C

Dolbeault Cohomology Along the Vertical Liouville Distribution on Complex Finsler Bundles

Cristian Ida*
Department of Mathematics and Informatics
Transilvania University of Braşov
Iulia Maniu Street, No. 50, 500091, Braşov, România

(Communicated by Michal Fečkan)

Abstract

In this paper we define a vertical Liouville distribution in the vertical foliated distribution on a complex Finsler bundle and we prove that it is an integrable one. Next, some new operators on foliated forms along the vertical Liouville distribution are defined, a Dolbeault type lemma is proved and new cohomology groups are studied.

AMS Subject Classification: 53B40, 53C12, 32C35.
Keywords: Vertical foliation, complex Finsler structure, Liouville distribution, Dolbeault cohomology.

1 Introduction

The idea of decomposing the exterior derivative for real smooth or complex analytic foliated manifolds and the study of their cohomology is due to I. Vaisman, see [14, 15]. There are proved some Poincaré type Lemmas with respect to some differential operators corresponding to the foliated type $(0,1)$ or to the mixed type $(0,1)$ for the analytic case, respectively. Different from [14, 15], recently, A. El Kacimi Alaoui in [6, 7], study a Dolbeault cohomology along the leaves of complex foliations and states a foliated Grothendieck-Dolbeault Lemma, see [6] p. 889.

Recently, in [11] is studied a new cohomology with respect to a Liouville foliation on the tangent bundle of a real Finsler manifold and a de Rham type theorem is obtained. The main goal of the present paper is to obtain a complex analogue of these results as a Dolbeault cohomology along the vertical Liouville distribution on complex Finsler bundles. Firstly, we consider \mathcal{V} the vertical foliation of a holomorphic vector bundle and following [6, 7], we make a short review about Cauchy-Riemann operators and Dolbeault cohomology groups along the leaves of the foliation \mathcal{V}. Next, by analogy with the real case [3, 4], we define a

[^0]vertical complex Liouville distribution on the total space of a complex Finsler bundle (E, L) and we get an adapted basis on the holomorphic vertical distribution with respect to the orthogonal splitting $T^{1,0} \mathcal{V}=\mathcal{L}^{1,0} \mathcal{V} \oplus\{\xi\}$, where $\{\xi\}$ is the complex line bundle spanned by the vertical complex Liouville vector field ξ over (E, L) and $\mathcal{L}^{1,0} \mathcal{V}$ is the vertical Liouville distribution on (E, L). We also prove that the distribution $\mathcal{L}^{1,0} \mathcal{V}$ is an integrable one. In the last two sections, by analogy with [11], we consider new type of foliated forms of type $(0 ; q, 0)$ and $(0 ; q-1,1)$, respectively, with respect to conjugated Liouville distribution $\mathcal{L}^{0,1} \mathcal{V}$ and we obtain a decomposition of the conjugated foliated differential operator $\bar{\partial}_{\mathcal{V}}=$ $\bar{\partial}_{\mathcal{V}}^{1,0}+\bar{\partial}_{\mathcal{V}}^{0,1}$ for foliated forms of type $(0 ; q, 0)$. Finally, by applying some results from [6, 7] concerning to the operator $\bar{\partial}_{\mathcal{V}}$ we prove a Grothendieck-Dolbeault type Lemma with respect to the operator $\bar{\partial}_{\mathcal{V}}^{1,0}$ and new cohomology groups are obtained and studied.

2 Preliminaries

Let $\pi: E \rightarrow M$ be a holomorphic vector bundle of rank m over an n-dimensional complex manifold M. Consider $\mathcal{U}=\left\{U_{\alpha}\right\}$ an open covering set of $M,\left(z^{k}\right), k=1, \ldots, n$, local complex coordinates in chart (U, φ) and $s_{U}=\left\{s_{a}\right\}, a=1, \ldots, m$, a local frame for the sections of E over U. The covering $\left\{U, s_{U}\right\}, U \in \mathcal{U}$ induces the complex coordinates system $u=\left(z^{k}, \eta^{a}\right)$ on $\pi^{-1}(U)$, where $s=\eta^{a} s_{a}$ is a section on $E_{z}=\pi^{-1}(z)$. In $z \in U \cap U^{\prime}$, the transition functions $g_{U U^{\prime}}: U \cap U^{\prime} \rightarrow G L(m, \mathbb{C})$ has a local representation by the complex matrix $M_{b}^{a}(z)$ and then if $\left(z^{\prime k}, \eta^{\prime a}\right)$ are the complex coordinates in $\pi^{-1}\left(U^{\prime}\right)$ the transition laws of these coordinates are

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z), \eta^{\prime a}=M_{b}^{a}(z) \eta^{b} \tag{2.1}
\end{equation*}
$$

where $z^{\prime k}, M_{b}^{a}$ are holomorphic functions on z^{j} variables and det $M_{b}^{a} \neq 0$.
As we already know, the total space of E has a natural structure of $n+m$-dimensional complex manifold because the transition functions $M_{b}^{a}(z)$ are holomorphic. Let J be the natural complex structure of the manifold E and $T^{1,0} E$ and $T^{0,1} E=\overline{T^{1,0} E}$ be its holomorphic and antiholomorphic subbundles, respectively. Let $T_{\mathbb{C}} E=T^{1,0} E \oplus T^{0,1} E$ be the complexified tangent bundle of the real tangent bundle $T_{\mathbb{R}} E$. From (2.1) it results the following changes for the natural local frames on $T_{u}^{1,0} E$:

$$
\begin{equation*}
\frac{\partial}{\partial z^{j}}=\frac{\partial z^{\prime k}}{\partial z^{j}} \frac{\partial}{\partial z^{\prime k}}+\frac{\partial M_{b}^{a}}{\partial z^{j}} \eta^{b} \frac{\partial}{\partial \eta^{\prime a}}, \frac{\partial}{\partial \eta^{b}}=M_{b}^{a} \frac{\partial}{\partial \eta^{\prime a}} . \tag{2.2}
\end{equation*}
$$

By conjugation over all in (2.2) we obtain the change rules of the local frame on $T_{u}^{0,1} E$, and then the behaviour of the J complex structure is

$$
\begin{equation*}
J\left(\frac{\partial}{\partial z^{k}}\right)=i \frac{\partial}{\partial z^{k}}, J\left(\frac{\partial}{\partial \eta^{a}}\right)=i \frac{\partial}{\partial \eta^{a}}, J\left(\frac{\partial}{\partial \bar{z}^{k}}\right)=-i \frac{\partial}{\partial \bar{z}^{k}}, J\left(\frac{\partial}{\partial \bar{\eta}^{a}}\right)=-i \frac{\partial}{\partial \bar{\eta}^{a}} . \tag{2.3}
\end{equation*}
$$

Let \mathcal{V} be the vertical foliation on $E_{0}=E-$ \{zero section $\}$, i.e. the simply foliation defined by C^{∞} submersion $\pi: E_{0} \rightarrow M$, and characterized by $z^{k}=$ const. on the leaves.

The relations (2.2) show that $T^{1,0} \mathcal{V}=\operatorname{span}\left\{\frac{\partial}{\partial \eta^{a}}\right\} \subset T^{1,0} E$ is a foliated holomorphic vector subbundle, called the vertical distribution, which is an integrable one. In particular, $J_{\mathcal{V}}$:
$T_{\mathbb{C}} \mathcal{V} \rightarrow T_{\mathbb{C}} \mathcal{V}$, defined by

$$
\begin{equation*}
J_{\mathcal{V}}\left(\frac{\partial}{\partial \eta^{a}}\right)=i \frac{\partial}{\partial \eta^{a}}, J_{\mathcal{V}}\left(\frac{\partial}{\partial \bar{\eta}^{a}}\right)=-i \frac{\partial}{\partial \bar{\eta}^{a}} \tag{2.4}
\end{equation*}
$$

is called the complex structure along the leaves, where $T_{\mathbb{C}} \mathcal{V}=T^{1,0} \mathcal{V} \oplus T^{0,1} \mathcal{V}$. We also notice that the Nijenhuis tensor along the leaves associated to $J_{\mathcal{V}}$ vanish, namely

$$
N_{\mathcal{V}}(X, Y)=2\left\{\left[J_{\mathcal{V}} X, J_{\mathcal{V}} Y\right]-[X, Y]-J_{\mathcal{V}}\left[J_{\mathcal{V}} X, Y\right]-J_{\mathcal{V}}\left[X, J_{\mathcal{V}} Y\right]\right\}=0
$$

for every $X, Y \in \Gamma\left(T_{\mathbb{C}} \mathcal{V}\right)$.
Let $\Omega^{p, q}(\mathcal{V})$ be the space of all foliated differential forms of type (p, q) that is, differential forms on E which can be written in local coordinates $u=\left(z^{k}, \eta^{a}\right)$, adapted to the foliation by

$$
\begin{equation*}
\varphi=\sum \varphi_{A_{p} \bar{B}_{q}}(z, \eta) d \eta^{A_{p}} \wedge d \bar{\eta}^{B_{q}} \tag{2.5}
\end{equation*}
$$

where $A_{p}=\left(a_{1} \ldots a_{p}\right), B_{q}=\left(b_{1} \ldots b_{q}\right)$, and the sum is after the indices $a_{1}<\ldots<a_{p}$ and $b_{1}<\ldots<b_{q}$, respectively. We also notice that the coeficient functions $\varphi_{a_{1} \ldots a_{p} \bar{b}_{1} \ldots \bar{b}_{q}}$ are C^{∞}-functions on (z, η) and are skew symmetric in the indices $\left(a_{1}, \ldots, a_{p}\right)$ and $\left(b_{1}, \ldots, b_{q}\right)$, respectively.

Then, the set of all foliated r-differential forms on E admits the decomposition $\Omega^{r}(\mathcal{V})=$ $\oplus_{p+q}^{r} \Omega^{p, q}(\mathcal{V}), r=0,1, \ldots, 2 m$ and the exterior derivative along the leaves $d_{\mathcal{V}}$, admits the decomposition

$$
\begin{equation*}
d_{\mathcal{V}}=\partial_{\mathcal{V}}+\bar{\partial}_{\mathcal{V}} \tag{2.6}
\end{equation*}
$$

where the terms denote $(1,0)$ and $(0,1)$ foliated type, respectively. The Cauchy-Riemann operators along the leaves, are locally defined by

$$
\begin{equation*}
\partial_{\mathcal{V} \varphi}=\sum_{a=1}^{m} \frac{\partial \varphi_{A_{p} \bar{B}_{q}}}{\partial \eta^{a}} d \eta^{a} \wedge d \eta^{A_{p}} \wedge d \bar{\eta}^{B_{q}}, \bar{\partial}_{\mathcal{V}} \varphi=\sum_{a=1}^{m} \frac{\partial \varphi_{A_{p} \bar{B}_{q}}}{\partial \bar{\eta}^{a}} d \bar{\eta}^{a} \wedge d \eta^{A_{p}} \wedge d \bar{\eta}^{B_{q}} \tag{2.7}
\end{equation*}
$$

These operators have the properties $\partial_{\mathcal{V}}^{2}=\bar{\partial}_{\mathcal{V}}^{2}=0$ and $\partial_{\mathcal{V}} \bar{\partial}_{\mathcal{V}}+\bar{\partial}_{\mathcal{V}} \partial_{\mathcal{V}}=0$, respectively. The differential complex

$$
0 \longrightarrow \Omega^{0}(\mathcal{V}) \xrightarrow{d_{\mathcal{V}}} \Omega^{1}(\mathcal{V}) \xrightarrow{d_{\mathcal{V}}} \ldots \xrightarrow{d_{\mathcal{V}}} \Omega^{2 m}(\mathcal{V}) \longrightarrow 0
$$

is called the $d_{\mathcal{V}}$-complex of (E, \mathcal{V}); its homology $H_{\mathcal{V}}^{p}(E)$ is called the foliated de Rham cohomology of the holomorphic foliation (E, \mathcal{V}). The differential complex

$$
0 \longrightarrow \Omega^{p, 0}(\mathcal{V}) \xrightarrow{\bar{\delta}_{\mathcal{V}}} \Omega^{p, 1}(\mathcal{V}) \xrightarrow{\bar{\delta}_{\mathcal{V}}} \ldots \xrightarrow{\bar{\partial}_{\mathcal{V}}} \Omega^{p, m}(\mathcal{V}) \longrightarrow 0
$$

is called the $\bar{\partial}_{\mathcal{V}}$-complex of (E, \mathcal{V}); its homology $H_{\mathcal{V}}^{p, q}(E)$ is called the foliated Dolbeault cohomology of the holomorphic foliation (E, \mathcal{V}).

Locally, the operator $\bar{\partial}_{\mathcal{V}}$ satisfies a Grothendieck-Dolbeault Lemma, namely
Theorem 2.1. ([6]). Let φ be a $\bar{\partial}_{V}$-closed foliated differential form of type (p, q) defined on an open $U \subset E$. Then, there exists a foliated differential form ψ of type $(p, q-1)$ defined on $U^{\prime} \subset U$ and such that $\varphi=\bar{\partial}_{\mathcal{V}} \psi$.

One can describe the cohomology $H_{V}^{p, \bullet}(E)$ by using a sheaf which is analogous to the sheaf of germs of holomorphic p-forms on a complex manifold.

Definition 2.2. A p-form φ is said to be \mathcal{V}-holomorphic, if it is foliated, of type $(p, 0)$ and satisfies $\bar{\partial}_{\mathcal{V}} \varphi=0$.

Locally, a \mathcal{V}-holomorphic p-form can be written: $\varphi=\varphi_{A_{p}}(z, \eta) d \eta^{A_{p}}$ with $\varphi_{A_{p}}(z, \eta)$ holomorphic on η.

Let $\Phi_{\mathcal{V}}^{p}$ be the sheaf of germs of \mathcal{V}-holomorphic p-forms on E and $\mathcal{F}^{p, q}(\mathcal{V})$ the sheaf of germs of foliated forms of type $(p, q) ; \mathcal{F}^{p, q}(\mathcal{V})$ is a fine sheaf. Theorem 2.1 implies the:

Proposition 2.3. The sequence of sheaves:

$$
0 \longrightarrow \Phi_{\mathcal{V}}^{p} \xrightarrow{i} \mathcal{F}^{p, 0}(\mathcal{V}) \xrightarrow{\bar{\partial}_{V}} \ldots \xrightarrow{\bar{\partial}_{V}} \mathcal{F}^{p, m}(\mathcal{V}) \longrightarrow 0
$$

is a fine resolution of $\Phi_{\mathcal{V}}^{p}$. So we have $H^{q}\left(E, \Phi_{V}^{p}\right) \approx H_{\mathcal{V}}^{p, q}(E)$, for $p, q=0,1, \ldots$, m.
We notice that $H^{\bullet}\left(E, \Phi_{V}^{p}\right)$ is not finite dimensional because E is not compact.

3 Vertical Liouville distribution on a complex Finsler bundle

Let $\pi^{*} E \rightarrow E_{0}$ be the pullback of E by π. Given a global section $s: M \rightarrow E$ its natural lift is the section

$$
\begin{equation*}
\widetilde{s}: E_{0} \rightarrow \pi^{*} E, \widetilde{s}(u)=(u, s(\pi(u))), u=(z, \eta) \in E_{0} . \tag{3.1}
\end{equation*}
$$

Given a local frame $\left\{s_{1}, \ldots, s_{m}\right\}$ of E on the open set $U \subseteq M$, then $\left\{\widetilde{s}_{1}, \ldots, \widetilde{s}_{m}\right\}$ is a local frame of $\pi^{*} E$ on $\pi^{-1}(U) \subseteq E_{0}$.

Let $L=F^{2}: E \rightarrow \mathbb{R}_{+} \cup\{0\}$ be a complex Finsler structure on E (for necessary definitions see for instance $[1,2,8,13])$, and we set

$$
H_{a}=\frac{\partial L}{\partial \eta^{a}}, H_{\bar{b}}=\frac{\partial L}{\partial \bar{\eta}^{b}}, H_{a b}=\frac{\partial^{2} L}{\partial \eta^{a} \partial \eta^{b}}, H_{a \bar{b}}=\frac{\partial^{2} L}{\partial \eta^{a} \partial \bar{\eta}^{\bar{b}}} \text { etc. }
$$

Let us put $H(Z, \bar{W})=H_{a \bar{b}}(u) Z^{a} \bar{W}^{b}$, where $Z=Z^{a} \widetilde{s}_{a}(u), W=W^{b} \widetilde{s}_{b}(u) \in \Gamma_{u}\left(\pi^{*} E\right), u \in \pi^{-1}(U)$. Then H is globally defined. We say that L is convex if H is positive definite. If L is convex, H is a Hermitian metric in $\pi^{*} E \rightarrow E_{0}$. Also, by the homogeneity condition of a complex Finsler structure, namely $L(z, \lambda \eta)=|\lambda|^{2} L(z, \eta)$ for any $\lambda \in \mathbb{C}-\{0\}$, we have, see [8], the following properties:

$$
\begin{gather*}
H_{a b} \eta^{a}=0, H_{\bar{a} \bar{b}} \bar{\eta}^{a}=0, H_{a} \eta^{a}=L, H_{\bar{b}} \bar{\eta}^{b}=L, \tag{3.2}\\
H_{a \bar{b} c} \eta^{a}=0, H_{a \bar{b} \overline{\bar{c}} \bar{\eta}^{b}=0, H_{a \bar{b} c} \bar{\eta}^{b}=H_{a c},}^{H_{a \bar{b}} \eta^{a}=H_{\bar{b}}, H_{a \bar{b}} \bar{\eta}^{b}=H_{a}, H_{a \bar{b}} \eta^{a} \bar{\eta}^{b}=L .} \tag{3.3}
\end{gather*}
$$

The (globally defined) bundle isomorphism [5],

$$
\begin{equation*}
\gamma: \pi^{*} E \rightarrow T^{1,0} \mathcal{V}, \gamma\left(\widetilde{s}_{a}\right)=\frac{\partial}{\partial \eta^{a}}, a=1, \ldots, m, \tag{3.5}
\end{equation*}
$$

induces a Hermitian metric structure on $T^{1,0} \mathcal{V}$, denoted again by H, and defined by

$$
\begin{equation*}
H(Z, \bar{W})=H_{a \bar{b}} Z^{a} \bar{W}^{b}, \text { for any } Z=Z^{a} \frac{\partial}{\partial \eta^{a}}, W=W^{b} \frac{\partial}{\partial \eta^{b}} \in \Gamma\left(T^{1,0} \mathcal{V}\right) \tag{3.6}
\end{equation*}
$$

An important global vertical vector field is defined by $\xi=\eta^{a} \frac{\partial}{\partial \eta^{a}}$ and it is called the vertical complex Liouville vector field (or vertical radial complex vector field). We notice that the third equation of (3.4) says that

$$
\begin{equation*}
L=H(\xi, \bar{\xi})>0 \tag{3.7}
\end{equation*}
$$

so ξ is an embedding of E into $T^{1,0} \mathcal{V}$.
Let $\{\xi\}$ be the complex line bundle over E spanned by ξ and we define the vertical Liouville distribution on (E, L) as the complementary orthogonal distribution, denoted by $\mathcal{L}^{1,0} \mathcal{V}$, to $\{\xi\}$ in $T^{1,0} \mathcal{V}$ with respect to H, namely $T^{1,0} \mathcal{V}=\mathcal{L}^{1,0} \mathcal{V} \oplus\{\xi\}$. Hence, $\mathcal{L}^{1,0} \mathcal{V}$ is defined by

$$
\begin{equation*}
\Gamma\left(\mathcal{L}^{1,0} \mathcal{V}\right)=\left\{Z \in \Gamma\left(T^{1,0} \mathcal{V}\right) ; H(Z, \bar{\xi})=0\right\} \tag{3.8}
\end{equation*}
$$

Consequently, let us consider the vertical vector fields

$$
\begin{equation*}
Z_{a}=\frac{\partial}{\partial \eta^{a}}-t_{a} \xi, a=1, \ldots, m \tag{3.9}
\end{equation*}
$$

where the functions $t_{a}(z, \eta)$ are defined by the conditions

$$
\begin{equation*}
H\left(Z_{a}, \bar{\xi}\right)=0, a=1, \ldots, m \tag{3.10}
\end{equation*}
$$

Thus, the above conditions become $H\left(\frac{\partial}{\partial \eta^{a}}, \bar{\xi}\right)-t_{a} H(\xi, \bar{\xi})=0$ for every $a=1, \ldots, m$, so, taking into account (3.4) and (3.7), we obtain the local expression of the functions t_{a} in a local chart $\left(U,\left(z^{k}, \eta^{a}\right)\right)$ as

$$
\begin{equation*}
t_{a}=\frac{H_{a}}{L}, a=1, \ldots, m \tag{3.11}
\end{equation*}
$$

If $\left(U^{\prime},\left(z^{\prime i}, \eta^{\prime b}\right)\right)$ is another local chart on E, then on $U \cap U^{\prime} \neq \phi$, we have

$$
t_{b}^{\prime}=\frac{H_{b \bar{d}}^{\prime} \bar{\eta}^{\prime d}}{L}=\frac{1}{L} M_{\bar{a}}^{\bar{d}} \bar{\eta}^{a} M_{b}^{c} M_{\bar{d}}^{\bar{a}} H_{c \bar{a}}=M_{b}^{c} t_{c},
$$

so we obtain the following changing rule for the vector fields from (3.9)

$$
\begin{equation*}
Z_{b}^{\prime}=M_{b}^{a} Z_{a}, b=1, \ldots, m \tag{3.12}
\end{equation*}
$$

By conjugation we obtain the decomposition

$$
T_{\mathbb{C}} \mathcal{V}=\mathcal{L}^{1,0} \mathcal{V} \oplus\{\xi\} \oplus \mathcal{L}^{0,1} \mathcal{V} \oplus\{\bar{\xi}\}
$$

Proposition 3.1. The functions $\left\{t_{a}\right\}, a=1, \ldots, m$, satisfies

$$
\begin{gather*}
t_{a} \eta^{a}=t_{\bar{a}} \bar{\eta}^{a}=1, Z_{a} \eta^{a}=Z_{\bar{a}} \bar{\eta}^{a}=0, \tag{3.13}\\
\frac{\partial t_{a}}{\partial \eta^{b}}=\frac{H_{a b}}{L}-t_{a} t_{b}, \frac{\partial t_{a}}{\partial \eta^{\bar{b}}}=\frac{H_{a \bar{b}}}{L}-t_{a} t_{\bar{b}}, \tag{3.14}\\
\xi t_{a}=-t_{a}, \bar{\xi} t_{a}=0, \eta^{a} \frac{\partial t_{a}}{\partial \eta^{b}}=-t_{b} ; \eta^{a}\left(\xi t_{a}\right)=-1 . \tag{3.15}
\end{gather*}
$$

Proof. We have that $t_{a} \eta^{a}=\frac{H_{a}}{L} \eta^{a}=1$ and similarly $t_{\bar{a}} \bar{\eta}^{a}=\frac{H_{\bar{a}}}{L} \bar{\eta}^{a}=1$, where we used (3.11) and the last two equalities from (3.2). Now, $Z_{a} \eta^{a}=\left(\frac{\partial}{\partial \eta^{a}}-t_{a} \xi\right) \eta^{a}=1-t_{a} \eta^{a}=0$ and similarly for conjugated. Thus, the relations (3.13) are proved. Similarly, by direct calculations using (3.2), (3.4) and (3.11), one gets (3.14) and (3.15).

Theorem 3.2. The vertical Liouville distribution $\mathcal{L}^{1,0} \mathcal{V}$ is integrable.
Proof. The proof of this theorem is based on the ideas of Theorem 3.1. from [3]. Let $Z, W \in \Gamma\left(\mathcal{L}^{1,0} \mathcal{V}\right)$. As $T^{1,0} \mathcal{V}$ is an integrable distribution on E, it is sufficient to show that [Z, W] has no component with respect to ξ.

By using (3.8), we obtain that $Z \in \Gamma\left(\mathcal{L}^{1,0} \mathcal{V}\right)$ if and only if

$$
\begin{equation*}
H_{a \bar{b}} Z^{a} \bar{\eta}^{b}=0 \tag{3.16}
\end{equation*}
$$

where $Z^{a}(z, \eta)$ are the components of Z. Differentiate (3.16) with respect to η^{c} we get

$$
\begin{equation*}
H_{a \bar{b}} Z^{a} \bar{\eta}^{b}+H_{a \bar{b}} \frac{\partial Z^{a}}{\partial \eta^{c}} \bar{\eta}^{b}=0, \text { for any } c=1, \ldots, m \tag{3.17}
\end{equation*}
$$

and taking into account the last equation of (3.3) we have

$$
\begin{equation*}
H_{a c} Z^{a}+H_{a \bar{b}} \frac{\partial Z^{a}}{\partial \eta^{\eta}} \bar{\eta}^{b}=0, \text { for any } c=1, \ldots, m \tag{3.18}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
H([Z, W], \xi) & =H_{a \bar{b}} \bar{\eta}^{b}\left(\frac{\partial W^{a}}{\partial \eta^{c}} Z^{c}-\frac{\partial Z^{a}}{\partial \eta^{c}} W^{c}\right) \\
& =-\left(H_{a c} W^{a} Z^{c}-H_{a c} Z^{a} W^{c}\right) \\
& =0
\end{aligned}
$$

which finish the proof.
We also notice that the above theorem it follows from the straightforward calculus of Lie brackets, namely

$$
\begin{gather*}
{\left[Z_{a}, Z_{b}\right]=t_{a} Z_{b}-t_{b} Z_{a},\left[Z_{a}, \xi\right]=Z_{a}} \tag{3.19}\\
{\left[Z_{a}, Z_{\bar{b}}\right]=0,\left[Z_{\bar{a}}, \xi\right]=0} \tag{3.20}
\end{gather*}
$$

and its conjugates.
By the conditions (3.10), $\left\{Z_{1}, \ldots, Z_{m}\right\}$ are m vectors fields orthogonal to ξ, so they belong to the ($m-1$)-dimensional distribution $\mathcal{L}^{1,0} \mathcal{V}$. It results that they are linear dependent and, from (3.13) we obtain

$$
\begin{equation*}
Z_{m}=-\frac{1}{\eta^{m}} \sum_{a=1}^{m-1} \eta^{a} Z_{a} \tag{3.21}
\end{equation*}
$$

since the local coordinate η^{m} is nonzero everywhere.
We have
Proposition 3.3. The system of vertical vector fields $\left\{Z_{1}, \ldots, Z_{m-1}, \xi\right\}$ is a local basis of $\Gamma\left(T^{1,0} \mathcal{V}\right)$, called adapted.

Proof. The proof is similar with the analogue result from real case, see [10], and it consist to check that the rank of the matrix of change from the natural basis $\left\{\frac{\partial}{\partial \eta^{a}}\right\}, a=1, \ldots, m$ of $\Gamma\left(T^{1,0} \mathcal{V}\right)$ to $\left\{Z_{1}, \ldots, Z_{m-1}, \xi\right\}$ is equal to m.

In the end of this section we notice the following concludent remark: Let $\left(U^{\prime},\left(z^{\prime}, \eta^{\prime b}\right)\right)$ and $\left(U,\left(z^{k}, \eta^{a}\right)\right)$ be two local charts which domains overlap, where $\eta^{\prime b}$ and η^{m} are nonzero functions (in every local chart on E there is at least one nonzero coordinate function η^{a}). The adapted basis in U^{\prime} is $\left\{Z_{1}^{\prime}, \ldots, Z_{b-1}^{\prime}, Z_{b+1}^{\prime}, \ldots, Z_{m}^{\prime}, \xi\right\}$. Now, similarly to [11], the determinant of the change matrix $\left\{Z_{1}, \ldots, Z_{m-1}, \xi\right\} \rightarrow\left\{Z_{1}^{\prime}, \ldots, Z_{b-1}^{\prime}, Z_{b+1}^{\prime}, \ldots, Z_{m}^{\prime}, \xi\right\}$ on $T^{1,0} \mathcal{V}$ is equal to $(-1)^{m+b}\left(\frac{\eta^{\prime}}{\eta^{m}}\right) \operatorname{det} M_{c}^{a} \neq 0$.

4 New operators on foliated forms with respect to vertical Liouville distribution

Proposition 4.1. The foliated $(0,1)$-form $\bar{\omega}_{0}=t_{\bar{a}} d \bar{\eta}^{a}$ is globally defined and satisfies

$$
\begin{equation*}
\bar{\omega}_{0}(\bar{\xi})=1, \bar{\omega}_{0}\left(Z_{\bar{\alpha}}\right)=0, \bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}(\ln L) \tag{4.1}
\end{equation*}
$$

for all $\alpha=1, \ldots, m-1$, where Z_{α} are given by (3.9) and L is the complex Finsler structure. Proof. In $U \cap U^{\prime} \neq \phi$ we have $\bar{\omega}_{0}^{\prime}=t_{\bar{b}}^{\prime} d \bar{\eta}^{\prime b}=M_{\bar{b}}^{\bar{a}} t_{\bar{a}} M_{\bar{c}}^{\bar{b}} d \bar{\eta}^{c}=t_{\bar{a}} d \bar{\eta}^{a}=\bar{\omega}_{0}$. We also have $d \bar{\eta}^{a}(\bar{\xi})=\bar{\eta}^{a}$, for all $a=1, \ldots, m$, and taking into account the first relation of (3.13) it results

$$
\bar{\omega}_{0}(\bar{\xi})=1, \bar{\omega}_{0}\left(Z_{\bar{\alpha}}\right)=t_{\bar{\alpha}} d \bar{\eta}^{a}\left(\frac{\partial}{\partial \bar{\eta}^{\alpha}}-t_{\bar{\alpha}} \bar{\xi}\right)=t_{\bar{a}} \delta_{\bar{\alpha}}^{\bar{a}}-t_{\bar{\alpha}} t_{\bar{a}} \bar{\eta}^{a}=0,
$$

where $\delta_{\bar{\alpha}}^{\bar{a}}$ denotes the Kronecker symbols. By conjugation in the relation (3.21) it results also $\bar{\omega}_{0}\left(Z_{\bar{m}}\right)=0$. Now, we have

$$
\bar{\partial}_{\mathcal{V}}(\ln L)=\frac{\partial \ln L}{\partial \bar{\eta}^{a}} d \bar{\eta}^{a}=\frac{H_{\bar{a}}}{L} d \bar{\eta}^{a}=t_{\bar{a}} d \bar{\eta}^{a}=\bar{\omega}_{0},
$$

which ends the proof.
We notice that the equality $\bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}(\ln L)$ shows that $\bar{\omega}_{0}$ is an $\bar{\partial}_{\mathcal{V}}$-exact foliated $(0,1)$ form and the conjugated vertical Liouville distribution $\mathcal{L}^{0,1} \mathcal{V}$ is defined by the equation $\bar{\omega}_{0}=0$.

In the following, we will consider $\Omega^{0, q}(\mathcal{V}) \subset \Omega^{p, q}(\mathcal{V})$ the subspace of all foliated forms of type $(0, q)$ on E.

Definition 4.2. A foliated $(0, q)$-form $\varphi \in \Omega^{0, q}(\mathcal{V})$ is called a $\left(0 ; q_{1}, q_{2}\right)$-form iff for any vertical vector fields $Z_{1}, \ldots, Z_{q} \in \Gamma\left(T^{0,1} \mathcal{V}\right), q=q_{1}+q_{2}$, we have $\varphi\left(Z_{1}, \ldots, Z_{q}\right) \neq 0$ only if q_{1} arguments are in $\Gamma\left(\mathcal{L}^{0,1} \mathcal{V}\right)$ and q_{2} arguments are in $\Gamma((\bar{\xi}\})$.

Since $\{\bar{\xi}\}$ is a line distribution, we can talk only about $\left(0 ; q_{1}, q_{2}\right)$-forms with $q_{2} \in\{0,1\}$. We will denote the space of $\left(0 ; q_{1}, q_{2}\right)$-forms by $\Omega^{0 ; q_{1}, q_{2}}(\mathcal{V})$. By the above definition, we have the equivalence

$$
\begin{equation*}
\varphi \in \Omega^{0 ; q-1,1}(\mathcal{V}) \Leftrightarrow \varphi\left(Z_{1}, \ldots, Z_{q}\right)=0, \forall Z_{1}, \ldots, Z_{q} \in \Gamma\left(\mathcal{L}^{0,1} \mathcal{V}\right) . \tag{4.2}
\end{equation*}
$$

Proposition 4.3. Let φ be a nonzero foliated $(0, q)$-form on E. The following assertions are true
(i) $\varphi \in \Omega^{0 ; q, 0}(\mathcal{V})$ iff $i_{\bar{\xi}} \varphi=0$, where i_{X} denotes the interior product.
(ii) The foliated ($0, q-1$)-form $i_{\bar{\xi}} \varphi$ is a $(0 ; q-1,0)$-form.
(iii) $\varphi \in \Omega^{0 ; q-1,1}(\mathcal{V})$ implies $i_{\bar{\xi}} \varphi \neq 0$.
(iv) If there is a $(0 ; q-1,0)$-form α such that $\varphi=\bar{\omega}_{0} \wedge \alpha$ then $\varphi \in \Omega^{0 ; q-1,1}(\mathcal{V})$.

Proof. It follows in a similar manner with the proof of Proposition 2.2. from [11].
Proposition 4.4. For every foliated $(0, q)$-form φ there are two forms $\varphi_{1} \in \Omega^{0 ; q, 0}(\mathcal{V})$ and $\varphi_{2} \in \Omega^{0 ; q-1,1}(\mathcal{V})$ such that $\varphi=\varphi_{1}+\varphi_{2}$, uniquely.

Proof. Let φ be a nonzero foliated ($0, q$)-form. If $i_{\bar{\xi}} \varphi=0$, then by Proposition 4.3, we have $\varphi \in \Omega^{0 ; q, 0}(\mathcal{V})$. So $\varphi=\varphi+0$.

If $i_{\bar{\xi}} \varphi \neq 0$, then let φ_{2} be the foliated ($0, q$)-form given by $\bar{\omega}_{0} \wedge i_{\bar{\xi}} \varphi$. By Proposition 4.3 (iv), it results φ_{2} is a ($0 ; q-1,1$)-form. Moreover, putting $\varphi_{1}=\varphi-\varphi_{2}$, we have

$$
i_{\bar{\xi}} \varphi_{1}=i_{\bar{\xi}} \varphi-i_{\bar{\xi}}\left(\bar{\omega}_{0} \wedge i_{\bar{\xi}} \varphi\right)=i_{\bar{\xi}} \varphi-\bar{\omega}_{0}(\overline{\bar{\xi}}) i_{\bar{\xi}} \varphi=0
$$

since $\bar{\omega}_{0}(\bar{\xi})=1$. So, φ_{1} is a $(0 ; q, 0)$-form and φ_{1} and φ_{2} are unique defined by φ. Obviously $\varphi=\varphi_{1}+\varphi_{2}$.

We have to remark that only the zero form can be simultaneous a $(0 ; q, 0)$ - and a $(0 ; q-$ 1,1)-form, respectively. The above proposition leads to the following decomposition:

$$
\begin{equation*}
\Omega^{0, q}(\mathcal{V})=\Omega^{0 ; q, 0}(\mathcal{V}) \oplus \Omega^{0 ; q-1,1}(\mathcal{V}) . \tag{4.3}
\end{equation*}
$$

A consequence of the Propositions 4.3 and 4.4 is
Proposition 4.5. Let φ be a foliated ($0, q$)-form. We have the equivalence

$$
\begin{equation*}
\varphi \in \Omega^{0 ; q-1,1}(\mathcal{V}) \Leftrightarrow \exists \alpha \in \Omega^{0 ; q-1,0}(\mathcal{V}) \text { such that } \varphi=\bar{\omega}_{0} \wedge \alpha . \tag{4.4}
\end{equation*}
$$

Moreover, the form α is uniquely determined.
Taking into account the characterization given in Proposition 4.3 (i) and the relation (4.4), it follows

Proposition 4.6. The following assertions hold:
(i) If $\varphi \in \Omega^{0 ; q, 0}(\mathcal{V})$ and $\psi \in \Omega^{0 ; s, 0}(\mathcal{V})$, then $\varphi \wedge \psi \in \Omega^{0 ; q+s, 0}(\mathcal{V})$.
(ii) If $\varphi \in \Omega^{0 ; q, 1}(\mathcal{V})$ and $\psi \in \Omega^{0 ; s, 0}(\mathcal{V})$, then $\varphi \wedge \psi \in \Omega^{0 ; q+s, 1}(\mathcal{V})$.
(iii) If $\varphi \in \Omega^{0 ; q, 1}(\mathcal{V})$ and $\psi \in \Omega^{0 ; s, 1}(\mathcal{V})$, then $\varphi \wedge \psi=0$.

Example 4.7. (i) $\bar{\omega}_{0} \in \Omega^{0 ; 0,1}(\mathcal{V})$ since there is the ($0 ; 0,0$)-form, the constant 1 function on E, such that $\bar{\omega}_{0}=\bar{\omega}_{0} \cdot 1$.
(ii) $\theta^{\bar{a}}=d \bar{\eta}^{a}-\bar{\eta}^{a} \bar{\omega}_{0} \in \Omega^{0 ; 1,0}(\mathcal{V})$, for each $a=1, \ldots, m$. Indeed

$$
\theta^{\bar{a}}(\bar{\xi})=d \bar{\eta}^{a}(\bar{\xi})-\bar{\omega}_{0}(\bar{\xi}) \bar{\eta}^{a}=0
$$

so $i_{\bar{\xi}} \theta^{\bar{a}}=0$. We have to remark that the foliated $(0,1)$-forms $\left\{\theta^{\bar{a}}\right\}, a=1, \ldots, m$ are linear dependent, since $\sum t_{\bar{a}} \theta^{\bar{a}}=0$.
(iii) $i_{\bar{\xi}}\left(\theta^{\bar{a}} \wedge \theta^{\bar{b}}\right)(Z)=\theta^{\bar{a}}(\bar{\xi}) \theta^{\bar{b}}(Z)-\theta^{\bar{b}}(\bar{\xi}) \theta^{\bar{a}}(Z)=0$, for any vertical vector field $Z \in \Gamma\left(T^{0,1} \mathcal{V}\right)$, hence $\theta^{\bar{a}} \wedge \theta^{\bar{b}} \in \Omega^{0 ; 2,0}(\mathcal{V})$.

Proposition 4.8. $\bar{\partial}_{\mathcal{V}} \varphi$ is a $(0 ; q, 1)$-form, for any $(0 ; q-1,1)$-form φ.
Proof. Let φ be a ($0 ; q-1,1$)-form. By (4.4), there is an unique ($0 ; q-1,0$)-form α such that $\varphi=\bar{\omega}_{0} \wedge \alpha$. By Proposition 4.4 we also have that $\alpha=i_{\bar{\xi}} \varphi$. Taking into account that $\bar{\omega}_{0}$ is an $\bar{\partial}_{\mathcal{V}}$-exact form, it follows

$$
\bar{\partial}_{\mathcal{V} \varphi}=\bar{\partial}_{\mathcal{V}}\left(\bar{\omega}_{0} \wedge \alpha\right)=-\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}} \alpha=-\bar{\omega}_{0} \wedge \beta_{1}-\bar{\omega}_{0} \wedge \beta_{2}
$$

where β_{1} and β_{2} are the $(0 ; q, 0)$ - and $(0 ; q-1,1)$-forms, respectively, components of the $(0, q)$-form $\bar{\partial}_{\mathcal{V}} \alpha$. By (4.4) we have $\beta_{2}=\bar{\omega}_{0} \wedge \gamma$ with $\gamma \in \Omega^{0 ; q-1,0}(\mathcal{V})$, so $\bar{\partial}_{\mathcal{V} \varphi}=-\bar{\omega}_{0} \wedge \beta_{1}$. Then $\bar{\partial}_{\mathcal{V} \varphi} \in \Omega^{0 ; q, 1}(\mathcal{V})$.

We can write

$$
\begin{equation*}
\bar{\partial}_{\mathcal{V}}\left(\Omega^{0 ; q-1,1}(\mathcal{V})\right) \subset \Omega^{0 ; q, 1}(\mathcal{V}) \tag{4.5}
\end{equation*}
$$

Now, we can consider p_{1} and p_{2} the projections of the module $\Omega^{0, q}(\mathcal{V})$ on its direct sumands from the relation (4.3), namely

$$
\begin{array}{r}
p_{1}: \Omega^{0, q}(\mathcal{V}) \rightarrow \Omega^{0 ; q, 0}(\mathcal{V}), p_{1} \varphi=\varphi-\bar{\omega}_{0} \wedge i_{\bar{\xi}} \varphi \\
p_{2}: \Omega^{0, q}(\mathcal{V}) \rightarrow \Omega^{0 ; q-1,1}(\mathcal{V}), p_{2} \varphi=\bar{\omega}_{0} \wedge i_{\bar{\xi}} \varphi \tag{4.7}
\end{array}
$$

for any $\varphi \in \Omega^{0, q}(\mathcal{V})$.
For an arbitrary foliated $(0, q)$-form φ, we have $\bar{\partial}_{\mathcal{V} \varphi}=\bar{\partial}_{\mathcal{V}}\left(p_{1} \varphi\right)+\bar{\partial}_{\mathcal{V}}\left(p_{2} \varphi\right)$. The relation (4.3) shows that $\bar{\partial}_{\mathcal{V}}\left(p_{2} \varphi\right)$ is a $(0 ; q, 1)$-form, hence $p_{1} \bar{\partial}_{\mathcal{V}}\left(p_{2} \varphi\right)=0$. It results

$$
\begin{equation*}
p_{1} \bar{\partial}_{\mathcal{V}} \varphi=p_{1} \bar{\partial}_{\mathcal{V}}\left(p_{1} \varphi\right), p_{2} \bar{\partial}_{\mathcal{V}} \varphi=p_{2} \bar{\partial}_{\mathcal{V}}\left(p_{1} \varphi\right)+p_{2} \bar{\partial}_{\mathcal{V}}\left(p_{2} \varphi\right) \tag{4.8}
\end{equation*}
$$

The above relations prove that

$$
\begin{equation*}
\bar{\partial}_{\mathcal{V}}\left(\Omega^{0 ; q, 0}(\mathcal{V})\right) \subset \Omega^{0 ; q+1,0}(\mathcal{V}) \oplus \Omega^{0 ; q, 1}(\mathcal{V}) \tag{4.9}
\end{equation*}
$$

which allows to define the following operators:

$$
\begin{gather*}
\bar{\partial}_{\mathcal{V}}^{1,0}: \Omega^{0 ; q, 0}(\mathcal{V}) \rightarrow \Omega^{0 ; q+1,0}(\mathcal{V}), \bar{\partial}_{\mathcal{V}}^{1,0} \varphi=p_{1} \bar{\partial}_{\mathcal{V}} \varphi \tag{4.10}\\
\bar{\partial}_{\mathcal{V}}^{0,1}: \Omega^{0 ; q, 0}(\mathcal{V}) \rightarrow \Omega^{0 ; q, 1}(\mathcal{V}), \bar{\partial}_{\mathcal{V}}^{0,1} \varphi=p_{2} \bar{\partial}_{\mathcal{V}} \varphi \tag{4.11}
\end{gather*}
$$

so that

$$
\begin{equation*}
\left.\bar{\partial}_{\mathcal{V}}\right|_{\Omega^{0 ; q, 0}(\mathcal{V})}=\bar{\partial}_{\mathcal{V}}^{1,0}+\bar{\partial}_{\mathcal{V}}^{0,1} \tag{4.12}
\end{equation*}
$$

Proposition 4.9. The operator $\bar{\partial}_{V}^{1,0}$ satisfies
(i) $\bar{\partial}_{\mathcal{V}}^{1,0}(\varphi \wedge \psi)=\bar{\partial}_{\mathcal{V}}^{1,0} \varphi \wedge \psi+(-1)^{q} \varphi \wedge \bar{\partial}_{\mathcal{V}}^{1,0} \psi$, for any $\varphi \in \Omega^{0 ; q, 0}(\mathcal{V}), \psi \in \Omega^{0 ; \xi, 0}(\mathcal{V})$.
(ii) $\left(\bar{\partial}_{V}^{1,0}\right)^{2}=0$.

Proof. (i) Let $\varphi \in \Omega^{0 ; q, 0}(\mathcal{V})$ and $\psi \in \Omega^{0 ; s, 0}(\mathcal{V})$. Since

$$
\bar{\partial}_{\mathcal{V}}(\varphi \wedge \psi)=\bar{\partial}_{\mathcal{V} \varphi} \wedge \psi+(-1)^{q} \varphi \wedge \bar{\partial}_{\mathcal{V}} \psi
$$

then by (4.12) it follows that

$$
\bar{\partial}_{\mathcal{V}}^{1,0}(\varphi \wedge \psi)+\bar{\partial}_{\mathcal{V}}^{0,1}(\varphi \wedge \psi)=\bar{\partial}_{\mathcal{V}}^{1,0} \varphi \wedge \psi+\bar{\partial}_{\mathcal{V}}^{0,1} \varphi \wedge \psi+(-1)^{q} \varphi \wedge \bar{\partial}_{\mathcal{V}}^{1,0} \psi+(-1)^{q} \varphi \wedge \bar{\partial}_{\mathcal{V}}^{0,1} \psi
$$

By equating the $(0 ; q+s+1,0)$ components in the both members of above relation, we get the desired result.
(ii) Let φ be a $(0 ; q, 0)$-form. By (4.6) and (4.10) we have that $\bar{\partial}_{\mathcal{V}}^{1,0} \varphi=\bar{\partial}_{\mathcal{V} \varphi} \varphi-\bar{\omega}_{0} \wedge$ $i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)$. Thus, using $\left(\bar{\partial}_{\mathcal{V}}\right)^{2}=0, \bar{\partial}_{\mathcal{V}} \bar{\omega}_{0}=0$ and $i_{\bar{\xi}} \bar{\omega}_{0}=1$, by direct calculations, one gets

$$
\begin{aligned}
\left(\bar{\partial}_{\mathcal{V}}^{1,0}\right)^{2} \varphi & =\bar{\partial}_{\mathcal{V}}^{1,0}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)-\bar{\partial}_{\mathcal{V}}^{1,0}\left(\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}}\right)\right) \\
& =-\bar{\partial}_{\mathcal{V}}\left(\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)\right)+\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}}\left(\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)\right)\right) \\
& \left.=\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}}\left(i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)\right)+\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(-\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}}\left(i_{\bar{\xi}} \bar{\partial}_{\mathcal{V}} \varphi\right)\right)\right) \\
& =\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}}\left(\bar{\xi}_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)\right)-\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}}\left(i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right)\right)=0
\end{aligned}
$$

which completes the proof.
Definition 4.10. We say that a $(0 ; q, 0)$-form φ is $\bar{\partial}_{V}^{1,0}$-closed if $\bar{\partial}_{\mathcal{V}}^{1,0} \varphi=0$ and it is called $\bar{\partial}_{\mathcal{V}}^{1,0}$-exact if $\varphi=\bar{\partial}_{\mathcal{V}}^{1,0} \psi$ for some $\psi \in \Omega^{0 ; q-1,0}(\mathcal{V})$.
Example 4.11. (i) For a foliated (0,1)-form φ, we have $p_{1} \varphi=\varphi-\varphi(\bar{\xi}) \bar{\omega}_{0}$ and $p_{2} \varphi=$ $\varphi(\bar{\xi}) \bar{\omega}{ }_{0}$.
(ii) Let $f \in \mathcal{F}(E)$ and $\bar{\partial}_{\mathcal{V}} f=\frac{\partial f}{\partial \bar{\eta}^{a}} \bar{\eta}^{a}$ its conjugated foliated derivative. Locally, we have

$$
\bar{\partial}_{\mathcal{V}}^{0,1} f=p_{2} \bar{\partial}_{\mathcal{V}} f=\left(\bar{\partial}_{\mathcal{V}} f\right)(\bar{\xi}) \bar{\omega}_{0}=\bar{\xi}(f) \bar{\omega}_{0}
$$

and

$$
\begin{aligned}
\bar{\partial}_{\mathcal{V}}^{1,0} f & =p_{1} \bar{\partial}_{\mathcal{V}} f=\bar{\partial}_{\mathcal{V}} f-\left(\bar{\partial}_{\mathcal{V}} f\right)(\bar{\xi}) \bar{\omega}_{0} \\
& =\frac{\partial f}{\partial \bar{\eta}^{a}} d \bar{\eta}^{a}-\bar{\eta}^{a} \frac{\partial f}{\partial \bar{\eta}^{a}} \bar{\omega}_{0}=\frac{\partial f}{\partial \bar{\eta}^{a}} \bar{\theta}^{\bar{a}}
\end{aligned}
$$

where $\theta^{\bar{a}}$ are the $(0 ; 1,0)$-forms given in Example 4.7. Moreover, taking into account the relation (3.4) and the fact $\sum t_{\bar{a}} \theta^{\bar{a}}=0$, it results that locally

$$
\begin{equation*}
\bar{\partial}_{\mathcal{V}}^{1,0} f=\left(Z_{\bar{a}} f\right) \theta^{\bar{a}} \tag{4.13}
\end{equation*}
$$

We have

$$
\bar{\partial}_{V}^{1,0} \bar{\eta}^{a}=\left(Z_{\bar{a}} \bar{\eta}^{b}\right) \theta^{\bar{a}}=\delta_{\bar{a}}^{\bar{b}} \theta^{\bar{a}}-t_{\bar{a}} \bar{\xi}\left(\bar{\eta}^{b}\right) \theta^{\bar{a}}=\theta^{\bar{b}}-\left(t_{\bar{a}} \theta^{\bar{a}}\right) \bar{\eta}^{b}=\theta^{\bar{b}},
$$

so the $(0 ; 1,0)$-forms $\theta^{\bar{b}}$ are exactly the $\bar{\partial}_{\mathcal{V}}^{1,0}$-derivatives of the local coordinates $\bar{\eta}^{b}$, for all $b=1, \ldots, m$.
(iii) The (0;2,0)-forms $\bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{b} \wedge \bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{c}$ are $\bar{\partial}_{\mathcal{V}}^{1,0}$-closed, for all $b, c=1, \ldots, m$.

Let us consider now an arbitrary foliated $(0,1)$-form on E. It is locally given in U by $\varphi=\varphi_{\bar{a}} d \bar{\eta}^{a}$, with $\varphi_{\bar{a}} \in \mathcal{F}(U)$ such that in $U \cap U^{\prime} \neq \phi$ we have $\varphi_{\bar{b}}^{\prime}=M_{\bar{a}}^{\bar{a}} \varphi_{\bar{a}}$. By the Proposition 4.3, φ is a $(0 ; 1,0)$-form on E iff $i_{\bar{\xi}} \varphi=0$ which is locally equivalent with $\varphi_{\bar{a}} \bar{\eta}^{a}=0$. Then, locally we have

$$
\varphi=\varphi_{\bar{a}} d \bar{\eta}^{a}=\varphi_{\bar{a}}\left(\bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{a}+\bar{\eta}^{a} \bar{\omega}_{0}\right)=\varphi_{\bar{a}} \bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{a}+\left(\varphi_{\bar{a}} \bar{\eta}^{a}\right) \bar{\omega}_{0}=\varphi_{\bar{a}} \bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{a} .
$$

Conversely, the expression locally given by $\varphi_{\bar{a}} \bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{a}$, with the functions $\varphi_{\bar{a}}$ satisfying $\varphi_{\bar{b}}^{\prime}=$ $M_{\bar{b}}^{\bar{a}} \varphi_{\bar{a}}$ is a $(0 ; 1,0)$-form because $\bar{\partial}_{\mathcal{V}}^{1,0} \bar{\eta}^{a}(\bar{\xi})=0$, for all $a=1, \ldots, m$.

$5 \quad \mathbf{A} \bar{\partial}_{\mathcal{V}}^{1,0}$-cohomology

In this section we define and study some new cohomology groups of (E, L) with rspect to vertical Liouville distribution.

By the Proposition 4.9, we can consider the differential complex

$$
0 \longrightarrow \Omega^{0 ; 0,0}(\mathcal{V}) \xrightarrow{\frac{\bar{d}^{1.0} \cdot v}{\longrightarrow}} \Omega^{0 ; 1,0}(\mathcal{V}) \xrightarrow{\frac{\bar{d}^{1.0}}{\longrightarrow}} \ldots \xrightarrow{\frac{\bar{d}^{1,0}}{\longrightarrow}} \Omega^{0 ; m-1,0}(\mathcal{V}) \longrightarrow 0,
$$

which will be called the $\bar{\partial}_{\mathcal{V}}^{1,0}$-complex of (E, L, \mathcal{V}); its homology $H_{\mathcal{V}}^{0 ; q, 0}(E)$ is called the Dolbeault cohomology along the vertical Liouville distribution on the complex Finsler bundle (E, L).

Now, by using the Theorem 2.1 we can prove a resolution property of the operator $\bar{\partial}_{\mathcal{V}}^{1,0}$. Firstly, we prove a Grothendieck-Dolbeault type Lemma for the operator $\bar{\partial}_{\mathcal{V}}^{1,0}$, namely
Theorem 5.1. Let $\varphi \in \Omega^{0 ; q, 0}\left(\left.\mathcal{V}\right|_{U}\right)$ be a $\bar{\partial}_{\mathcal{V}}^{1,0}$-closed form and $q \geq 1$. Then there exists $\psi \in$ $\Omega^{0 ; q-1,0}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right)$, and such that $\varphi=\bar{\partial}_{\mathcal{V}}^{1,0} \psi$ on $U^{\prime} \subset U$.

Proof. Let $\varphi \in \Omega^{0 ; q, 0}\left(\left.\mathcal{V}\right|_{U}\right)$ such that $\bar{\partial}_{\mathcal{V}}^{1,0} \varphi=0$. Then

$$
\bar{\partial}_{\mathcal{V}} \varphi=\bar{\partial}_{\mathcal{V}}^{1,0} \varphi+\bar{\partial}_{\mathcal{V}}^{0,1} \varphi=\bar{\partial}_{\mathcal{V}}^{0,1} \varphi=\bar{\omega}_{0} \wedge i_{\bar{\xi}}\left(\bar{\partial}_{\mathcal{V}} \varphi\right),
$$

so $\bar{\partial}_{\mathcal{V} \varphi}=0$ (modulo terms containing $\bar{\omega}_{0}$).
Hence on the space $\bar{\omega}_{0}=0$ we have that φ is $\bar{\partial}_{\mathcal{V}}$-closed. Now, by Theorem 2.1 there exists a foliated $(0, q-1)$-form τ defined on $U^{\prime} \subset U$ such that

$$
\begin{equation*}
\varphi=\bar{\partial}_{\mathcal{V} \tau} \tau+\lambda \wedge \bar{\omega}_{0}, \lambda \in \Omega^{0, q-1}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right) . \tag{5.1}
\end{equation*}
$$

Following the Proposition 4.4 we have that $\tau=\tau_{1}+\bar{\omega}_{0} \wedge i_{\bar{\xi}} \tau$, with $\tau_{1}=p_{1} \tau \in \Omega^{0 ; q-1,0}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right)$. Now, the relation (5.1) becomes

$$
\begin{equation*}
\varphi=\bar{\partial}_{\mathcal{V}} \tau_{1}-\bar{\omega}_{0} \wedge \bar{\partial}_{\mathcal{V}} i_{\bar{\xi}} \tau+\lambda \wedge \bar{\omega}_{0} . \tag{5.2}
\end{equation*}
$$

Here $\varphi \in \Omega^{0 ; q, 0}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right), \bar{\omega}_{0} \wedge\left(\lambda+\bar{\partial}_{\mathcal{V}} i_{\bar{\xi}} \tau\right) \in \Omega^{0 ; q-1,1}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right)$ and

$$
\bar{\partial}_{\mathcal{V}} \tau_{1}=\bar{\partial}_{\mathcal{V}}^{1,0} \tau_{1}+\bar{\partial}_{\mathcal{V}}^{0,1} \tau_{1} \in \Omega^{0 ; q, 0}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right) \oplus \Omega^{0 ; q-1,1}\left(\left.\mathcal{V}\right|_{U^{\prime}}\right)
$$

Now, by equating the same components in the relation (5.2) it results $\varphi=\bar{\partial}_{\mathcal{V}}^{1,0} \tau_{1}$ on U^{\prime}.
Let $\Phi^{0 ; 0,0}$ be the sheaf of germs of functions on E which satisfies $\bar{\partial}_{\mathcal{V}}^{1,0} f=0$ and $\mathcal{F}^{0 ; q, 0}$ be the sheaf of germs of $(0 ; q, 0)$-forms on E. We denote by $i: \Phi^{0 ; 0,0} \rightarrow \mathcal{F}^{0 ; 0,0}$ be the natural inclusion. The sheaves $\mathcal{F}^{0 ; q, 0}$ are fine and taking into account the Theorem 5.1, it follows that the sequence of sheaves

$$
0 \longrightarrow \Phi^{0 ; 0,0} \xrightarrow{i} \mathcal{F}^{0 ; 0,0} \xrightarrow{\bar{\partial}^{1,0}} \mathcal{F}^{0 ; 1,0} \xrightarrow{\stackrel{\bar{\partial}^{1}, 0}{\longrightarrow}} \ldots \xrightarrow{\overline{\bar{\sigma}}^{1,0}} \mathcal{F}^{0 ; m-1,0} \longrightarrow 0
$$

is a fine resolution of $\Phi^{0 ; 0,0}$ and we denote by $H^{q}\left(E, \Phi^{0 ; 0,0}\right)$ the cohomology groups of E with the coefficients in the sheaf $\Phi^{0 ; 0,0}$. Then, we obtain a de Rham type isomorphism

$$
\begin{equation*}
H^{q}\left(E, \Phi^{0 ; 0,0}\right) \approx H_{V}^{0 ; q, 0}(E), \text { for any } q=1, \ldots, m-1 . \tag{5.3}
\end{equation*}
$$

By (4.5), the Dolbeault complex

$$
0 \rightarrow \mathcal{F}^{0,0}(\mathcal{V}) \xrightarrow{\bar{\partial}_{V}} \Omega^{0,1}(\mathcal{V}) \xrightarrow{\bar{\partial}_{v}} \ldots \xrightarrow{\bar{\partial}_{V}} \Omega^{0, m}(\mathcal{V}) \longrightarrow 0,
$$

admits the subcomplex

$$
0 \longrightarrow \Phi^{0 ; 0,0} \xrightarrow{\bar{\partial}_{V}} \Omega^{0 ; 0,1}(\mathcal{V}) \xrightarrow{\bar{\partial}_{v}} \ldots \xrightarrow{\bar{\partial}_{V}} \Omega^{0 ; m-1,1}(\mathcal{V}) \longrightarrow 0 .
$$

We denote by $Z_{\mathcal{V}}^{0 ; q, 1}(E)$ and $B_{\mathcal{V}}^{0 ; q, 1}(E)$ the spaces of the $\bar{\partial}_{\mathcal{V}}$-closed and $\bar{\partial}_{\mathcal{V}}$-exacts $(0 ; q, 1)$ forms, respectively, and let

$$
\begin{equation*}
H_{V}^{0 ; q, 1}(E)=Z_{\mathcal{V}}^{0 ; q, 1}(E) / B_{V}^{0 ; q, 1}(E) \tag{5.4}
\end{equation*}
$$

be the q-cohomology group of the last complex.
Theorem 5.2. The cohomology groups $H_{\mathcal{V}}^{0 ; q, 1}(E)$ and $H^{q}\left(E, \Phi^{0 ; 0,0}\right)$ are isomorphic.
Proof. By Proposition 4.5 we can define the map

$$
\zeta: Z_{\mathcal{V}}^{0 ; q, 1}(E) \rightarrow Z_{\mathcal{V}}^{0 ; q, 0}(E), \quad \zeta(\varphi)=\alpha
$$

for $\alpha \in \Omega^{0 ; q, 0}(\mathcal{V})$ such that $\varphi=\alpha \wedge \bar{\omega}_{0}$. It is a well-defined map since the equality

$$
\begin{equation*}
0=\bar{\partial}_{\mathcal{V} \varphi}=\bar{\partial}_{\mathcal{V}} \alpha \wedge \bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}^{1,0} \alpha \wedge \bar{\omega}_{0}+\bar{\partial}_{\hat{V}}^{0,1} \alpha \wedge \bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}^{1,0} \alpha \wedge \bar{\omega}_{0} \tag{5.5}
\end{equation*}
$$

implies $\bar{\partial}_{\mathcal{V}}^{1,0} \alpha=0$. Moreover, ζ is a bijective morphism of groups and $\zeta\left(B_{\mathcal{V}}^{0 ; q, 1}(E)=B_{\mathcal{V}}^{0 ; q, 0}(E)\right.$. Indeed, for $\varphi \in B_{\mathcal{V}}^{0 ; q, 1}(E)$, there is $\theta \in \Omega^{0 ; q-1,1}(\mathcal{V})$ such that $\varphi=\bar{\partial}_{\mathcal{V}} \theta$. By (4.4), there are $\alpha \in \Omega^{0 ; q, 0}(\mathcal{V}), \beta \in \Omega^{0 ; q-1,0}(\mathcal{V})$ such that $\varphi=\alpha \wedge \bar{\omega}_{0}$ and $\theta=\beta \wedge \bar{\omega}_{0}$. Then, we have

$$
\alpha \wedge \bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}\left(\beta \wedge \bar{\omega}_{0}\right)=\bar{\partial}_{\mathcal{V}}^{1,0} \beta \wedge \bar{\omega}_{0}
$$

It follows $\alpha \in B^{0 ; q, 0}(\mathcal{V})$. Conversely, $\alpha=\bar{\partial}_{\mathcal{V}}^{1,0} \beta$ implies $\alpha \wedge \bar{\omega}_{0}=\bar{\partial}_{\mathcal{V}}\left(\beta \wedge \bar{\omega}_{0}\right)$. We obtain that $\zeta^{*}: H_{\mathcal{V}}^{0 ; q, 1}(E) \rightarrow H_{\mathcal{V}}^{0 ; q, 0}(E), \zeta^{*}([\varphi])=[\zeta(\varphi)]$, for $\varphi \in Z_{\mathcal{V}}^{0 ; q, 1}(E)$, is bijective.

Finally, by (5.3) and above theorem the isomorphism $H_{\mathcal{V}}^{0 ; q, 1}(E) \approx H_{\mathcal{V}}^{0 ; q, 0}(E)$ holds for any $q=1, \ldots, m-1$.

References

[1] M. Abate and G. Patrizio, Finsler metrics-A global approach, Lectures Notes in Math., 1591, Springer-Verlag, 1994.
[2] T. Aikou, Finsler Geometry on Complex Vector Bundles, Riemann-Finsler Geometry, MSRI Publ. 50, (2004), pp 83-105.
[3] A. Bejancu and H. R. Farran, On The Vertical Bundle of a pseudo-Finsler Manifold, Int. J. Math. and Math. Sci. 22 (3), (1997), pp 637-642.
[4] A. Bejancu and H. R. Farran, Finsler Geometry and Natural Foliations on the Tangent Bundle, Rep. on Mathematical Physics 58 (2006), pp 131-146.
[5] S. Dragomir and P. Nagy, Complex Finsler structures on CR-holomorphic vector bundles, Rendiconti di Matematica, 19, (1999), pp 427-447.
[6] A. El Kacimi Alaoui, The $\bar{\partial}$ operator along the leaves and Guichard's theorem for a complex simple foliation, Math. Ann. 347 (4) (2010), pp 885-897.
[7] A. El Kacimi Alaoui and J. Slimène, Cohomologie de Dolbeault le long des feuilles de certains feuilletages complexes, Ann. Inst. Fourier, Grenoble 60 (1) (2010), pp 727757.
[8] S. Kobayashi, Negative Vector Bundles and Complex Finsler Sructures, Nagoya Math. J. 57 (1975), pp 153-166.
[9] S. Kobayashi, Complex Finsler Vector Bundles, Contemp. Math., 196 (1996), pp 145152.
[10] A. Manea, Some new types of vertical 2-jets on the tangent bundle of a Finsler manifold, U.P.Bucharest Sci. Bull., Series A, Vol. 72, Iss. 1 (2010), pp 179-196.
[11] A. Manea, A de Rham theorem for a Liouville foliation on $T M^{0}$ over a Finsler manifold M, Differential Geometry - Dynamical Systems, 13, (2011), pp 169-178.
[12] J. Morrow and K. Kodaira, Complex Manifolds, AMS Chelsea Publ., 1971.
[13] G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141 FTPH, 2004.
[14] I. Vaisman, Variétés riemanniene feuilletées, Czechoslovak Math. J., 21 (1971), pp 4675.
[15] I. Vaisman, Sur la cohomologie des varietés analytiques complexes feuilletées, C. R. Acad. Sc. Paris, t. 273 (1971), pp 1067-1070.
[16] I. Vaisman, Cohomology and differential forms, New York, M. Dekker Publ. House, 1973.

[^0]: *E-mail address: cristian.ida@unitbv.ro

