dimensionahtegrals are a
standard tool of the electrodynamics (see for instance [10], Chap.3,4, [11]) and go back to
A. Sommerfeld [32], and L. Brillouin [8] Ch.1. But in the case of non uniformly moving
sources the representation of the fields in the form of a one-dimensional integral is not
effective. In turn, the representation of the field as a double time-frequency oscillating
integrals with a subsequent asymptotic analysis yieftéstve formulas for both the fields
and for the Doppler shifts.

The acoustic and electromagnetic radiation from moving sources is a classical prob-
lem of the electrodynamics, and for the isotropan dispersive medidne solution of this
problem is given by th&ienard-Wiechert potentidkee for instance [21], Chap. VIII, [16],
Chap. 14). But theienard-Wiechert potentidk not applicable for dispersive media and
our representation is new anffective tool for the investigation of electromagnetic fields
generated by moving sources with variable velocity.

The paper is organized as follows. In Chapter 2 we give an auxiliary material concern-
ing the oscillatory integrals and multidimensional stationary phase method. In Chapter 3
we consider the acoustic wave propagation from moving source in dispersive fluids and
layered acoustic waveguides filled with dispersive fluids. We obtainflieeteve asymp-
totic formulas for the acoustic fields, Doppldfexts, and retarded time. Note some works
devoted to the acoustic wave propagation from moving source [1], [3], [4], [18], [19], [20],
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[24], [26], [27], [28], [30]. The representation of the acoustic fields as a sum of integrals of

type (1.1) with its asymptotic estimates first was used in [19]. This method was developed
in [26], [27], [28]. In this paper we show that the mentioned approach works in the case
of moving sources in dispersive homogeneous fluids and stratified waveguides filled with
dispersive fluids.

2 Auxiliary Material: Stationary Phase Method for the
Oscillatory Integrals

1°. We consider the integrals of the form
f(x)eSMdx, (2.1)
Rn

whereR" 5 x — f(x) eC™ is called the amplitude and the scalar funct®ns called the
phase. We suppose thfahndS are infinitely diferentiable (in fact it is necessary a finite
number of the derivatives) and satisfy the following conditions. The amplitisigisfies
following conditions: for every multiindex there exist<, > 0 such that

07T ()| < Ca 00K, (x) = (14 X2)?2, 2.2)

for somek € R independent of. The phasé is such that:
(i) S(x) is real for|x| is large enough,
(i) for everyla| = 2 there exist&, > 0 such thatd*S(x)| < C,,
(iii) there existsC > 0 andp > 0 such that

IVS(X)| = CIxf’

for x| large enough.

Note that ifk > —n the integral (2.1) does not exist as absolutely convergent and we need
a regularization of integral (2.1). Lgte C3’(R") andy(x) = 1 in a small neighborhood of
the origin. We setr(X) = x(X/R).

Proposition 2.1. Let estimat€2.2) and conditions (i)-(iii) hold. Then there exists a limit
F= lim fR XR(X)T (x)€SMdx (2.3)
independent of the choice of the functjan
Proof. We introduce the dierential operatoL.
Lu(x) = (1+ |V5(x)|2)‘1(| —iVS(X) - V)u(x),x €R". (2.4)

One can see that
LeS&Y) — dS(xy). (2.5)
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Let L™ be the transpose todifferential operator. Then taking into the account (2.5) and by
integration by parts we obtain

Fr= f YROOF()ESNdx = f (L7 (rr(X)F (X)) €SP dix. (2.6)
RN RN
Conditions (i)-(iii) yield that
(L) (rOOF ()] < Cj 0k~ (2.7)

with the constanC; > 0 independent oR> 0. Let j > % Then the integral in the right
side part of (2.6) is absolutely convergent, uniformly with respe® t00, and we can go
to the limit for R — o in (2.6). Hence the limit in (2.3) exists, independengpénd

F= lim Fr= fR n ((L’)j f(x))e‘s(x)dx. (2.8)

R— oo
wherej > ‘%”. O

The integrals defined by formula (2.8) are caltestillatory.
20. We consider an integral depending on the paramete® of the form

I, = f f(x)e*S®dx,
Rn

wheref, S satisfy condition (2.2), (i)-(lll), and is a real-valued function.
We say thakg is a non-degenerate stationary point of the ptiade

VS(xo0) =0,

and
detS”(xp) # 0,

n
whereS” (x) = (g;sa(;‘j) )i i is the Hess matrix of the phaSe

Proposition 2.2. (see for instance [12], [7]) Let there exist a finite g&t,...,xn} of non-
degenerate stationary points of the phas@ Ben

N
L= Fj(), (2.9)
j=1

where

o (2x\2 expaS(x)) + FsgnS(x;) . 1
FJ(/I)_(T) |det //(Xj)|l/2 f(XJ)(1+O(/l)) (210)

and sgn3(x;) is the dfference between the number of positive and negative eigenvalue of
the matrix 8'(x;).
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3 Acoustic Field of Moving Sources in Dispersive Acoustic
Fluids

3.1 Acoustic equation in a dispersive media

Letx = (X1, X2, X3) be the spatial coordinatesss the time coordinate = ¢(x), x € R be the
sound speed in a fluigh(x) is the density of the fluidy(x,t) is the acoustic pressure. The
pressural satisfies the acoustic equation

2
CZ_%X)é‘ lj?(ttz’—x) =p()V-p~H(})VU(tX) = f(t,x), (1)
(t,x) e R?

wheref is a source of the acoustic vibrations.
In the case of the dispersive flud= c(w,Xx) we have to change the equation (3.1) by
the pseudodierential equation

2
20005 - IV ITUE ) = T X)) €Y (3.2
where
-2 1 -2 ~ —iwt
¢ 2D X)p(tX) = f 2w, )P, ) dw,
27 Ju
and

H(w,X) = fR o(t,x)e“tdt

is the Fourier transform understood in the sense of distributions. The principle of causality
demands that the functi@T?(w, x) is a boundary value with respect to theof an analytic
bounded in the upper complex half-plane function (see for instance [29], [31]).

3.2 Representation of fields of moving sources of the form the time-frequency
integrals

We consider now the case the homogeneous dispersive media, that is the sound velocity is
c(w) and the density > 0 are independent of Then equation (3.2) after Fourier transform
with respect to the timeaccepts the form of the Helmholtz equation

(A+K(w)) U(w.X) = = f{w,x), (3.3)
k(w) = %,w €R,x €RS,
_ R PR
whereA = P + P +221s the Laplace operator.

The typical example of the dispersive fluid is the bubbly water (see for instance [25],
Chapter 8) for which
w?+ Wl
k(w)= ——
(w) %
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wherecy is a constant phase speed in nonperturbed waggs, a bubble frequency, depend-
ing on the concentrations of the bubbles in the unite of the volume, radius of the bubbles,
etc. (see [25], p. 317-320). We also note the papers [29], [31] containing numerous exam-
ples of dispersive acoustic media.

In what follows we consider the lossless fluid, that is we supposek(hat- 0 for all
w € R. To find the unique solution of the equation (3.3) we apply the limiting absorption

principle. Let
gk(@)ix|

be the Green function of the Helmholtz operator (3.3) satisfying the limiting absorption
principle. Then the solution of the equation (3.2) &w, x) = c(w),p(X) = p is given as

1 W dadr [ L2 ¢y 3.4
t’ = — e wit=7 s . .
ut = 55 [ e Idudr [ Sty 3.4)

For a moving source given as

f(t.x) =A(t)6(x —xo(t)), (3.5)
formula (3.4) accepts the form
~ 1 A(T)éS(t,x,w,T)

u(t,x) = 5.2 fR o KXo dwdr, (3.6)
where

S(t,X,w,T) = K(w) |X — Xo(7)| — w(t — 7). (3.7)
We denote by

1
= ey

the group velocity in the dispersive fluid. In what follows we supposevj(at) > O for all
weR.
Let there exisR > 0 large enough such that

Vo(@)l

1{ >0,
Irl+wl>R| Vg(w) I
IVo(7)] ’
sup |[——=-1{>0.
|T|+|w|ER C(w)

wherevp(r) = Xo(7) is the velocity of the source. Then there exiSts 0 such that
|V, S(t %, 7)| 2 C(lwl + I1]) (3.8)

for |7| + |w| > R Condition (3.8) provides the existence of the double integral in (3.6) as
oscillatory.
In what follows we suppose the moving source is modulated, that is

A(t) = a(t)e o, a(t) = &(t/1) (3.9)
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with the eigenfrequency (the carrier frequenay)> 0 and slowly varying amplituda(t)
whered(t) is a smooth function bounded with all derivativads; 0 is a large dimensionless
parameter characterizing the slowness of the variations of the ampéitide law of the
motion of the source is

xo(t) = AXo(t/ ), (3.10)

wherea > 0 is the same large paramet¥g, is a smooth vector-function with all bounded
derivatives. Formula (3.10) implies that the velocity of the source is

Vo(t) = Xo(t/), (3.11)

and the acceleration is 1
ao(t) = z>"<0(t/,1). (3.12)

That is the source moves with arbitrary bounded velocity but with amall acceleration.
We make in the integral (3.6) the scale change of the variables:

X=AX,t = AT, 7 = A,
XeR3, T, eR, 1> 0.

Then we obtain

= '/lg(T,X,w,L)
1 f COL (3.13)
RXR

DA(T,X) = U(AT,/lX) :@ |X _ XO(T)l

where
S(T, X,w,1) = k(w) X = Xo(?)] — (T =) — wot. (3.14)

3.3 Asymptotic analysis of the acoustic field

We apply the stationary phase method for the asymptotic analysig BfX) for 1 —» +co

31

and fixed T, X),T > 0. The stationary points of the phase (3.14) are solutions of the system

of the equations with respect te,)

B URCEC (3.15)

S/(T, X, w,1) = —k(w)Vo(X.t) + (w — wo) = 0,
where

X—Xo(y) :
P AT

is the value of the projection &fo(c) = Xo(:) on the vectoX — Xo(v).
The Hess matrix of the phaseis defined as

Vo(X,t) =

K'(@)X=Xo@)]  1- s

Vg(w)

Vo(X,0) No(X,7) |
o Ol

S"(T, X, w,0) =
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Letws = ws(T, X), s = ts(T, X) be a nondegenerate stationary point of the p&adéen the
contribution of {us,t5) in the asymptotics ofi;{T, X) for fix (T, X) is given by the formula
0,(T, X) (3.16)
1 eXpI é(T’X’wSaLS)+%Sgré,/(T’X7wS’LS) 1
=7 [ — R ](1+O(;)).
|detS” (T, X, ws,15)| "~ 1X = Xo(ts)|

Coming back to the "old” variablesx, andr we obtain

1 eXpi[S(t. X, ws,7s) + §5gNS' (1, X, ws, 7) |

u(t,x) ~ — , 3.17
0™ 2 e (4%, ws, Ts) [ X = Xo(7s)] G147
where
S(t,X, w,7) = K(w) X —Xo(7)| — w(t = 7) — wor,
and s, 7s) = (ws(t, X),75(t, X)) are a solution of the system
X = Xo(7)|
—  —(t—7) = O7 318
R (3.18)
—k(w)vo(t,X) + (w—wg) =0,
where 0
X—=XolT
Vo(7,X) = Vo(7) - ———~
orX) =Volr) L =205
is the value of the projection of the velocity vecte(r) on the vectox — Xxo(7),
K@) x=xo()|  1-%
S”(t,X,w,7) = ’ (3.19)
_ Vo(T,X) k( )0V0(T X)
Vg(w)

The equivalence in formula (3.17) means that the right-hand side in (3.17) is the main term
of the asymptotics of the acoustic field for

w t
inf |x — — 1= 1
I‘r IX = Xo(7)| % >> .7 >> 1,

wheref > 0 be a time scaley > 0 be a frequency scale.
Note that if the following conditions

sup( K ()| Ix = Xo(T)] + 0((T );) )<1 (3.20)
(@)

sup( Ko )’avo(r X)) [Vo(T,X) )<1

(@) \W Vg(w)

hold, then system (3.18) has the unique solutiog £s) which can be find by the method
of successive approximations

((‘USa TS) = r!m(wn,Tn),
(@°.7%) = (wo. 1),
{ S I e ]

Vg(a)”) 9
W™ = wo — k(wMVo (7", X).
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Conditions (3.20) provide that the stationary point,(s) is unique, non degenerate, and
sgnS’(t,X,ws,7s) = 0.

Example 3.1. We apply our approach to the case of non dispersive fluids, théb)s= c >
0. Then the first equation in (3.18) independentwfind under the subsonic motion

supw <1
t C

(3.18) has the unique solutiaR. We obtain from the second equation in (3.18)

wo

Vo(rs.X) *
1 Yolrsx)

Ws =
It is easy to check that

1 Volrs.X) )2
C

det ”(t, X,a)s, Ts) = (

andsgnS’(t,x,ws, 7s) = 0. Hence formula (3.17) implies that

u(t.x) 1 expiS(t, X, ws, Ts)
T A (1 ) - xo(r)|

(3.21)

Note that the right-hand side in (3.21) coincides with the acolgticard-Wiecherpoten-
tial (see for instance [1]). Hence in the case of a homogeneous no-dispersive fluid asymp-
totic formula (3.21) is exact.

3.4 Doppler dfects

Note that for fix pointx formulas (3.17) can be written of the form
u(t,x) ~(t)eF® (3.22)

where® is a bounded functiort; is a real-valued function such that im, F(t) = c. Hence
according to the signal processing theory (see for instancd-[9))is a phase of the wave
processb(t)eF®, and the instantaneous frequenay(t) of the wave proces®(t)eF® is
defined as

win(t) = =F(0).
In our case

F(t) = S(t, X,ws(t, X),7s(t, X)) (3.23)
= K(ws(t, X)) IX = Xo(7s(t, X)) — ws(t, X)(t - 7s(t, X)) — wos(t. X),
where(ws(t, X),75(t,X)) is the stationary point of the phaSe
By the diferentiation ofF as a composed function we obtain
’ as(t’ X,a)S(t’ X)’TS(t’ X)) 8S(t, X’ws(t’ X)7TS(t’ X)) aws(t’ X)
-F'{t)=- -
ot ow ot
_ 0S(t, x.ws(t, X),7s(t, X)) ds(t,X)
or ot
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Taking into account thdws(t, X),74(t, X)) is a stationary point 08, we obtain that
wln(t) = wS(L X)

It implies that the instantaneous frequenayi(t) of the wave processagt,x) for fix x
coincides withwg(t, x). Hence the instantaneous Doppléieet is

Ain(t,X) = ws(t, X) — wo = K(ws(t, X))V(X,7s(t, X)). (3.24)

Formula (3.24) implies if/(x,74(t,x)) > 0 (the source moving to the receives}(t) > wo,
and ifv(x,7s(t,Xx)) < O (the source moving from the receives)(t, x) < wo.

We note also that(t, x) is the time of the radiation of the signal arrived to the receiver
x at the moment. Since the group velocityg(w) > 0 we obtain thats(t,x) < t, that is the
causality principle is fulfilled.

The Doppler &ect for the time (the retarded time) is defined as

X — Xo(7s(t, X))|

Ain(t’x) =t-74(t,x) = Vg(ws(t, X))

(3.25)

3.5 Acoustic wave propagation from the moving sources in stratified disper-
sive waveguides

We consider the wave propagation from moving sources in the dispersive acoustic waveg-
uides simulating the wave propagation in the ocean. Let

X = (X',2) e R%, X" = (X1, %) € R?

wherex’ is the vector of the horizontal coordinaigs the vertical coordinate.
We suppose that the sound speetc(z, w) depends on the depth and the frequescy

co(zw),0<z<H
c1(w),z= H, ’

c(z w) ={

and the density of the fluid dependszof

po(2),0<z<H,

p(@) = { p1,2> H.

We consider the modified acoustic equation for dispersive media in the halfRpace
{x er®:z> 0}

82

(C_Z(Z, Dy) 72

—Av —p(2) a%p‘l(z)(%) u(x,t) = f(xt), (3.26)
x=(X,2) eR3teR

under conditions
u(x’,0,t) =0, (3.27)

, 3 1 du(x’,zt) 3
[U(X ’Z’t)]Z:H = 0, [@ T]Z:H = O, (328)
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where
[l//(xla Z,t)]Z:H = ‘J/(X,7 H+ 0’ t) - l//(xl’ H- O’ t)

is the jump ofy(x’, z t) on the surface = H. Condition (3.27) means that the acoustic pres-
sure equals zero on the surface 0 and the acoustic pressure and the normal component of
the velocity of particles of the fluid are continuous on the interfaeeH. In what follows
we suppose that

c(zw) < c1(w) (3.29)

for all (z w).
Let
f(x.t) = A(t)6(x — Xo(t)),
whereA(t) = a(t)e ot a(t) = &(t/ 1) as above,
Xo(t) = (Yo(t), 20(t)),

The law of the motion of the source is of the form

Yo(t) = AYo(t/2), 20(t) = Zo(t/2) (3.30)

wherea > 0 is the same large paramet¥g, Zo are smooth functions with bounded deriva-
tives. Formulas (3.30) mean that the source moves with an arbitrary horizontal velocity and
a small vertical velocity.

Letg, be the Green function satisfying the limiting absorption principle of the Helmholtz
equation corresponding (3.26)

0 1,,0 2 _ _
(Ay tp@)7p (D5 +k (z,w))gw(y,z,zO) = -6(y,2- ), (3.31)
yeR?%,z>0,zp€ (O,H)
with k(z w) = % where
gw(Ya 0, ZO) = an Esz (332)
0,022 =0 - 220ED)| _oyer2 (3.39
p(Z) az z=H
We correspond to (3.31)-(3.33) the self-adjoint Sturm-Liouville spectral problem
IV N ¢ Y L2
P@p D=~ - (2 w) - K (@) (3.34)

= 12(@)o(2).2€ (0, +00),

_ INERTECIN
00 =00 Al =0 =B o

wherek; (w) = Cﬂl in the Hilbert spacdl;ﬁ,l(RJr) with the norm

00 1/2
e ) = ( | p‘l(z)lu(z)|2dz) .
P 0
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A finite discrete spectrum of the problem (3.34) is located on the interval«), 0) where

m(w) = sup (K*(zw) - kK5(w))
ze(0,H)

and the continuous spectrum is @o).

Let {gﬁj(Z,w)};\‘:((:) be the orthonormal imﬁ,l(&) system of the eigenfunctions of the
problem (3.34) corresponding to the eigenval{,ﬂ%@»)}il, andy(z a,w) be the orthonor-
mal system of generalized eigenfunctions of the problem (3.34), depending on the parame-
tera € (0, +00).

Applying the spectral decompositiond{z— zy) on eigenfunction and generalized eigen-
functions of the problem (3.34) (see for instance [2]) we obtain

. N(w)
9u(y,2.20) = m ,Z; HO(y}(w) Iy)ej(2 w)e; (20, w)

4,)220) fom HG( \/W Y)Y (z @, w)g (20, @, w)da,

whereHél)(w) is Hankel function of the first kind and zero order,

7i(w) = \JK(w) +(w)

It is well-known (see for instance [5], [28]) that the part of the Green funagiprcorre-
sponding to the continuous spectrum of the Sturm-Liouville spectral problem (3.34) does
not contribute in the main term of the asymptoticsggf Changing the Hankel function
H(()l)(r) by its main term of asymptotics far— +co we obtain

+

N(w) ei7r/4 . .
¢j(w, 2 ¢j(w, 20)
Guy:220) ~ )|~

= p(20)(8ry; (w)ly)Y/2
ki(w)ly| — oo.

expy;j(w)yl) (3.39)

Applying the formula (3.35), the representation of the acoustic pressure as a double
oscillatory integral, and stationary phase method we obtain the following formula (see for
instance [28])

N(wo)

uy.zt) = ) ujly.zb),

=1
where

uj(y,zt) (3.36)
B ety D e e S I
p20) (i (@1)ly = Yo ))1|detS] (y.t,wj, ) p1/2
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SJ (y’t’w’T) =Y%i (w) |y - YO(T)| - w(t - T) —woT

andwj = wj(y,t),7j = 7j(y,t) are the stationary points of the phase, that is the solutions of
the system

ly =yo(@)l
ng(w)
~Yj(w)V(y.7) + (w—wo) = 0,

(t—7)=0, (3.37)

v(y,7) is the value of the projection of the vectg(r) on the vectoy — yo(7),

1
V)= 5
is the group velocity of thenodewith numberj. Note that thewj(y,t) is the instantaneous
frequency ofj—-mode andr(y,t) is the time of the excitation of the-mode arriving at the
pointx = (y,z) at the moment > 0. We suppose thatjg(w) > 0 for all w. This condition
provides the fulfillment of the causality principle thatig(y,t) <t.

Note that the Doppler shiftw! (y,t) and the retarded timat] (y,t) of the mode with
numberj are given by the formulas

Aw) = wj(y.1) - wo = ¥;(@;(y. OVY.7 (. 1),
An0-D =t=m0:0 = Vig(wj(y,t))

4 Conclusion

The paper is developed the time-frequency integrals and the two-dimensional stationary
phase method for the problems of waves propagation from moving sources in acoustic dis-
persive media. Applying the stationary phase method we obtainedfdutiee formula for

the acoustic waves in the dispersive acoustic waveguides simulated the ocean generated by
non-uniformly moving modulated source. The explicit formulas for the Dopgfeceand

the retarded time also was discussed.
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