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Abstract

An attempt has been made to investigate the thermal convection of a heterogeneous
Walters B’ viscoelastic fluid layer through porous medium under linear stability the-
ory. It is found that medium permeability and viscoelastic parameter have destabi-
lizing effect while density distribution and Prandtl number have stabilizing effect on
the fluid layer. The sufficient conditions depending upon the monotonic behaviour of
f (z)

[ d f
dz 〉 0 or < 0

]
for the non-existence of overstability are also derived. It is shown

that the sufficient conditions for the validity of principle of exchange of stabilities for
the present problem are d f

dz < 0 and F < P1
ε .Further, it has been found that the complex

growth rate of an arbitrary oscillatory modes lies inside a circle in the σr −σi plane,

whose centre is at the origin and radius is a
p1

√
|R2 |P1

E .
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1 Introduction

The derivation of the basic equations of a layer of fluid heated from below in porous
medium, using Boussinesq approximation, has been given by Joseph [4]. The study of
a layer of fluid heated from below in porous media is motivated both theoretically and by
its practical applications in engineering disciplines. Among the applications in engineering
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disciplines one can find the food process industry, chemical process industry, solidification
and centrifugal casting of metals. The development of geothermal power resources has
increased general interest in the properties of convection in porous medium. The thermal
convection in a layer of Newtonian fluid heated from below has been discussed in detail by
Chandrasekhar [2]. Lapwood [7] has studied the stability of convective flow in a porous
medium using Rayleigh’s procedure. Tadie [14] has considered the oscillation criteria for
bounded solutions for some nonlinear diffusion equations via Picone-type formulae. The
Rayleigh instability of a thermal boundary layer in flow through a porous medium has been
considered by Wooding [1]. When the fluid slowly percolates through the pores of the rock,
the gross effect is represented by the well-known Darcy’s law. As a result, the usual viscous
term in the equations of motion of Walters B’ viscoelastic fluid is replaced by the resistance
term

[
− 1

k1

(
µ−µ′ ∂∂t

)
~q
]
, where µ and µ′ are the viscosity and viscoelasticity of the fluid, k1

is the medium permeability and ~q is the Darcian (filter) velocity of the fluid. Generally, it is
accepted that comets consist of a dusty ‘snowball’ of a mixture of frozen gases which, in the
process of their journey, changes from solid to gas and vice-versa. The physical properties
of comets, meteorites and interplanetary dust strongly suggest the importance of porosity
in astrophysical context [McDonnel, 8].

In all the above studies, the fluid has been considered to be Newtonian. Since vis-
coelastic fluids play an important role in polymers and electrochemical industry, the studies
of waves and stability in different viscoelastic fluid dynamical configuration has been car-
ried out by several researchers in the past. The stability of a horizontal layer of Maxwell’s
viscoelastic fluid heated from below has been investigated by Vest and Arpaci [15]. The
nature of instability and some factors may have different effects, on viscoelastic fluids as
compared to the Newtonian fluids. For example, Bhatia and Steiner [1] have considered the
effect of a uniform rotation on the thermal instability of a Maxwell fluid and have found that
rotation has a destabilizing effect in contrast to the stabilizing effect on Newtonian fluid. In
another study, Sharma and Sharma [11] have considered the thermal instability of a rotat-
ing Maxwell fluid through porous medium and found that, for stationary convection, the
rotation has stabilizing effect whereas the permeability of the medium has both stabilizing
as well as destabilizing effect, depending on the magnitude of rotation. In another study,
Sharma [10] has studied the stability of a layer of an electrically conducting Oldroyd fluid
[9] in the presence of a magnetic field and has found that the magnetic field has a stabilizing
influence.

There are many elastico-viscous fluids that cannot be characterized by Maxwell’s or
Oldroyd’s constitutive relations. One such class of viscoelastic fluids is Walters B’ fluid
[16] having relevance and importance in geophysical fluid dynamics, chemical technology,
and petroleum industry. Walters’ [17] reported that the mixture of polymethyl methacry-
late and pyridine at 250C containing 30.5g of polymer per litre with density 0.98g per litre
behaves very nearly as the Walters B’ viscoelastic fluid. Polymers are used in the man-
ufacture of spacecrafts, aeroplanes, tyres, belt conveyers, ropes, cushions, seats, foams,
plastics engineering equipments, contact lens, etc. Walters B’ viscoelastic fluid forms the
basis for the manufacture of many such important and useful products. Chakraborty and
Sengupta [3] have studied the flow of unsteady viscoelastic (Walters B’ liquid) conducting
fluid through two porous concentric non-conducting infinite circular cylinders rotating with
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different angular velocities in the presence of uniform axial magnetic field. Sharma and
Kumar [12] studied the stability of the plane interface separating two viscoelastic (Walters
B’) superposed fluids of uniform densities. In another study, Sharma and Kumar [13] stud-
ied Rayleigh-Taylor instability of superposed conducting Walters B’ viscoelastic fluids in
hydromagnetics. Kumar [5] has considered the thermal instability of a layer of Walters B’
viscoelastic fluid acted on by a uniform rotation and found that for stationary convection,
rotation has a stabilizing effect. Kumar et al. [6] have considered the stability of plane in-
terface separating the Walters B’ viscoelastic superposed fluids of uniform densities in the
presence of suspended particles.

Keeping in mind the importance in various fields particularly in the soil sciences, ground-
water hydrology, geophysical, astrophysical and biometrics, the thermal convection of a vis-
coelastic (Walters B’) incompressible and heterogeneous fluid layer saturated with porous
medium, where density is ρ0 f (z) , ρ0 being a positive constant having the dimension of
density, and f (z) is a monotonic function of the vertical coordinate z, with f (0) = 1 has
been considered in the present paper.

2 Formulation of the Problem and Perturbation Equations

Let us consider an infinite horizontal layer of incompressible and heterogeneous Walters B’
viscoelastic fluid of thickness ‘d ’, in porous medium of porosity ε and medium permeability
k1, bounded by the planes z = 0 and z = d. Let z-axis be vertically upwards. The interstitial
fluid of variable density is viscous and incompressible. The initial inhomogenenity in the
fluid is assumed to be of the formρ0 f (z), where ρ0 is the density at the lower boundary
and f (z) be the function of vertical co-ordinate z such that f (0) = 1. The fluid layer is
infinite in horizontal direction and is heated from below leading to an adverse temperature
gradient β = (T0−T1)/d , where T0 and T1 are the constant temperatures of the lower and
upper boundaries. The effective density is the superposition of the inhomogeneity described
by (a) ρ = ρ0 f (z) , and (b) ρ = ρ0 [1+α (T0−T )] which is caused by temperature gradient.
This leads to the effective density

ρ = ρ0
[
f (z)+α (T0−T )

]
, (2.1)

where α is the coefficient of thermal expansion.
Let ~q (u, v, w) , p, µ, µ′ and κ be the filter velocity, pressure, coefficient of viscosity,

viscoelasticity and thermal diffusivity of the fluid, respectively.
Now, the relevant equations for our problem through porous medium are given by

ρ

ε

[
∂~q
∂t
+

1
ε

(
~q.∇

)
~q
]
= −∇p+ρ~g−

1
k1

(
µ−µ′

∂

∂t

)
~q, (2.2)

∇. ~q = 0 , (2.3)

ε
∂ρ

∂t
+

(
~q.∇

)
ρ = 0 , (2.4)
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E
∂T
∂t
+

(
~q.∇

)
T = κ∇2T , (2.5)

where E = ε+ (1−ε) ρS CS
ρ0C f

; ρ0, C f ; ρS , CS stands for the density and heat capacity of fluid
and solid matrix, respectively.

Now the initial state whose stability is to be examined is characterized by

~q = 0, T = T0−βz, ρ = ρ0
[
f (z)+αβ z

]
, p = p0−

∫ z

0
gρ dz ,

where p0 is the pressure at ρ = ρ0 .

Let δρ, δp, θ and ~q (u, v, w) denotes respectively the perturbations in density ρ, pressure
p, temperature T and velocity ~q (initially zero). Then the linearized perturbations equations
describing the system are written as

1
ε

∂~q
∂t
= −

1
ρ0
∇δp+~g

δρ

ρ0
−

1
k1

(
ν− ν′

∂

∂t

)
~q , (2.6)

∇. ~q = 0 , (2.7)

ε
∂δρ

∂t
+ρ0w

d f
dz
= 0 , (2.8)

E
∂θ

∂t
= βw+ κ∇2θ . (2.9)

3 Analysis in Terms of Normal Modes

The analysis of an arbitrary disturbance is carried out in terms of normal modes following
Chandrasekhar [2]. The stability of each of the modes is discussed separately. Assuming
that the perturbed quantities are of the form

[w, θ] = [W (z) , Θ (z)] exp
(
ikxx+ ikyy+nt

)
, (3.1)

where kx and ky are the wave numbers along the x- and y- directions.

k =
(
k2

x + k2
y

)1/2 is the resultant wave number and n is the growth rate of disturbances.
Using expression (3.1), equations (2.6)-(2.9), on simplification, give

n
[
1
ε

n+
1
k1

(
ν− ν′n

)] ( d2

dz2 − k2
)
W = −gk2

(
1
ε

d f
dz

)
W −gk2αΘ , (3.2)

E
∂Θ

∂t
= βW + κ

(
d2

dz2 − k2
)
Θ. (3.3)

Equations (3.2) and (3.3) in non-dimensional form can be written as

σp1

[
σ

ε
+

(1−Fσ)
P1

] (
D2−a2

)
W = −σp1

gαa2d2Θ

ν
−

gαa2d4

κν

(
d f
dz

)
W , (3.4)
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(
D2−a2−Eσ p1

)
Θ = −

(
βd2

κ

)
W, (3.5)

here we have put x = x ∗ d, y = y ∗ d, z = z ∗ d, D = d/dz∗ and thereafter dropping stars for
simplicity. Also we have put

a= kd, σ= nd2

ν , p1 =
ν
κ (Prandtl number), P1 =

k1
d2 (dimensionless medium permeability)

and F = ν
′

d2 .

Eliminating Θbetween equations (3.4) and (3.5), we obtain

σp1

[
σ

ε
+

(1−Fσ)
P1

] (
D2−a2

) (
D2−a2−Eσp1

)
W

= σp1Ra2W −a2R2
(
D2−a2−Eσp1

)
W , (3.6)

where R = gαβd4

νκ is the Rayleigh number and R2 =
gd4

κνε

(
d f
dz

)
.

Consider the case where both the boundaries are free and the medium adjoining the fluid
is non-conducting. The appropriate boundary conditions for this case are (Chandrasekhar
[2])

W = D2W = 0, Θ = 0 at z = 0, 1. (3.7)

Using the boundary conditions (3.7), one can show that all even-order derivatives of W must
vanish for z = 0 and z = 1 and hence the proper solution of (3.6) characterizing the lowest
mode is

W =W0 sin π z, (3.8)

where W0 is constant.
Substituting (3.8) in equation (3.6) and letting a2 = π2x, R = R1π

4, R2 = R3π
4, P = P1π

2

and σ = iσ1π
2, we obtain the dispersion relation

R1 =
1
x

[
iσ1

ε
+

1− iσ1Fπ2

P

]
(1+ x) (1+ x+ iσ1 p1E)

+
iR3

σ1 p1
(1+ x+ iσ1 p1E) . (3.9)

It is clear from equation (3.9) that for an arbitrary value of σ1, R1 is complex. But from
the physical consideration R1 is a real. Therefore, the condition that R1 will be real imply
a relation between real and imaginary parts of σ1. But as we are interested in specifying
the critical Rayleigh number for the onset of instability via a state of pure oscillation, we
shall suppose that σ1 is real in the above equations and try to obtain the conditions for such
solution to exist.

Assuming σ1 is real in the equation (3.9) and separating the real and imaginary parts,
both of which must vanish separately, which led to the following equations
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R1 =

(
1+ x

x

)1+ x
P
−
σ2

1Ep1

ε
+
σ2

1Ep1Fπ2

P

−R3E, (3.10)

and

(1+ x)2

xε
−

(1+ x)2 Fπ2

xP
+

(
1+ x

x

)
Ep1

P
+

R3 (1+ x)
σ2

1 p1
= 0. (3.11)

Equations (3.10) and (3.11) must satisfy simultaneously if the overstability is to be oc-
curring. For the numerical calculations, we set the fixed value for p1, E, P, F, ε and R3
in equation (3.11) and consequently σ2

1 is found for different value of x. σ1 is assumed
to be real, negative and complex value of σ2

1 are rejected. Then R1 is calculated from
equation (3.10) keeping the same value of p1, E, P, F, ε and R3 for different values of σ2

1
obtained from equation (3.10). Repeating the same calculations for the different values of
the R3 (density distribution), P (medium permeability), F (viscoelasticity parameter) and
p1 (Prandtl number), we arrive at the conclusion that the value of R1 decreases with in-
crease in the value of P and F. This implies that the medium permeability and viscoelastic
parameter has a destabilizing effect on fluid layer. Also it is found that value of R1 increases
with increase in the value of density distribution R3 and p1(Prandtl number), showing the
stabilizing effect of density distribution and Prandtl number on the fluid layer as shown in
the table.

Variation of
Rayleigh Num-
ber R1 with
respect to R3
(density distri-
bution) for the
onset of stability
for fixed value of

p1 = 0.1,E = 1,
P = 0.5, ε = 0.5,
x = 0.5,F = 0.2

Variation of
Rayleigh Num-
ber R1 with
respect to P
(medium perme-
ability) for the
onset of stability
for fixed value of

p1 = 0.1,E = 1,
R3 = 10, ε = 0.5,
x = 0.5,F = 0.2

Variation of
Rayleigh Num-
ber R1 with
respect to p1
(Prandtl num-
ber)for the onset
of stability for
fixed value of
E = 1,P = 0.5,
R3 = 10, ε = 0.5,
x = 0.5,F = 0.2

Variation of
Rayleigh Num-
ber R1 with
respect to F
(viscoelastic pa-
rameter) for the
onset of stability
for fixed value of

p1 = 0.1,E = 1,
P = 0.5, ε = 0.5,
x = 0.5,R3 = 10

R3 R1 P R1 p1 R1 F R1

5 9.37
0.1 9.74
.1 9.96
20 10.42
25 10.79

0.1 45.38
0.2 22.97
0.3 15.47
0.4 11.87
0.5 9.74

0.1 9.74
0.2 10.58
0.3 11.57
0.4 12.74
0.5 14.18

0.2 9.96
0.2 9.69
0.3 9.51
0.4 9.42
0.5 9.36

4 Non-existence of Overstability

From equation (3.11), we have
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σ2
1 = −

R3

p1
[

(1+x)
xε −

(1+x)π2F
xP +

Ep1
xP

] . (4.1)

Case I: If R3 > 0 i.e. d f
dz > 0 and 1

ε >
π2F

P i.e. F < P
επ2 , then σ2

1 is negative in equation (4.1)
which contradicts the given hypothesis that σ1 is real and thus overstability cannot exist.
Thus d f

dz > 0 and F < P
επ2 are the sufficient conditions for the non-existence of overstability.

Case II: If R3 < 0 i.e. d f
dz < 0 and F >

[
P
ε +

EP1
1+x

]
then σ2

1 is negative in equation (4.1)
which contradicts the given hypothesis that σ1 is real and thus overstability cannot exist.
Thus d f

dz < 0 and F >
[

P
ε +

EP1
1+x

]
are the sufficient conditions for the non-existence of over-

stability in this case.

5 Princple of Exchange of Stabilities

Theorem: The principle of exchange of stabilities is not valid for the problem.
Proof: If possible, let the principle of exchange of stabilities be valid. Then for σ = 0,

equation (3.6) reduces to (
D2−a2

)
W = 0. (5.1)

Now multiplying the equation (5.1) with W∗ (complex conjugate of W) and integrating over
the range of z and making use of boundary conditions (3.7), we obtain

W = 0,

which is the only solution.
Again for σ = 0, equation (3.5) yield

(
D2−a2

)
Θ = −

(
βd2

κ

)
W. (5.2)

Substituting W = 0 and using boundary conditions (3.7), we get

Θ = 0,

which is the only solution.
Hence W =Θ= 0, which contradicts the given hypothesis that the initial stationary state

solution are perturbed.
Therefore, the principle of exchange of stabilities is not valid for the problem.

6 Sufficient Conditions for Stability

Now multiplying the equation (3.4) with W∗ (complex conjugate of W) and integrating over
the range of z and making use of boundary conditions (3.7), we obtain
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σp1

[
σ

ε
+

(1−Fσ)
P1

]∫ 1

0

(
D2−a2

)
WW ∗ dz = −

σp1gαa2d2

ν

∫ 1

0
ΘW ∗ dz

−a2R2

∫ 1

0
WW ∗ dz. (6.1)

With the help of equation (3.5), equation (6.1) written as

p1

[
σ

ε
+

(1−Fσ)
P1

]∫ 1

0

(
|DW |2+a2 |W |2

)
dz+

p1ga2κα

βν

∫ 1

0

(
|DΘ|2+ |Θ|2

)
dz

+
σ∗Ep2

1ga2ακ

βν

∫ 1

0

(
|Θ|2

)
dz−

a2R2σ∗

|σ|2

∫ 1

0
|W |2 dz = 0. (6.2)

Letting σ = σr + iσi in equation (6.2) and equating the real part, we have

σr

[
p1

{
1
ε
−

F
P1

}∫ 1

0

(
|DW |2+a2 |W |2

)
dz

+
Ep2

1ga2κα

βν

∫ 1

0
|Θ|2 dz−

a2

|σ|2
R2

∫ 1

0
|W |2 dz

 =
−

[
p1

P1

∫ 1

0

(
|DW |2+a2 |W |2

)
dz+

p1ga2κα

βν

∫ 1

0

(
|DΘ|2+a2 |Θ|2

)
dz

]
. (6.3)

Equation (6.3) imply that σr < 0 i f d f
dz < 0 and 1

ε >
F
P1

i.e. F < P1
ε .

Thus, d f
dz < 0 and F < P1

ε are the sufficient conditions for the stability of the system.

7 Necessary Condition for the Validity of Principle of Exchange
of Stabilities

Put σ = iσi in the equation (6.2), where σi is real, and on equating imaginary part, we get

σi

p1

(
1
ε
−

F
P1

)∫ 1

0

(
|DW |2+a2 |W |2

)
dz−

Ep2
1ga2ακ

νβ

∫ 1

0
|Θ|2 dz

+
a2R2

|σi|
2

∫ 1

0
|W |dz

]
= 0 . (7.1)

Equation (7.1) show that σ = 0 or σ , 0, which mean that modes may be non-oscillatory or
oscillatory. Equation (7.1) must be satisfied at the marginal state. Since σr = 0, now for the
principle of exchange of stabilities is to be valid at the marginal state, we must have σi = 0,
which implies that terms inside the bracket must be positive.

Now for σ = 0, equation (3.5) reduces to
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(
D2−a2

)
Θ = −

(
βd2

κ

)
W. (7.2)

Multiplying both sides by Θ∗ (complex conjugate of Θ) of the equation (7.2), integrating
by parts for sufficient number of times over the range of z and making use of boundary
conditions (3.7) and separating the real parts of the equation so obtained, we have∫ 1

0

(
|DΘ|2+a2 |Θ|2

)
dz = Re

(
βd2

κ

)∫ 1

0
WΘ∗dz. (7.3)

Now Re
∫ 1

0 WΘ∗dz ≤
∣∣∣∣∫ 1

0 Θ∗Wdz
∣∣∣∣ ,

≤

∫ 1

0
|Θ∗W |dz ,

≤

∫ 1

0
|Θ| |W |dz ,

≤

√∫ 1

0
|Θ|2 dz

√∫ 1

0
|W |2 dz . (7.4)

(Schwartz inequality)

Combining inequalities (7.3) and (7.4), we get

∫ 1

0

(
|DΘ|2+a2 |Θ|2

)
dz ≤

(
βd2

κ

) √∫ 1

0
|Θ|2 dz

√∫ 1

0
|W |2 dz, (7.5)

which in turn implies that

∫ 1

0

(
|DΘ|2

)
dz ≤

(
βd2

κ

) √∫ 1

0
|Θ|2 dz

√∫ 1

0
|W |2 dz. (7.6)

Whence we derive from inequality (7.6) and using Rayleigh-Ritz inequality∫ 1
0

(
|DΘ|2

)
dz ≥ π2

∫ 1
0 |Θ|

2 dz, we get

π2

√∫ 1

0
|Θ|2 dz ≤

βd2

κ

√∫ 1

0
|W |2 dz ,

which implies that ∫ 1

0
|Θ|2 dz ≤

(
βd2

κπ2

)2 ∫ 1

0
|W |2 dz . (7.7)

Using inequality (7.7) in equation (7.1), we have

σi

{
p1

(
1
ε
−

F
P1

)∫ 1

0

(
|DW |2+a2 |W |2

)
dz
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−
Ep2

1ga2ακ

νβ

∫ 1

0
|Θ|2 dz+

a2R2

|σi|
2

∫ 1

0
|W |2 dz

 >
σi

{
p1

(
1
ε
−

F
P1

)∫ 1

0
|DW |2 dz+ p1a2

[(
1
ε
−

F
P1

)
−

Ep1R
π4

]∫ 1

0
|W |2 dz

+
a2R2

|σi|
2

∫ 1

0
|W |2 dz

}
(7.8)

But if 1
ε >

F
P1

and
(

1
ε −

F
P1

)
>

Ep1R
π4 i.e 1

ε >
F
P1
+

Ep1R
π4 . , then the terms inside the bracket in

R.H.S. of inequality (7.8) is positive which in turn implies that L.H.S. of the inequality must
be positive. Thus, if 1

ε >
F
P1

i.e. F < P1
ε , then σi = 0.

Thus the sufficient condition for the validity of principle of exchange of stabilities for
the problem is F < P1

ε .

8 Circular Exclusion Theorem for Oscillatory Modes

Now multiplying the equation (3.4) with W∗ (complex conjugate of W) and integrating over
the range of zand making use of equation (3.5) and boundary conditions (3.7), we obtain

σp1

[
σ

ε
+

1
P1

(1−Fσ)
]∫ 1

0

(
D2−a2

) (
D2−a2−σEp1

)
WW ∗dz

= σp1a2R
∫ 1

0
WW ∗dz−a2R2

∫ 1

0

(
D2−a2−σEp1

)
WW ∗dz . (8.1)

Multiplying equation (8.1) by σ∗ (complex conjugate of σ) and dividing by |σ|2 (σ , 0),
we get

p1

[
σ

ε
+

1
P1

(1−Fσ)
]∫ 1

0

(∣∣∣D2W
∣∣∣2+2a2 |DW |2+a4 |W |2

)
dz

+σEp2
1

[
σ

ε
+

1
P1

(1−Fσ)
]∫ 1

0

(
|DW |2+a2 |W |2

)
dz

= p1a2R
∫ 1

0
|W |2 dz+

σ∗a2R2

|σ|2

∫ 1

0

(
|DW |2+a2 |W |2

)
dz

+a2R2Ep1

∫ 1

0
|W |2 dz. (8.2)

Putting σ = iσ in equation (8.2) and equating the imaginary parts, we get

p1

[
1
ε
−

F
P1

]∫ 1

0

(∣∣∣D2W
∣∣∣2+2a2 |DW |2+a4 |W |2

)
dz

+
Ep2

1

P1

∫ 1

0

(
|DW |2+a2 |W |2

)
dz+

a2R2

|σ|2

∫ 1

0

(
|DW |2+a2 |W |2

)
dz = 0. (8.3)

Equation (8.3) can be written as
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p1

[
1
ε
−

F
P1

]∫ 1

0

(∣∣∣D2W
∣∣∣2+2a2 |DW |2+a4 |W |2

)
dz

+

Ep2
1

P1
+

a2R2

|σ|2

∫ 1

0

(
|DW |2+a2 |W |2

)
dz = 0. (8.4)

If R2 < 0 i.e. d f
dz < 0 (Take R2 = −|R2|) and 1

ε >
F
P1

i.e. F < P1
ε , then from equation (8.4), we

must have

Ep2
1

P1
<

a2 |R2|

|σ|2
,

or

|σ|2 <
a2 |R2|P1

Ep2
1

. (8.5)

Hence the complex growth rate of an arbitrary mode, must lie inside the circle whose
radius depend upon the wave length of the modes, medium permeability and density distri-
bution (but it does not depend upon the Rayleigh number of configuration).
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