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Abstract

In this paper we define a vertical Liouville distribution in the vertical foliated distribu-
tion on a complex Finsler bundle and we prove that it is an integrable one. Next, some
new operators on foliated forms along the vertical Liouville distribution are defined, a
Dolbeault type lemma is proved and new cohomology groups are studied.
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1 Introduction

The idea of decomposing the exterior derivative for real smooth or complex analytic foliated
manifolds and the study of their cohomology is due to I. Vaisman, see [14, 15]. There are
proved some Poincaré type Lemmas with respect to some differential operators correspond-
ing to the foliated type (0,1) or to the mixed type (0,1) for the analytic case, respectively.
Different from [14, 15], recently, A. El Kacimi Alaoui in [6, 7], study a Dolbeault coho-
mology along the leaves of complex foliations and states a foliated Grothendieck-Dolbeault
Lemma, see [6] p. 889.

Recently, in [11] is studied a new cohomology with respect to a Liouville foliation on
the tangent bundle of a real Finsler manifold and a de Rham type theorem is obtained. The
main goal of the present paper is to obtain a complex analogue of these results as a Dolbeault
cohomology along the vertical Liouville distribution on complex Finsler bundles. Firstly,
we considerV the vertical foliation of a holomorphic vector bundle and following [6, 7], we
make a short review about Cauchy-Riemann operators and Dolbeault cohomology groups
along the leaves of the foliation V. Next, by analogy with the real case [3, 4], we define a
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vertical complex Liouville distribution on the total space of a complex Finsler bundle (E,L)
and we get an adapted basis on the holomorphic vertical distribution with respect to the
orthogonal splitting T 1,0V =L1,0V⊕{ξ}, where {ξ} is the complex line bundle spanned by
the vertical complex Liouville vector field ξ over (E,L) and L1,0V is the vertical Liouville
distribution on (E,L). We also prove that the distribution L1,0V is an integrable one. In
the last two sections, by analogy with [11], we consider new type of foliated forms of
type (0;q,0) and (0;q−1,1), respectively, with respect to conjugated Liouville distribution
L0,1V and we obtain a decomposition of the conjugated foliated differential operator ∂V =
∂

1,0
V +∂

0,1
V for foliated forms of type (0;q,0). Finally, by applying some results from [6, 7]

concerning to the operator ∂V we prove a Grothendieck-Dolbeault type Lemma with respect
to the operator ∂

1,0
V and new cohomology groups are obtained and studied.

2 Preliminaries

Let π : E → M be a holomorphic vector bundle of rank m over an n-dimensional complex
manifold M. ConsiderU = {Uα} an open covering set of M, (zk), k = 1, . . . ,n, local complex
coordinates in chart (U,ϕ) and sU = {sa}, a = 1, . . . ,m, a local frame for the sections of E
over U. The covering {U, sU}, U ∈ U induces the complex coordinates system u = (zk,ηa)
on π−1(U), where s = ηasa is a section on Ez = π

−1(z). In z ∈U∩U
′

, the transition functions
gUU′ : U∩U

′

→GL(m,C) has a local representation by the complex matrix Ma
b(z) and then

if (z
′k,η

′a) are the complex coordinates in π−1(U
′

) the transition laws of these coordinates
are

z
′k = z

′k(z) , η
′a = Ma

b(z)ηb, (2.1)

where z
′k, Ma

b are holomorphic functions on z j variables and det Ma
b , 0.

As we already know, the total space of E has a natural structure of n+m-dimensional
complex manifold because the transition functions Ma

b(z) are holomorphic. Let J be the nat-

ural complex structure of the manifold E and T 1,0E and T 0,1E = T 1,0E be its holomorphic
and antiholomorphic subbundles, respectively. Let TCE = T 1,0E ⊕T 0,1E be the complex-
ified tangent bundle of the real tangent bundle TRE. From (2.1) it results the following
changes for the natural local frames on T 1,0

u E:

∂

∂z j =
∂z
′k

∂z j

∂

∂z′k
+
∂Ma

b

∂z j η
b ∂

∂η
′a ,

∂

∂ηb = Ma
b
∂

∂η
′a . (2.2)

By conjugation over all in (2.2) we obtain the change rules of the local frame on T 0,1
u E, and

then the behaviour of the J complex structure is

J(
∂

∂zk ) = i
∂

∂zk , J(
∂

∂ηa ) = i
∂

∂ηa , J(
∂

∂zk ) = −i
∂

∂zk , J(
∂

∂ηa ) = −i
∂

∂ηa . (2.3)

Let V be the vertical foliation on E0 = E − {zerosection}, i.e. the simply foliation de-
fined by C∞ submersion π : E0→ M, and characterized by zk = const. on the leaves.

The relations (2.2) show that T 1,0V= span{ ∂∂ηa } ⊂ T 1,0E is a foliated holomorphic vector
subbundle, called the vertical distribution, which is an integrable one. In particular, JV :
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TCV→ TCV, defined by

JV(
∂

∂ηa ) = i
∂

∂ηa , JV(
∂

∂ηa ) = −i
∂

∂ηa (2.4)

is called the complex structure along the leaves, where TCV = T 1,0V⊕ T 0,1V. We also
notice that the Nijenhuis tensor along the leaves associated to JV vanish, namely

NV(X,Y) = 2{[JVX, JVY]− [X,Y]− JV[JVX,Y]− JV[X, JVY]} = 0

for every X,Y ∈ Γ(TCV).
Let Ωp,q(V) be the space of all foliated differential forms of type (p,q) that is, differen-

tial forms on E which can be written in local coordinates u= (zk,ηa), adapted to the foliation
by

ϕ =
∑

ϕApBq
(z,η)dηAp ∧dηBq , (2.5)

where Ap = (a1 . . .ap), Bq = (b1 . . .bq), and the sum is after the indices a1 < . . . < ap and
b1 < . . . < bq, respectively. We also notice that the coeficient functions ϕa1...apb1...bq

are
C∞-functions on (z,η) and are skew symmetric in the indices (a1, . . . ,ap) and (b1, . . . ,bq),
respectively.

Then, the set of all foliated r-differential forms on E admits the decompositionΩr(V)=
⊕r

p+qΩ
p,q(V), r = 0,1, . . . ,2m and the exterior derivative along the leaves dV, admits the

decomposition
dV = ∂V +∂V, (2.6)

where the terms denote (1,0) and (0,1) foliated type, respectively. The Cauchy-Riemann
operators along the leaves, are locally defined by

∂Vϕ =

m∑
a=1

∂ϕApBq

∂ηa dηa∧dηAp ∧dηBq , ∂Vϕ =

m∑
a=1

∂ϕApBq

∂ηa dηa
∧dηAp ∧dηBq . (2.7)

These operators have the properties ∂2
V
= ∂

2
V = 0 and ∂V∂V +∂V∂V = 0, respectively. The

differential complex

0 −→Ω0(V)
dV
−→Ω1(V)

dV
−→ . . .

dV
−→Ω2m(V) −→ 0

is called the dV-complex of (E,V); its homology Hp
V

(E) is called the foliated de Rham
cohomology of the holomorphic foliation (E,V). The differential complex

0 −→Ωp,0(V)
∂V
−→Ωp,1(V)

∂V
−→ . . .

∂V
−→Ωp,m(V) −→ 0

is called the ∂V-complex of (E,V); its homology Hp,q
V

(E) is called the foliated Dolbeault
cohomology of the holomorphic foliation (E,V).

Locally, the operator ∂V satisfies a Grothendieck-Dolbeault Lemma, namely

Theorem 2.1. ([6]). Let ϕ be a ∂V -closed foliated differential form of type (p,q) defined
on an open U ⊂ E. Then, there exists a foliated differential form ψ of type (p,q−1) defined
on U

′

⊂ U and such that ϕ = ∂Vψ.
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One can describe the cohomology Hp,•
V

(E) by using a sheaf which is analogous to the
sheaf of germs of holomorphic p-forms on a complex manifold.

Definition 2.2. A p-form ϕ is said to beV-holomorphic, if it is foliated, of type (p,0) and
satisfies ∂Vϕ = 0.

Locally, aV-holomorphic p-form can be written: ϕ = ϕAp(z,η)dηAp with ϕAp(z,η) holo-
morphic on η.

Let Φp
V

be the sheaf of germs of V-holomorphic p-forms on E and F p,q(V) the sheaf
of germs of foliated forms of type (p,q); F p,q(V) is a fine sheaf. Theorem 2.1 implies the:

Proposition 2.3. The sequence of sheaves:

0 −→ Φp
V

i
−→ F p,0(V)

∂V
−→ . . .

∂V
−→ F p,m(V) −→ 0

is a fine resolution of Φp
V

. So we have Hq(E,Φp
V

) ≈ Hp,q
V

(E), for p,q = 0,1, . . . ,m.

We notice that H•(E,Φp
V

) is not finite dimensional because E is not compact.

3 Vertical Liouville distribution on a complex Finsler bundle

Let π∗E→ E0 be the pullback of E by π. Given a global section s : M→ E its natural lift is
the section

s̃ : E0→ π∗E , s̃(u) = (u, s(π(u))), u = (z,η) ∈ E0. (3.1)

Given a local frame {s1, . . . , sm} of E on the open set U ⊆M, then {s̃1, . . . , s̃m} is a local frame
of π∗E on π−1(U) ⊆ E0.

Let L = F2 : E→R+∪{0} be a complex Finsler structure on E (for necessary definitions
see for instance [1, 2, 8, 13]), and we set

Ha =
∂L
∂ηa , Hb =

∂L

∂ηb , Hab =
∂2L

∂ηa∂ηb , Hab =
∂2L

∂ηa∂ηb etc.

Let us put H(Z,W) = Hab(u)ZaW
b
, where Z = Za s̃a(u), W =Wb s̃b(u) ∈ Γu(π∗E), u ∈ π−1(U).

Then H is globally defined. We say that L is convex if H is positive definite. If L is convex,
H is a Hermitian metric in π∗E → E0. Also, by the homogeneity condition of a complex
Finsler structure, namely L(z,λη) = |λ|2L(z,η) for any λ ∈ C− {0}, we have, see [8], the
following properties:

Habη
a = 0 , Habη

a = 0 , Haη
a = L , Hbη

b = L, (3.2)

Habcη
a = 0 , Habcη

b = 0 , Habcη
b = Hac, (3.3)

Habη
a = Hb , Habη

b = Ha , Habη
aηb = L. (3.4)

The (globally defined) bundle isomorphism [5],

γ : π∗E→ T 1,0V , γ(s̃a) =
∂

∂ηa ,a = 1, . . . ,m, (3.5)
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induces a Hermitian metric structure on T 1,0V, denoted again by H, and defined by

H(Z,W) = HabZaW
b
, for any Z = Za ∂

∂ηa , W =Wb ∂

∂ηb ∈ Γ(T
1,0V). (3.6)

An important global vertical vector field is defined by ξ = ηa ∂
∂ηa and it is called the vertical

complex Liouville vector field (or vertical radial complex vector field). We notice that the
third equation of (3.4) says that

L = H(ξ,ξ) > 0, (3.7)

so ξ is an embedding of E into T 1,0V.
Let {ξ} be the complex line bundle over E spanned by ξ and we define the vertical

Liouville distribution on (E,L) as the complementary orthogonal distribution, denoted by
L1,0V, to {ξ} in T 1,0V with respect to H, namely T 1,0V = L1,0V⊕{ξ}. Hence, L1,0V is
defined by

Γ(L1,0V) = {Z ∈ Γ(T 1,0V) ; H(Z, ξ) = 0}. (3.8)

Consequently, let us consider the vertical vector fields

Za =
∂

∂ηa − taξ , a = 1, . . . ,m, (3.9)

where the functions ta(z,η) are defined by the conditions

H(Za, ξ) = 0 , a = 1, . . . ,m. (3.10)

Thus, the above conditions become H( ∂
∂ηa , ξ)− taH(ξ,ξ)= 0 for every a= 1, . . . ,m, so, taking

into account (3.4) and (3.7), we obtain the local expression of the functions ta in a local chart
(U, (zk,ηa)) as

ta =
Ha

L
, a = 1, . . . ,m. (3.11)

If (U
′

, (z
′i,η

′b)) is another local chart on E, then on U ∩U
′

, φ, we have

t
′

b =
H
′

bd
η
′d

L
=

1
L

Md
aη

aMc
bMa

d
Hca = Mc

btc,

so we obtain the following changing rule for the vector fields from (3.9)

Z
′

b = Ma
bZa , b = 1, . . . ,m. (3.12)

By conjugation we obtain the decomposition

TCV =L1,0V⊕{ξ}⊕L0,1V⊕{ξ}.

Proposition 3.1. The functions {ta}, a = 1, . . . ,m, satisfies

taηa = taη
a = 1 , Zaη

a = Zaη
a = 0, (3.13)

∂ta
∂ηb =

Hab

L
− tatb ,

∂ta
∂ηb
=

Hab

L
− tatb, (3.14)

ξta = −ta , ξta = 0 , ηa ∂ta
∂ηb = −tb ; ηa(ξta) = −1. (3.15)
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Proof. We have that taηa =
Ha
L η

a = 1 and similarly taη
a =

Ha
L η

a = 1, where we used (3.11)
and the last two equalities from (3.2). Now, Zaη

a = ( ∂
∂ηa − taξ)ηa = 1− taηa = 0 and similarly

for conjugated. Thus, the relations (3.13) are proved. Similarly, by direct calculations using
(3.2), (3.4) and (3.11), one gets (3.14) and (3.15). �

Theorem 3.2. The vertical Liouville distribution L1,0V is integrable.

Proof. The proof of this theorem is based on the ideas of Theorem 3.1. from [3]. Let
Z,W ∈ Γ(L1,0V). As T 1,0V is an integrable distribution on E, it is sufficient to show that
[Z,W] has no component with respect to ξ.

By using (3.8), we obtain that Z ∈ Γ(L1,0V) if and only if

HabZaηb = 0, (3.16)

where Za(z,η) are the components of Z. Differentiate (3.16) with respect to ηc we get

HabcZaηb+Hab
∂Za

∂ηc η
b = 0, for any c = 1, . . . ,m (3.17)

and taking into account the last equation of (3.3) we have

HacZa+Hab
∂Za

∂ηc η
b = 0, for any c = 1, . . . ,m. (3.18)

Thus,

H([Z,W], ξ) = Habη
b(
∂Wa

∂ηc Zc−
∂Za

∂ηc Wc)

= −(HacWaZc−HacZaWc)

= 0

which finish the proof. �

We also notice that the above theorem it follows from the straightforward calculus of
Lie brackets, namely

[Za,Zb] = taZb− tbZa , [Za, ξ] = Za (3.19)

[Za,Zb] = 0 , [Za, ξ] = 0 (3.20)

and its conjugates.
By the conditions (3.10), {Z1, . . . ,Zm} are m vectors fields orthogonal to ξ, so they belong

to the (m−1)-dimensional distribution L1,0V. It results that they are linear dependent and,
from (3.13) we obtain

Zm = −
1
ηm

m−1∑
a=1

ηaZa, (3.21)

since the local coordinate ηm is nonzero everywhere.
We have

Proposition 3.3. The system of vertical vector fields {Z1, . . . ,Zm−1, ξ} is a local basis of
Γ(T 1,0V), called adapted.
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Proof. The proof is similar with the analogue result from real case, see [10], and it consist
to check that the rank of the matrix of change from the natural basis { ∂∂ηa }, a = 1, . . . ,m of
Γ(T 1,0V) to {Z1, . . . ,Zm−1, ξ} is equal to m. �

In the end of this section we notice the following concludent remark: Let (U
′

, (z
′i,η

′b))
and (U, (zk,ηa)) be two local charts which domains overlap, where η

′b and ηm are nonzero
functions (in every local chart on E there is at least one nonzero coordinate function ηa). The
adapted basis in U

′

is {Z
′

1, . . . ,Z
′

b−1,Z
′

b+1, . . . ,Z
′

m, ξ}. Now, similarly to [11], the determinant
of the change matrix {Z1, . . . ,Zm−1, ξ} → {Z

′

1, . . . ,Z
′

b−1,Z
′

b+1, . . . ,Z
′

m, ξ} on T 1,0V is equal to

(−1)m+b( η
′b

ηm )det Ma
c , 0.

4 New operators on foliated forms with respect to vertical Liou-
ville distribution

Proposition 4.1. The foliated (0,1)-form ω0 = tadηa is globally defined and satisfies

ω0(ξ) = 1 , ω0(Zα) = 0 , ω0 = ∂V(ln L) (4.1)

for all α = 1, . . . ,m−1, where Zα are given by (3.9) and L is the complex Finsler structure.

Proof. In U ∩U
′

, φ we have ω
′

0 = t
′

b
dη
′b = Ma

b
taMb

c dηc = tadηa = ω0. We also have

dηa(ξ) = ηa, for all a = 1, . . . ,m, and taking into account the first relation of (3.13) it re-
sults

ω0(ξ) = 1 , ω0(Zα) = tadηa(
∂

∂ηα
− tαξ) = taδa

α− tαtaη
a = 0,

where δa
α

denotes the Kronecker symbols. By conjugation in the relation (3.21) it results
also ω0(Zm) = 0. Now, we have

∂V(ln L) =
∂ ln L
∂ηa dηa =

Ha

L
dηa = tadηa = ω0,

which ends the proof. �

We notice that the equality ω0 = ∂V(ln L) shows that ω0 is an ∂V-exact foliated (0,1)-
form and the conjugated vertical Liouville distribution L0,1V is defined by the equation
ω0 = 0.

In the following, we will consider Ω0,q(V) ⊂Ωp,q(V) the subspace of all foliated forms
of type (0,q) on E.

Definition 4.2. A foliated (0,q)-form ϕ ∈ Ω0,q(V) is called a (0;q1,q2)-form iff for any
vertical vector fields Z1, . . . ,Zq ∈ Γ(T 0,1V), q = q1+q2, we have ϕ(Z1, . . . ,Zq) , 0 only if q1
arguments are in Γ(L0,1V) and q2 arguments are in Γ({ξ}).

Since {ξ} is a line distribution, we can talk only about (0;q1,q2)-forms with q2 ∈ {0,1}.
We will denote the space of (0;q1,q2)-forms by Ω0;q1,q2(V). By the above definition, we
have the equivalence

ϕ ∈Ω0;q−1,1(V)⇔ ϕ(Z1, . . . ,Zq) = 0 , ∀Z1, . . . ,Zq ∈ Γ(L0,1V). (4.2)
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Proposition 4.3. Let ϕ be a nonzero foliated (0,q)-form on E. The following assertions are
true

(i) ϕ ∈Ω0;q,0(V) iff iξϕ = 0, where iX denotes the interior product.

(ii) The foliated (0,q−1)-form iξϕ is a (0;q−1,0)-form.

(iii) ϕ ∈Ω0;q−1,1(V) implies iξϕ , 0.

(iv) If there is a (0;q−1,0)-form α such that ϕ = ω0∧α then ϕ ∈Ω0;q−1,1(V).

Proof. It follows in a similar manner with the proof of Proposition 2.2. from [11]. �

Proposition 4.4. For every foliated (0,q)-form ϕ there are two forms ϕ1 ∈ Ω
0;q,0(V) and

ϕ2 ∈Ω
0;q−1,1(V) such that ϕ = ϕ1+ϕ2, uniquely.

Proof. Let ϕ be a nonzero foliated (0,q)-form. If iξϕ = 0, then by Proposition 4.3, we have
ϕ ∈Ω0;q,0(V). So ϕ = ϕ+0.

If iξϕ , 0, then let ϕ2 be the foliated (0,q)-form given by ω0∧ iξϕ. By Proposition 4.3
(iv), it results ϕ2 is a (0;q−1,1)-form. Moreover, putting ϕ1 = ϕ−ϕ2, we have

iξϕ1 = iξϕ− iξ(ω0∧ iξϕ) = iξϕ−ω0(ξ)iξϕ = 0

since ω0(ξ) = 1. So, ϕ1 is a (0;q,0)-form and ϕ1 and ϕ2 are unique defined by ϕ. Obviously
ϕ = ϕ1+ϕ2. �

We have to remark that only the zero form can be simultaneous a (0;q,0)- and a (0;q−
1,1)-form, respectively. The above proposition leads to the following decomposition:

Ω0,q(V) = Ω0;q,0(V)⊕Ω0;q−1,1(V). (4.3)

A consequence of the Propositions 4.3 and 4.4 is

Proposition 4.5. Let ϕ be a foliated (0,q)-form. We have the equivalence

ϕ ∈Ω0;q−1,1(V)⇔ ∃α ∈Ω0;q−1,0(V) such that ϕ = ω0∧α. (4.4)

Moreover, the form α is uniquely determined.

Taking into account the characterization given in Proposition 4.3 (i) and the relation
(4.4), it follows

Proposition 4.6. The following assertions hold:

(i) If ϕ ∈Ω0;q,0(V) and ψ ∈Ω0;s,0(V), then ϕ∧ψ ∈Ω0;q+s,0(V).

(ii) If ϕ ∈Ω0;q,1(V) and ψ ∈Ω0;s,0(V), then ϕ∧ψ ∈Ω0;q+s,1(V).

(iii) If ϕ ∈Ω0;q,1(V) and ψ ∈Ω0;s,1(V), then ϕ∧ψ = 0.

Example 4.7. (i) ω0 ∈Ω
0;0,1(V) since there is the (0;0,0)-form, the constant 1 function

on E, such that ω0 = ω0 ·1.
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(ii) θa = dηa
−ηaω0 ∈Ω

0;1,0(V), for each a = 1, . . . ,m. Indeed

θa(ξ) = dηa(ξ)−ω0(ξ)ηa = 0,

so iξθ
a = 0. We have to remark that the foliated (0,1)-forms {θa}, a = 1, . . . ,m are

linear dependent, since
∑

taθa = 0.

(iii) iξ(θ
a∧θb)(Z) = θa(ξ)θb(Z)−θb(ξ)θa(Z) = 0, for any vertical vector field Z ∈ Γ(T 0,1V),

hence θa∧ θb ∈Ω0;2,0(V).

Proposition 4.8. ∂Vϕ is a (0;q,1)-form, for any (0;q−1,1)-form ϕ.

Proof. Let ϕ be a (0;q− 1,1)-form. By (4.4), there is an unique (0;q− 1,0)-form α such
that ϕ = ω0∧α. By Proposition 4.4 we also have that α = iξϕ. Taking into account that ω0

is an ∂V-exact form, it follows

∂Vϕ = ∂V(ω0∧α) = −ω0∧∂Vα = −ω0∧β1−ω0∧β2,

where β1 and β2 are the (0;q,0)- and (0;q− 1,1)-forms, respectively, components of the
(0,q)-form ∂Vα. By (4.4) we have β2 = ω0 ∧ γ with γ ∈ Ω0;q−1,0(V), so ∂Vϕ = −ω0 ∧ β1.
Then ∂Vϕ ∈Ω0;q,1(V). �

We can write
∂V(Ω0;q−1,1(V)) ⊂Ω0;q,1(V). (4.5)

Now, we can consider p1 and p2 the projections of the moduleΩ0,q(V) on its direct sumands
from the relation (4.3), namely

p1 :Ω0,q(V)→Ω0;q,0(V) , p1ϕ = ϕ−ω0∧ iξϕ (4.6)

p2 :Ω0,q(V)→Ω0;q−1,1(V) , p2ϕ = ω0∧ iξϕ (4.7)

for any ϕ ∈Ω0,q(V).
For an arbitrary foliated (0,q)-form ϕ, we have ∂Vϕ = ∂V(p1ϕ)+∂V(p2ϕ). The relation

(4.3) shows that ∂V(p2ϕ) is a (0;q,1)-form, hence p1∂V(p2ϕ) = 0. It results

p1∂Vϕ = p1∂V(p1ϕ) , p2∂Vϕ = p2∂V(p1ϕ)+ p2∂V(p2ϕ). (4.8)

The above relations prove that

∂V(Ω0;q,0(V)) ⊂Ω0;q+1,0(V)⊕Ω0;q,1(V) (4.9)

which allows to define the following operators:

∂
1,0
V :Ω0;q,0(V)→Ω0;q+1,0(V) , ∂

1,0
V ϕ = p1∂Vϕ, (4.10)

∂
0,1
V :Ω0;q,0(V)→Ω0;q,1(V) , ∂

0,1
V ϕ = p2∂Vϕ, (4.11)

so that
∂V|Ω0;q,0(V) = ∂

1,0
V +∂

0,1
V . (4.12)
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Proposition 4.9. The operator ∂
1,0
V satisfies

(i) ∂
1,0
V (ϕ∧ψ) = ∂

1,0
V ϕ∧ψ+ (−1)qϕ∧∂

1,0
V ψ, for any ϕ ∈Ω0;q,0(V) , ψ ∈Ω0;s,0(V).

(ii) (∂
1,0
V )2 = 0.

Proof. (i) Let ϕ ∈Ω0;q,0(V) and ψ ∈Ω0;s,0(V). Since

∂V(ϕ∧ψ) = ∂Vϕ∧ψ+ (−1)qϕ∧∂Vψ

then by (4.12) it follows that

∂
1,0
V (ϕ∧ψ)+∂

0,1
V (ϕ∧ψ) = ∂

1,0
V ϕ∧ψ+∂

0,1
V ϕ∧ψ+ (−1)qϕ∧∂

1,0
V ψ+ (−1)qϕ∧∂

0,1
V ψ.

By equating the (0;q+ s+1,0) components in the both members of above relation, we get
the desired result.

(ii) Let ϕ be a (0;q,0)-form. By (4.6) and (4.10) we have that ∂
1,0
V ϕ = ∂Vϕ−ω0 ∧

iξ(∂Vϕ). Thus, using (∂V)2 = 0, ∂Vω0 = 0 and iξω0 = 1, by direct calculations, one gets

(∂
1,0
V )2ϕ = ∂

1,0
V (∂Vϕ)−∂

1,0
V (ω0∧ iξ(∂Vϕ))

= −∂V(ω0∧ iξ(∂Vϕ))+ω0∧ iξ(∂V(ω0∧ iξ(∂Vϕ)))

= ω0∧∂V(iξ(∂Vϕ))+ω0∧ iξ(−ω0∧∂V(iξ(∂Vϕ)))

= ω0∧∂V(iξ(∂Vϕ))−ω0∧∂V(iξ(∂Vϕ)) = 0

which completes the proof. �

Definition 4.10. We say that a (0;q,0)-form ϕ is ∂
1,0
V -closed if ∂

1,0
V ϕ = 0 and it is called

∂
1,0
V -exact if ϕ = ∂

1,0
V ψ for some ψ ∈Ω0;q−1,0(V).

Example 4.11. (i) For a foliated (0,1)-form ϕ, we have p1ϕ = ϕ− ϕ(ξ)ω0 and p2ϕ =

ϕ(ξ)ω0.

(ii) Let f ∈ F (E) and ∂V f = ∂ f
∂ηa dηa its conjugated foliated derivative. Locally, we have

∂
0,1
V f = p2∂V f = (∂V f )(ξ)ω0 = ξ( f )ω0

and

∂
1,0
V f = p1∂V f = ∂V f − (∂V f )(ξ)ω0

=
∂ f
∂ηa dηa

−ηa ∂ f
∂ηaω0 =

∂ f
∂ηa θ

a,

where θa are the (0;1,0)-forms given in Example 4.7. Moreover, taking into account
the relation (3.4) and the fact

∑
taθa = 0, it results that locally

∂
1,0
V f = (Za f )θa. (4.13)
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We have
∂

1,0
V ηa = (Zaη

b)θa = δb
aθ

a− taξ(η
b)θa = θb− (taθa)ηb = θb,

so the (0;1,0)-forms θb are exactly the ∂
1,0
V -derivatives of the local coordinates ηb, for

all b = 1, . . . ,m.

(iii) The (0;2,0)-forms ∂
1,0
V ηb

∧∂
1,0
V ηc are ∂

1,0
V -closed, for all b,c = 1, . . . ,m.

Let us consider now an arbitrary foliated (0,1)-form on E. It is locally given in U by
ϕ = ϕadηa, with ϕa ∈ F (U) such that in U∩U

′

, φ we have ϕ
′

b
= Ma

b
ϕa. By the Proposition

4.3, ϕ is a (0;1,0)-form on E iff iξϕ = 0 which is locally equivalent with ϕaη
a = 0. Then,

locally we have

ϕ = ϕadηa = ϕa(∂
1,0
V ηa+ηaω0) = ϕa∂

1,0
V ηa+ (ϕaη

a)ω0 = ϕa∂
1,0
V ηa.

Conversely, the expression locally given by ϕa∂
1,0
V ηa, with the functions ϕa satisfying ϕ

′

b
=

Ma
b
ϕa is a (0;1,0)-form because ∂

1,0
V ηa(ξ) = 0, for all a = 1, . . . ,m.

5 A ∂
1,0
V -cohomology

In this section we define and study some new cohomology groups of (E,L) with rspect to
vertical Liouville distribution.

By the Proposition 4.9, we can consider the differential complex

0 −→Ω0;0,0(V)
∂

1,0
V

−→Ω0;1,0(V)
∂

1,0
V

−→ . . .
∂

1,0
V

−→Ω0;m−1,0(V) −→ 0,

which will be called the ∂
1,0
V -complex of (E,L,V); its homology H0;q,0

V
(E) is called the Dol-

beault cohomology along the vertical Liouville distribution on the complex Finsler bundle
(E,L).

Now, by using the Theorem 2.1 we can prove a resolution property of the operator ∂
1,0
V .

Firstly, we prove a Grothendieck-Dolbeault type Lemma for the operator ∂
1,0
V , namely

Theorem 5.1. Let ϕ ∈ Ω0;q,0(V|U) be a ∂
1,0
V -closed form and q ≥ 1. Then there exists ψ ∈

Ω0;q−1,0(V|U′ ), and such that ϕ = ∂
1,0
V ψ on U

′

⊂ U.

Proof. Let ϕ ∈Ω0;q,0(V|U) such that ∂
1,0
V ϕ = 0. Then

∂Vϕ = ∂
1,0
V ϕ+∂

0,1
V ϕ = ∂

0,1
V ϕ = ω0∧ iξ(∂Vϕ),

so ∂Vϕ = 0 (modulo terms containing ω0).
Hence on the space ω0 = 0 we have that ϕ is ∂V-closed. Now, by Theorem 2.1 there

exists a foliated (0,q−1)-form τ defined on U
′

⊂ U such that

ϕ = ∂Vτ+λ∧ω0 , λ ∈Ω
0,q−1(V|U′ ). (5.1)
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Following the Proposition 4.4 we have that τ = τ1+ω0∧ iξτ, with τ1 = p1τ ∈Ω
0;q−1,0(V|U′ ).

Now, the relation (5.1) becomes

ϕ = ∂Vτ1−ω0∧∂Viξτ+λ∧ω0. (5.2)

Here ϕ ∈Ω0;q,0(V|U′ ), ω0∧ (λ+∂Viξτ) ∈Ω0;q−1,1(V|U′ ) and

∂Vτ1 = ∂
1,0
V τ1+∂

0,1
V τ1 ∈Ω

0;q,0(V|U′ )⊕Ω
0;q−1,1(V|U′ ).

Now, by equating the same components in the relation (5.2) it results ϕ = ∂
1,0
V τ1 on U

′

. �

Let Φ0;0,0 be the sheaf of germs of functions on E which satisfies ∂
1,0
V f = 0 and F 0;q,0

be the sheaf of germs of (0;q,0)-forms on E. We denote by i :Φ0;0,0→F 0;0,0 be the natural
inclusion. The sheaves F 0;q,0 are fine and taking into account the Theorem 5.1, it follows
that the sequence of sheaves

0 −→ Φ0;0,0 i
−→ F 0;0,0 ∂

1,0
V

−→ F 0;1,0 ∂
1,0
V

−→ . . .
∂

1,0
V

−→ F 0;m−1,0 −→ 0

is a fine resolution of Φ0;0,0 and we denote by Hq(E,Φ0;0,0) the cohomology groups of E
with the coefficients in the sheaf Φ0;0,0. Then, we obtain a de Rham type isomorphism

Hq(E,Φ0;0,0) ≈ H0;q,0
V

(E), for any q = 1, . . . ,m−1. (5.3)

By (4.5), the Dolbeault complex

0→F 0,0(V)
∂V
−→Ω0,1(V)

∂V
−→ . . .

∂V
−→Ω0,m(V) −→ 0,

admits the subcomplex

0 −→ Φ0;0,0 ∂V
−→Ω0;0,1(V)

∂V
−→ . . .

∂V
−→Ω0;m−1,1(V) −→ 0.

We denote by Z0;q,1
V

(E) and B0;q,1
V

(E) the spaces of the ∂V-closed and ∂V-exacts (0;q,1)-
forms, respectively, and let

H0;q,1
V

(E) = Z0;q,1
V

(E)/B0;q,1
V

(E). (5.4)

be the q-cohomology group of the last complex.

Theorem 5.2. The cohomology groups H0;q,1
V

(E) and Hq(E,Φ0;0,0) are isomorphic.

Proof. By Proposition 4.5 we can define the map

ζ : Z0;q,1
V

(E)→ Z0;q,0
V

(E), ζ(ϕ) = α

for α ∈Ω0;q,0(V) such that ϕ = α∧ω0. It is a well-defined map since the equality

0 = ∂Vϕ = ∂Vα∧ω0 = ∂
1,0
V α∧ω0+∂

0,1
V α∧ω0 = ∂

1,0
V α∧ω0 (5.5)
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implies ∂
1,0
V α= 0. Moreover, ζ is a bijective morphism of groups and ζ(B0;q,1

V
(E)= B0;q,0

V
(E).

Indeed, for ϕ ∈ B0;q,1
V

(E), there is θ ∈ Ω0;q−1,1(V) such that ϕ = ∂Vθ. By (4.4), there are
α ∈Ω0;q,0(V), β ∈Ω0;q−1,0(V) such that ϕ = α∧ω0 and θ = β∧ω0. Then, we have

α∧ω0 = ∂V(β∧ω0) = ∂
1,0
V β∧ω0.

It follows α ∈ B0;q,0(V). Conversely, α = ∂
1,0
V β implies α∧ω0 = ∂V(β∧ω0). We obtain that

ζ∗ : H0;q,1
V

(E)→ H0;q,0
V

(E), ζ∗([ϕ]) = [ζ(ϕ)], for ϕ ∈ Z0;q,1
V

(E), is bijective. �

Finally, by (5.3) and above theorem the isomorphism H0;q,1
V

(E) ≈ H0;q,0
V

(E) holds for
any q = 1, . . . ,m−1.
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