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Abstract

In this paper we define a vertical Liouville distribution in the vertical foliated distribu-
tion on a complex Finsler bundle and we prove that it is an integrable one. Next, some
new operators on foliated forms along the vertical Liouville distribution are defined, a
Dolbeault type lemma is proved and new cohomology groups are studied.
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1 Introduction

The idea of decomposing the exterior derivative for real smooth or complex analytic foliated
manifolds and the study of their cohomology is due to I. Vaisman, see [14, 15]. There are
proved some Poincaré type Lemmas with respect to some differential operators correspond-
ing to the foliated type (0, 1) or to the mixed type (0, 1) for the analytic case, respectively.
Different from [14, 15], recently, A. El Kacimi Alaoui in [6, 7], study a Dolbeault coho-
mology along the leaves of complex foliations and states a foliated Grothendieck-Dolbeault
Lemma, see [6] p. 889.

Recently, in [11] is studied a new cohomology with respect to a Liouville foliation on
the tangent bundle of a real Finsler manifold and a de Rham type theorem is obtained. The
main goal of the present paper is to obtain a complex analogue of these results as a Dolbeault
cohomology along the vertical Liouville distribution on complex Finsler bundles. Firstly,
we consider V the vertical foliation of a holomorphic vector bundle and following [6, 7], we
make a short review about Cauchy-Riemann operators and Dolbeault cohomology groups
along the leaves of the foliation V. Next, by analogy with the real case [3, 4], we define a
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vertical complex Liouville distribution on the total space of a complex Finsler bundle (£, L)
and we get an adapted basis on the holomorphic vertical distribution with respect to the
orthogonal splitting 710V = £19V @ (£}, where {¢} is the complex line bundle spanned by
the vertical complex Liouville vector field £ over (E, L) and L9 is the vertical Liouville
distribution on (E,L). We also prove that the distribution LYY 5 an integrable one. In
the last two sections, by analogy with [11], we consider new type of foliated forms of
type (0;¢,0) and (0; g — 1, 1), respectively, with respect to conjugated Liouville distribution
L% and we obtain a decomposition of the conjugated foliated differential operator Oy =
5(1{,0 +59,}1 for foliated forms of type (0;¢,0). Finally, by applying some results from [6, 7]
concerning to the operator Ay we prove a Grothendieck-Dolbeault type Lemma with respect

=1, . .
to the operator d, and new cohomology groups are obtained and studied.

2 Preliminaries

Let 7 : E — M be a holomorphic vector bundle of rank m over an n-dimensional complex
manifold M. Consider U = {U,} an open covering set of M, (Z), k=1,...,n, local complex
coordinates in chart (U,¢) and sy = {s,},a = 1,...,m, a local frame for the sections of E
over U. The covering {U, sy}, U € U induces the complex coordinates system u = (zk,n“)
onn~'(U), where s = n%s, is a sectionon E, =77 '(z). Inze UNU ', the transition functions
guy UNU " — GL(m,C) has a local representation by the complex matrix M;(z) and then
if (z'*,17'%) are the complex coordinates in 7~ (U") the transition laws of these coordinates
are

F =4, 0" = My, @1

where z ¥, Mj, are holomorphic functions on 7/ variables and det Mj #0.
As we already know, the total space of E has a natural structure of n + m-dimensional
complex manifold because the transition functions M} (z) are holomorphic. Let J be the nat-

ural complex structure of the manifold E and T'°E and T*!'E = T'OE be its holomorphic
and antiholomorphic subbundles, respectively. Let TcE = T'"’E@ T%!E be the complex-
ified tangent bundle of the real tangent bundle Tr E. From (2.1) it results the following
changes for the natural local frames on T;’OE :

'k oM¢
alzai‘i/ {’nbi/,i:MZ 6} . (2.2)
0zl 97 97k 97/ " og'e’ onp on'a

By conjugation over all in (2.2) we obtain the change rules of the local frame on TL?’IE , and
then the behaviour of the J complex structure is

0 0 .0 0 R, 0

)
I =i I =i—, J(—=) = —i—, /(=
&= o5 o) = o (azk) o o7

0
=—i—. 2.3
) o (2.3)

Let V be the vertical foliation on Eg = E —{zerosection}, i.e. the simply foliation de-
fined by C* submersion 7 : Eg — M, and characterized by z* = const. on the leaves.

The relations (2.2) show that 710V = span{ aga }c THOE is a foliated holomorphic vector
subbundle, called the vertical distribution, which is an integrable one. In particular, J«y :
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TcV — TcV, defined by

0 0 0
. g3y ;0
v(aﬁa) laﬁ“

0
)

— i, 2.4
o lana (2.4)

J(
is called the complex structure along the leaves, where TcV = T 0V @ TV, We also
notice that the Nijenhuis tensor along the leaves associated to Jq, vanish, namely

Ny(X,Y) =2{[Jy X, JyY] - [X, Y] = Jy[Jy X, Y] = Jy[X,JyY]} =0

for every X,Y e I'(TcV).

Let Q24(V) be the space of all foliated differential forms of type (p, g) that is, differen-
tial forms on E which can be written in local coordinates u = (Z, n?), adapted to the foliation
by

¢= Z @4,5,@mdn’"r Adi, (2.5)

where A, = (ay...ap), B; = (b1 ...b,), and the sum is after the indices a; < ... <a, and
by < ... < by, respectively. We also notice that the coeficient functions Par.app.b, A€
C*®-functions on (z,77) and are skew symmetric in the indices (ai,...,a,) and (b1,...,b,),
respectively.
Then, the set of all foliated r-differential forms on E admits the decomposition Q" (V) =
GB;, +qQ”"’((V ), r=0,1,...,2m and the exterior derivative along the leaves d-y, admits the
decomposition
dy =0y +5rv, (2.6)

where the terms denote (1,0) and (0, 1) foliated type, respectively. The Cauchy-Riemann
operators along the leaves, are locally defined by

dyp=Y %dnﬂ‘ N AP By =D #dﬁ” ndi ndiP (@7
a=1

a=1

2 — —
These operators have the properties 6(2‘/ =04, =0 and dydvy + dydvy = 0, respectively. The
differential complex

d d d
0— V) 5 Q' V)5 ... 5" V)—0
is called the d-complex of (E,V); its homology HQ(E) is called the foliated de Rham
cohomology of the holomorphic foliation (E£,V). The differential complex
0 dy 1 dy By m
0— QP°(V) - QP(V)— ... > QP (V) — 0

is called the d-complex of (E,V); its homology HY(E) is called the foliated Dolbeault
cohomology of the holomorphic foliation (E,V).
Locally, the operator 0y satisfies a Grothendieck-Dolbeault Lemma, namely

Theorem 2.1. ([6]). Let ¢ be a by -closed foliated differential form of type (p,q) defined
on an open U C E. Then, there exists a foliated differential form  of type (p,q — 1) defined
on U c U and such that ¢ = dapp.
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One can describe the cohomology H(’;,"(E) by using a sheaf which is analogous to the
sheaf of germs of holomorphic p-forms on a complex manifold.

Definition 2.2. A p-form ¢ is said to be V-holomorphic, if it is foliated, of type (p,0) and
satisfies d¢ = 0.

Locally, a V-holomorphic p-form can be written: ¢ = ¢4, (2, n)dnr with %4, (z,m) holo-
morphic on 7.

Let CDf?V be the sheaf of germs of V-holomorphic p-forms on E and F7-4(V) the sheaf
of germs of foliated forms of type (p,q); F74(V) is a fine sheaf. Theorem 2.1 implies the:

Proposition 2.3. The sequence of sheaves:

' ) ]
0— O, — FPUV) ... 5 FPV) — 0
is a fine resolution of(I)ﬁ,. So we have Hq(E,CDf)V) ~ H$4(E), for p,g=0,1,...,m.

We notice that H*(E, CDﬁ,) is not finite dimensional because E is not compact.

3 Vertical Liouville distribution on a complex Finsler bundle

Let 7*E — Ey be the pullback of E by . Given a global section s : M — E its natural lift is
the section
51 Eo > n'E, s(u) = (u, s(n(w))), u = (z,1) € Eo. 3.1

Given a local frame {s1,..., s;,} of E on the open set U C M, then {s1,...,s;,} is alocal frame
of 7E on 77 (U) C Ey.

LetL=F?:E—>R,U{0}bea complex Finsler structure on E (for necessary definitions
see for instance [1, 2, 8, 13]), and we set

L L 0L O*L

H:—,Hfz—’ =—,H,:—
o TP g T anron T oy

etc.

Let us put H(Z W) = H ;) Z°W", where Z = Z5,(u), W = WS,(u) € T, (" E), u € 7\ (U).
Then H is globally defined. We say that L is convex if H is positive definite. If L is convex,
H is a Hermitian metric in 7°E — Ej. Also, by the homogeneity condition of a complex
Finsler structure, namely L(z,An) = |A]>L(z,n) for any A € C — {0}, we have, see [8], the
following properties:

Hyn" =0, Hagﬁa =0,H;" =L, Hgﬁb =L, (3.2)
Hgon' =0, Hyp i’ = 0, Hp 7’ = Ha, (3.3)
Hgn'" = Hy, Hii' = Ha, Hpn T = L. (3.4)

The (globally defined) bundle isomorphism [5],

0
y:n*E—>T]’O(V,y(s}):ﬁ,azl,...,m, (3.5)
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induces a Hermitian metric structure on 7%V, denoted again by H, and defined by

9

— — 0
H(Z,W) = H ;7W', forany Z = Z'——, W = W'—— e [(T"0V), (3.6)
a ana 677b
An important global vertical vector field is defined by & = ¢ 192” and it is called the vertical

complex Liouville vector field (or vertical radial complex vector field). We notice that the
third equation of (3.4) says that _
L=H(,8) >0, (3.7

so & is an embedding of E into 710V

Let {¢} be the complex line bundle over E spanned by ¢ and we define the vertical
Liouville distribution on (£, L) as the complementary orthogonal distribution, denoted by
L0V o {¢} in TV with respect to H, namely 710 = £19V g (£). Hence, L0V is
defined by

[(LYYV) = {(Z e TV, HZ,E) = 0). (3.8)
Consequently, let us consider the vertical vector fields
z=2 Ea=1 (3.9)
=—-t,¢,a=1,....m, .
a 877“ a

where the functions #,(z,n) are defined by the conditions
H(Z;,&)=0,a=1,...,m. (3.10)

Thus, the above conditions become H (a%,g) —t,H(, E) =0foreverya=1,...,m, so, taking
into account (3.4) and (3.7), we obtain the local expression of the functions ¢, in a local chart

(U,(Z,n) as
H,
tazf,aZI,...,m. (311)

If (U, (Z".,n'b)) is another local chart on E, thenon UNU’ # ¢, we have

[ = P _ L v e vab ;= M,
b I 1 Va pgttca ple>
so we obtain the following changing rule for the vector fields from (3.9)
Z,=MiZ,, b=1,...,m. (3.12)
By conjugation we obtain the decomposition

TV = L%V o8l e L2 Vo ig).

Proposition 3.1. The functions {t,},a = 1,...,m, satisfies

ta* =tz =1, Zan" = Zg1j" = 0, (3.13)
o, H, o, Hyp
=ty —= = Lt (3.14)
on L onP L
- ot
€ty = —14, &1, =0, Ua_j,:_fb;na(ffa)=—1- (3.15)

on
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Proof. We have that 7,7 = %n“ =1 and similarly z;5" = Hfﬁ” =1, where we used (3.11)
and the last two equalities from (3.2). Now, Z,n" = (067 —t,6)n% = 1—1t,n* =0 and similarly
for conjugated. Thus, the relations (3.13) are proved. Similarly, by direct calculations using
(3.2), (3.4) and (3.11), one gets (3.14) and (3.15). O

Theorem 3.2. The vertical Liouville distribution £V is integrable.

Proof. The proof of this theorem is based on the ideas of Theorem 3.1. from [3]. Let
Z,W e T(L"0V). As T1O9V is an integrable distribution on E, it is sufficient to show that
[Z, W] has no component with respect to £.

By using (3.8), we obtain that Z € T(£L"°V) if and only if

H ;7% =0, (3.16)

where Z%(z,n7) are the components of Z. Differentiate (3.16) with respect to n° we get

a

Hz 7% +Hgz—7" =0, foranyc=1,.. (3.17)

and taking into account the last equation of (3.3) we have

a d
HacZ“+Haba 17 =0, foranyc=1,...,m. (3.18)
n¢
Thus,
_ HW“ 0Z°
H(ZW1.é) = Hgi ”( 2 =5
= —(Hg W“Z‘ - H,.Z°W°)
=0
which finish the proof. O

We also notice that the above theorem it follows from the straightforward calculus of
Lie brackets, namely
(Za,2p) = taZp —1p 24, [Za’é:] =2, (3.19)

[Za,Z;] , [Zg,€] = (3.20)

and its conjugates.

By the conditions (3.10), {Z1,...,Z,} are m vectors fields orthogonal to &, so they belong
to the (m — 1)-dimensional distribution £!9V. Tt results that they are linear dependent and,
from (3.13) we obtain

1
Iy =—— n“Za, (3.21)

n

=

since the local coordinate i7" is nonzero everywhere.
We have

Proposition 3.3. The system of vertical vector fields {Z,,...,Z,-1,¢} is a local basis of
[(T'OV), called adapted.
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Proof. The proof is similar with the analogue result from real case, see [10], and it consist
to check that the rank of the matrix of change from the natural basis { 66,1} a=1,...,mof

L(TYYYV) to {Z1,...,Zm-1,&) is equal to m. O

In the end of this section we notice the following concludent remark: Let (U (7 n'b))
and (U, (zF,n")) be two local charts which domains overlap, where n'® and 5 are nonzero
functions (in every local chart on E there is at least one nonzero coordinate function %). The

adapted basis in U'is {Z Zb 1,Zb NI Z Z,,,¢}. Now, similarly to [11], the determinant
of the change matrix {Zl,... m—1,€} — { Zb I’Zb+1"‘ s m,f} on 710V ig equal to

_1\yn+b U_,b a
(=1 (L7) det M2 # 0,

4 New operators on foliated forms with respect to vertical Liou-
ville distribution

Proposition 4.1. The foliated (0, 1)-form wq = tzdn" is globally defined and satisfies
@@ =1,@0(Zs) = 0, @9 = dy(InL) .1
foralla=1,...,m—1, where Z, are given by (3.9) and L is the complex Finsler structure.

Proof. In UNU" # ¢ we have 52) = I'Edﬁ/b = MgtaMgdﬁ" = tzdn" = wy. We also have
dT7”(E) =7, for all @ = 1,...,m, and taking into account the first relation of (3.13) it re-
sults

o) =1, 00(Zg) = tzd7f" (=5 — 1zE) = 1z0% — tgta7" = 0,

0
a—d
where 6% denotes the Kronecker symbols. By conjugation in the relation (3.21) it results
also wo(Zz) = 0. Now, we have

olnL

dy(InL) = 5

H,
dn = Tadﬁa = tzd1j" = Wy,
which ends the proof. O

We notice that the equality wg = éry(ln L) shows that wy is an gq/—exact foliated (0, 1)-
form and the conjugated vertical Liouville distribution £%'V is defined by the equation
wp =0.

In the following, we will consider QY4(V) c QP4(V) the subspace of all foliated forms
of type (0,g) on E.

Definition 4.2. A foliated (0, q)-form ¢ € Q%4(V) is called a (0; q1,q2)-form iff for any
vertical vector fields Zy,...,Z, € LT p), q=q1+q2, wehave o(Zy,...,Z,) # 0 only if q;
arguments are in I'( L% 1(V) and g» arguments are in T({£}).

Since {f} is a line distribution, we can talk only about (0; ¢, g>)-forms with ¢; € {0, 1}.
We will denote the space of (0;q1,q2)-forms by Q¥41:92(Y). By the above definition, we
have the equivalence

pe Q¥ NNV o w(z,...,2,)=0,YZ,..., 2, e T(LYV). (4.2)



78 C.Ida

Proposition 4.3. Let ¢ be a nonzero foliated (0, q)-form on E. The following assertions are
true

(i) ¢ € QU0 V) if izp = 0, where ix denotes the interior product.
(ii) The foliated (0,q — 1)-form igcp is a (0;q—1,0)-form.
(iii) ¢ € Q¥=1N(V) implies izp # 0.
(iv) If there is a (0;q —1,0)-form a such that ¢ = Wy A @ then ¢ € Qa-L1(),
Proof. It follows in a similar manner with the proof of Proposition 2.2. from [11]. O

Proposition 4.4. For every foliated (0,q)-form ¢ there are two forms ¢ € Q%40(V) and
@3 € QULN (VYY) such that ¢ = @1 + @2, uniquely.

Proof. Let ¢ be a nonzero foliated (0, g)-form. If izp = 0, then by Proposition 4.3, we have
@ € QYY) So p = +0.

If igtp # 0, then let ¢, be the foliated (0, g)-form given by wg A iggo. By Proposition 4.3
(iv), it results ¢, is a (0; g — 1, 1)-form. Moreover, putting ¢; = ¢ — >, we have

izp1 = igp —ig(Wo N igp) = izp— Eo(g)igso =0
since @o(€) = 1. So, ¢y is a (0;¢,0)-form and ¢; and ¢ are unique defined by ¢. Obviously
Y=t O

We have to remark that only the zero form can be simultaneous a (0;¢,0)- and a (0;q —
1,1)-form, respectively. The above proposition leads to the following decomposition:

Q%) = Q"0 V)e Q¥ (V). (4.3)
A consequence of the Propositions 4.3 and 4.4 is
Proposition 4.5. Let ¢ be a foliated (0, q)-form. We have the equivalence
¢ € QYY) o Ja € Q¥10(V) such that ¢ = @ A . (4.4)
Moreover, the form « is uniquely determined.

Taking into account the characterization given in Proposition 4.3 (i) and the relation
(4.4), it follows

Proposition 4.6. The following assertions hold:
(i) If ¢ € Q¥0(V) and y € Q¥O(V), then ¢ Ay € QUI0(Y),
(ii) If ¢ € QUL (V) and y € QU5O(V), then ¢ Ay € QUHS1(Y),
(iii) If o € QU1 (V) and y € QOS1(V), then o Ay = 0.

Example 4.7. (i) wp € QY01 since there is the (0;0,0)-form, the constant 1 function
on E, such that wg = wg - 1.
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(i) 69 = di® - 7w € Q¥0(V), foreach a = 1,...,m. Indeed
6°(€) = dif" (&) ~ w7 = 0,
SO ig@a = 0. We have to remark that the foliated (0, 1)-forms {#*},a = 1,...,m are
linear dependent, since " ;6% = 0.
(iii) iz(0" AOP)(Z) = 67 (E)6P(2) - 6" (E)0°(Z) = 0, for any vertical vector field Z € [(T*!V),
hence 69 A 6 € QU20(p),
Proposition 4.8. dy¢ is a (0;q, 1)-form, for any (0;q—1,1)-form ¢.

Proof. Let ¢ be a (0;g—1,1)-form. By (4.4), there is an unique (0;g — 1,0)-form « such
that ¢ = wp A @. By Proposition 4.4 we also have that @ = izp. Taking into account that wq

is an d-exact form, it follows
Oyp = dy(wo ANa) = —wo A dya = —wo AP1 —wo A B2,

where arld B are the (0;¢,0)- and (0;q — 1, 1)-forms, respectively, components of the
(0,g)-form dya. By (4.4) we have B, = wo Ay with y € Q¥ 10(V), s0 oy = —wo AP
Then 0y € Q%41 (V). O

We can write B
0 ( Q4 (V)) c Q¥ (V). 4.5)

Now, we can consider p; and p, the projections of the module Q%4(V’) on its direct sumands
from the relation (4.3), namely

p1: QYY) = Q¥V) | pro= - Aigp (4.6)

p2: QYY) - QUMY | pap =T Aigp (4.7)

for any ¢ € Q4(V). L ~
For an arbitrary foliated (0, g)-form ¢, we have dy¢ = dy/(p1¢) + O(p2¢p). The relation
(4.3) shows that d/(po¢) is a (0; g, 1)-form, hence p;d(p2¢) = 0. It results

P10y = p1dy(p19), P20ye = p20q(p19) + P20y (p2g). (4.8)
The above relations prove that
O (Q%40 () ¢ QY10 @ Q%% () (4.9)

which allows to define the following operators:

3y : QU0 - QUIOY) G0 = G, (4.10)
By : QYIOV) - Q¥ (V) 3y = prde, “.11)

so that
—-1,0 =0,1

Ayluaocy) = Oy +0y . (4.12)
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Proposition 4.9. The operator 5(1{,0 satisfies
(i) Doy (@A) = By A+ (= 1) A Doy s, for any p € QHO(V), y € QU(V),
(ii) @) = 0.
Proof. (i) Let ¢ € Q%¢%(V) and y € Q%9(V). Since
0@ AY) = Dy N+ (= 1) N Dy
then by (4.12) it follows that
By (9 M)+ 3 (0 AU = By o A+ 9 A+ (=g ATy 0+ (1) A By

By equating the (0;g + s+ 1,0) components in the both members of above relation, we get
the desired result. 1o B

(ii) Let ¢ be a (0;4,0)-form. By (4.6) and (4.10) we have that d., ¢ = dpp — wy A
l'g(gfv(p). Thus, using (04)? =0, dywy = 0 and igao = 1, by direct calculations, one gets

@y Ve = oy @Byp) By @0 A ix@v)
= —0w(@o A ig(Byp)) + @0 A gDy (@ A ig(Ov)))
= @0 ADy(iz(Ov)) +@o A ig(=wo A By (iz(Ovp)))
= @y Ady(iz(Bve)) — @0 Ay (ig(Dye) = 0
which completes the proof. O

—-1,0 .. =10 .
Definition 4.10. We say that a (0;¢,0)-form ¢ is d, -closed if d4, ¢ = 0 and it is called
=10 ) =10 :
0y -exact if ¢ = 04, ¥ for some ¥ € QUI-10(),

Example 4.11. (i) For a foliated (0, 1)-form ¢, we have p1¢ = ¢ — W(&wp and pry =
P(&)wo.

(i) Let f € F(E) and dy f =

gﬁfa dn” its conjugated foliated derivative. Locally, we have

3y f = pravf = @y )@ = E)ao

and
—1,0 - - -
Oy f = p1oyf=0yf—0yf)éwo
of o Jof _ Of .
a1 T gt = gt

where 6% are the (0; 1,0)-forms given in Example 4.7. Moreover, taking into account
the relation (3.4) and the fact ) #z60 = 0, it results that locally

Ty f = Zaf)6F. @.13)
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We have 1o o o ~ B
Oy T* = (Za 6" = 06" — 1z€ (76" = 0 = (12607 = ¢,
~ =10 . —
so the (0;1,0)-forms 6" are exactly the d,, -derivatives of the local coordinates nb , for
allb=1,...,m.
v —1,0_b —1,0_0 —1,0
(iii) The (0;2,0)-forms 4, 7° A0, 7 are 0, -closed, for all b,c =1,...,m.
Let us consider now an arbitrary foliated (0, 1)-form on E. It is locally given in U by
¢ = @zdn®, with gz € F(U) such thatin UN U’ # ¢ we have go'g = M%pg. By the Proposition

4.3, ¢ is a (0;1,0)-form on E iff Izp = 0 which is locally equivalent with ¢z = 0. Then,
locally we have ’

—1,0_ o —1,0_ L —1,0_
© = @adn" = @z(0qy " + 7" W0) = a0 7" + (a7 )wo = @z0 7"

—1,0_ . . NP ’
Conversely, the expression locally given by ¢z, 71, with the functions ¢z satisfying pr =

_ —1,0_, —
Mggoa is a (0; 1,0)-form because d, 77°(¢) =0, foralla = 1,...,m.

—1,0
S A d4, -cohomology

In this section we define and study some new cohomology groups of (E, L) with rspect to
vertical Liouville distribution.
By the Proposition 4.9, we can consider the differential complex

=10 —=1,0 =10
Oy

0. 0.
0 — Q00 5 WOy L 5 im0y —

which will be called the gko-complex of (E,L,V); its homology H?‘j"’o(E) is called the Dol-
beault cohomology along the vertical Liouville distribution on the complex Finsler bundle
(E,L).

Now, by using the Theorem 2.1 we can prove a resolution property of the operator 5(1{,0.

1,0
Firstly, we prove a Grothendieck-Dolbeault type Lemma for the operator 0., , namely

—=1,0
Theorem 5.1. Let ¢ € Q%40(V|y) be a 8., -closed form and q > 1. Then there exists y €
—=1,0 ’
QO;‘J_I’O((VIU/ ), and such that ¢ = 0 Yy on U C U.
—=1,0
Proof. Let ¢ € Q%0(V|y) such that 4, ¢ = 0. Then

— —=1,0 —0,1 —=0,1 — . 7
a(VQD = arv §0+arv @Y= a(v @ =wo N IE(B(VSD)9

SO 5rvcp = 0 (modulo terms containing wy). 3
Hence on the space wg = 0 we have that ¢ is dy-closed. Now, by Theorem 2.1 there
exists a foliated (0, ¢ — 1)-form 7 defined on U’ ¢ U such that

@ =dyT+ ANy, 1€ QP (V). (5.1)
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Following the Proposition 4.4 we have that 7 =1 + wg A igr, withty =p7€ QUa-1.0(y| U )-
Now, the relation (5.1) becomes

<p=5rv7'1—50 /\gfvl'g‘l'+/l/\a0. 5.2)
Here ¢ € QY0(V| ), @ A (A+Byizr) € Q%1 (V] ) and
3 L0 201 05¢,0 0:g-1.1
OyTy = &V T1 +(9(V T1 € Q%P ((V|U’)€BQ a= ((V|U/).
—-1,0 ,
Now, by equating the same components in the relation (5.2) itresults ¢ =d, Tyon U . O

Let ®%%9 be the sheaf of germs of functions on E which satisfies 5#,0 f=0and 7%
be the sheaf of germs of (0; ¢, 0)-forms on E. We denote by i : ®%00 — 79:00 pe the natural
inclusion. The sheaves %4 are fine and taking into account the Theorem 5.1, it follows
that the sequence of sheaves

=10 =10
By n O

0 (DOOO /(-:000 7_‘010 q/ 4 TO;m—l,O 0

is a fine resolution of ®%%Y and we denote by H4(E, %) the cohomology groups of E
with the coefficients in the sheaf ®%*C. Then, we obtain a de Rham type isomorphism

HI(E, %% ~ H(E), forany g = 1,...,m 1. (5.3)

By (4.5), the Dolbeault complex

0—>¢°°<fV) Qo‘m—> —>Q°"W)—>0

admits the subcomplex

0 — 0200 2%, q001(p) 2 B qomiqpy

We denote by Zf)‘;q’l(E) and B?;,q’l(E) the spaces of the E(V—closed and é(y—exacts 0;4,1)-
forms, respectively, and let

0;9,1 _ 50:g,1 0:g,1
H." (E)=Z." (E)/Bg," (E). 5.4
be the g-cohomology group of the last complex.
Theorem 5.2. The cohomology groups H?;“(E) and H1(E,®%%0) are isomorphic.

Proof. By Proposition 4.5 we can define the map
£ Z3NE) > Z3(E), ()=
for a € Q%40(V) such that ¢ = @ A wy. It is a well-defined map since the equality

- - _ —=1,0 _ —0,1 _ —=1,0 _
0=0yp=0yaAwy=0q aANwy+0y aAwy=0q aAwy (5.5)
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+1.0 . e . . . .
implies dq, @ = 0. Moreover, ¢ is a bijective morphism of groups and ¢ (Bg’,q’l(E) = B?{,q’o(E).
Indeed, for ¢ € B?;,q’l(E), there is 6 € Q%4~11(}’) such that ¢ = H/0. By (4.4), there are
a € QU0(V), B e QU4-1.0(Y) such that ¢ = @ Awy and 6 = B A wy. Then, we have

— = — <10
a AWy =0y(BAwy) = (9(V,[3/\a)0.

. =10 . . - = — .
It follows a € B%4%(V’). Conversely, a = 0+, B implies @ A wy = 84/(B A wp). We obtain that
£ HO ' (B) —» HO(E), £ (@) = [£(@)], for ¢ € Z3P (E), is bijective. O

Finally, by (5.3) and above theorem the isomorphism H%q’l(E) ~ H?‘;q’O(E) holds for
anyg=1,....m—1.
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