$C_{\text {Communications in }} \mathbf{N}_{\text {athematical }} \boldsymbol{A}_{\text {nalysis }}$

Volume 12, Number 2, pp. 58-70 (2012)
www.math-res-pub.org/cma
ISSN 1938-9787

Moments of Complex B-Splines

Peter Massopust*
Institute for Biomathematics and Biometry
Helmholtz Zentrum München
Neuberberg, Germany and
Center of Mathematics, M6
Technische Universität München
Garching b. München, Germany

(Communicated by Palle Jorgensen)

Abstract

A relation between double Dirichlet averages and multivariate complex B-splines is presented. Based on this relationship, a formula for the computation of certain moments of multivariate complex B-splines is derived. In addition, an infinite-dimensional analogue of the Lauricella function F_{B} is defined and a relation to the moments of multivariate complex B-splines is presented.

AMS Subject Classification: 41A15, 26A33, 41A63, 33C65
Keywords: Complex B-spline, Dirichlet average, Weyl fractional derivative and integral operator, R - hypergeometric function, moments, Appell functions, Lauricella functions

1 Introduction

Recently, a generalization of Schoenberg's polynomial splines to complex orders z with $\operatorname{Re} z>1$ was introduced in [7]. These so-called complex B-splines $B_{z}: \mathbb{R} \rightarrow \mathbb{C}$ are defined in the Fourier domain by

$$
\begin{equation*}
\mathcal{F}\left(B_{z}\right)(\omega)=: \widehat{B}_{z}(\omega):=\int_{\mathbb{R}} B_{z}(t) e^{-i \omega t} d t=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{z}, \tag{1.1}
\end{equation*}
$$

for $\operatorname{Re} z>1$. Here \mathcal{F} denotes the Fourier-Plancherel transform. At the origin, there exists the continuous continuation $\widehat{B}_{z}(0)=1$. Note that since $\left\{\left.\frac{1-e^{-i \omega}}{i \omega} \right\rvert\, \omega \in \mathbb{R}\right\} \cap\{y \in \mathbb{R} \mid y<0\}=\emptyset$, complex B-splines reside on the main branch of the complex logarithm and are thus welldefined.

[^0]Complex B-splines possess several interesting basic properties, which are discussed in [7]. In the following, we summarize the most important ones for our purposes.

Fourier inversion of (1.1) shows that complex B-splines are piecewise polynomials of complex degree. More precisely, the following result holds. (See [7] for the proof.)

Proposition 1.1. Complex B-splines have a time-domain representation of the form

$$
\begin{equation*}
B_{z}(t)=\frac{1}{\Gamma(z)} \sum_{k=0}^{\infty}(-1)^{k}\binom{z}{k}(t-k)_{+}^{z-1} \tag{1.2}
\end{equation*}
$$

where the above sum exists pointwise for all $t \in \mathbb{R}$ and in $L^{2}(\mathbb{R})$-norm. Here,

$$
t_{+}^{z}=\left\{\begin{array}{cl}
t^{z}=e^{z \ln t}, & \text { if } t>0 \\
0, & \text { if } t \leq 0
\end{array}\right.
$$

is the complex-valued truncated power function, and $\Gamma: \mathbb{C} \backslash \mathbb{Z}_{0}^{-} \rightarrow \mathbb{C}$ denotes the Euler Gamma function, where $\mathbb{Z}_{0}^{-}:=\{n \in \mathbb{Z} \mid n \leq 0\}$.

Remark 1.2. For real $z>0$, the function $z \mapsto\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{z}$ and its time domain representation (1.2) were already investigated in [26] in connection with fractional powers of operators and later also in [24] in the context of extending Schoenberg's polynomial splines to real orders. In the former, a proof that this function is in $L^{1}(0, \infty)$ was given using arguments from summability theory (cf. Lemma 2 in [26]), and in the latter the same result was shown but with a different proof. In addition, it was proved in [24] that for real $z>0$, $z \mapsto\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{z}$ is in $L^{2}(\mathbb{R})$ for $z>1 / 2$ (using our notation). (Cf. Theorem 3.2 in [24].)

Equation (1.2) shows that B_{z} has, in general, non-compact support contained in $[0, \infty)$. It was also shown in [7] that complex B-splines are elements of $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and, due to their decay in frequency domain induced by the polynomial ω^{z} in the denominator of (1.1), belong to the Sobolev spaces $W_{2}^{r}(\mathbb{R})$ (with respect to the L^{2}-Norm and with weight $\left.\left(1+|x|^{2}\right)^{r}\right)$ for $r<\operatorname{Re} z-\frac{1}{2}$. The smoothness of their Fourier transform yields a fast decay in time domain:

$$
\begin{equation*}
B_{z}(x)=O\left(x^{-m}\right), \quad \text { for } \mathbb{N} \ni m<\operatorname{Re} z+1, \text { as } x \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

Remark 1.3. Prior to [7], the asymptotic behavior (1.3) of the function $z \mapsto\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{z}$ for real $z>1$ was already shown in [2], (Proposition 3.1), to be of order $O\left(x^{-z-1}\right)$, as $x \rightarrow \infty$. The same estimate was proven later in [24], (Theorem 3.1), for real $z>0$. As we are more interested in the approximation-theoretic aspects of complex B-splines, we restrict our attention to the case $\operatorname{Re} z>1$, which yields continuous functions.

If $\operatorname{Re} z, \operatorname{Re} z_{1}, \operatorname{Re} z_{2}>1$, then the convolution relation $B_{z_{1}} * B_{z_{2}}=B_{z_{1}+z_{2}}$ and the recursion relation

$$
B_{z}(x)=\frac{x}{z-1} B_{z-1}(x)+\frac{z-x}{z-1} B_{z-1}(x-1)
$$

hold. Complex B-splines are scaling functions and generate multiresolution analyses of $L^{2}(\mathbb{R})$ and wavelets. Furthermore, they relate difference and differential operators. For more details and proofs, we refer the interested reader to [7, $9,8,10,16]$.

Unlike the classical cardinal B-splines, complex B-splines B_{z} possess an additional modulation and phase factor in the frequency domain:

$$
\widehat{B}_{z}(\omega)=\widehat{B}_{\operatorname{Re} z}(\omega) e^{i \operatorname{Im} z \ln |\Omega(\omega)|} e^{-\operatorname{Im} z \arg \Omega(\omega)},
$$

where $\Omega(\omega):=\left(1-e^{-i \omega}\right) /(i \omega)$. The existence of these two factors allows the extraction of additional information from sampled data and the manipulation of images. Phase information $\left(e^{i \operatorname{Im} z \ln |\Omega(\omega)|}\right)$ and an adjustable smoothness parameter, namely Rez, are already built into their definition. Thus, they define a continuous family, with respect to smoothness, of approximation spaces, and allow to incorporate phase information for single band frequency analysis [7, 10].

In [8] and [16], some further properties of complex B-splines were investigated. In particular, connections between complex derivatives of Riemann-Liouville or Weyl type and Dirichlet averages were exhibited. Whereas in [8] the emphasis was on univariate complex B-splines and their applications to statistical processes, multivariate complex Bsplines were defined in [16] using a well-known geometric formula for classical multivariate B-splines [11, 17]. It was also shown that Dirichlet averages are especially well-suited to explore the properties of multivariate complex B-splines. Using Dirichlet averages, several classical multivariate B-spline identities were generalized to the complex setting. There also exist interesting relationships between complex B-splines, Dirichlet averages and difference operators, several of which are highlighted in [9].

In this paper, which is based on a short communiction [15], we present a generalization of some results found in $[5,19]$ to complex B-splines. For this purpose, the concept of double Dirichlet average [3] needs to be introduced and its definition extended via projective limits to an infinite-dimensional setting suitable for complex B-splines. Moments of complex B-splines are defined and a formula for their computation in terms of a special double Dirichlet average presented. Extending the representation of a Lauricella F_{B} function by Carlson's R-hypergeometric function [3] to the infinite-dimensional setting, we define an infinite-dimensional analogue F_{B}^{∞} of F_{B} and present an identity relating F_{B}^{∞} to the moments of multivariate complex B-splines.

2 Complex B-Splines

Let $n \in \mathbb{N}$ and let Δ^{n} denote the standard n-simplex in \mathbb{R}^{n+1} :

$$
\Delta^{n}:=\left\{u:=\left(u_{0}, \ldots, u_{n}\right) \in \mathbb{R}^{n+1} \mid u_{j} \geq 0 ; j=0,1, \ldots, n ; \sum_{j=0}^{n} u_{j}=1\right\} .
$$

Note, that the set $\Delta_{0}^{n}:=\left\{u \in \mathbb{R}^{n} \mid u_{j} \geq 0 ; j=1, \ldots, n ; \sum_{j=1}^{n} u_{j} \leq 1\right\}$, can be identified via the bijection

$$
\Delta_{0}^{n} \rightarrow \Delta^{n}, \quad\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(1-\sum_{i=1}^{n} u_{i}, u_{1}, \ldots, u_{n}\right),
$$

with Δ^{n}. When convenient, we will employ this identification.

The extension of Δ^{n} to infinite dimensions is done via projective limits. The resulting infinite-dimensional standard simplex is given by

$$
\Delta^{\infty}:=\left\{u:=\left(u_{j}\right)_{j \in\left(\mathbb{R}_{0}^{+}\right)^{\mathbb{N}_{0}}} \mid \sum_{j=0}^{\infty} u_{j}=1\right\},
$$

and endowed with the topology of pointwise convergence, i.e., the weak*-topology. We denote by $\mu_{b}=\lim _{\longleftarrow}^{\longleftarrow} \mu_{b}^{n}$ the projective limit of Dirichlet measures μ_{b}^{n} on the n-dimensional standard simplex $\overleftarrow{\Delta}^{n}$ with density

$$
\begin{equation*}
\frac{\Gamma\left(b_{0}\right) \cdots \Gamma\left(b_{n}\right)}{\Gamma\left(b_{0}+\cdots+b_{n}\right)} u_{0}^{b_{0}-1} u_{1}^{b_{1}-1} \cdots u_{n}^{b_{n}-1} \tag{2.1}
\end{equation*}
$$

where $b_{0}, \ldots, b_{n} \in \mathbb{C}$ with $\operatorname{Re} b_{j}>0, j=0,1, \ldots, n$. Note that by the Kolmogorov Extension Theorem (see, for instance, [23]), this measure μ_{b} exists.

Below, we will use the following notation: $\mathbb{R}^{+}:=\{x \in \mathbb{R} \mid x>0\}, \mathbb{R}_{0}^{+}:=\{x \in \mathbb{R} \mid x \geq 0\}$, and $\mathbb{C}^{+}:=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$.

Definition 2.1 ([8]). Given a weight vector $b \in\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}}$ and an increasing knot sequence $\tau:=\left\{\tau_{k}\right\}_{k} \in \mathbb{R}^{\mathbb{N}_{0}}$ with the property that $\lim _{k \rightarrow \infty} \sqrt[k]{\tau_{k}} \leq \varrho$, for some $\varrho \in[0, e)$, a complex Bspline $B_{z}(\bullet \mid b ; \tau)$ of order $z, \operatorname{Re} z>1$, with weight vector b and knot sequence τ is a function satisfying

$$
\begin{equation*}
\int_{\mathbb{R}} B_{z}(t \mid b ; \tau) g^{(z)}(t) d t=\int_{\Delta^{\infty}} g^{(z)}(\tau \cdot u) d \mu_{b}(u) \tag{2.2}
\end{equation*}
$$

for all $g \in \mathcal{S}(\mathbb{R})$.
Remark 2.2. We may assume, without loss of generality, that the knot sequence τ is such that $\tau_{0}=0$.

Here, $\mathcal{S}(\mathbb{R})$ denotes the space of Schwartz functions on \mathbb{R}, and

$$
\tau \cdot u=\sum_{k \in \mathbb{N}_{0}} \tau_{k} u_{k}, \quad \text { for } u=\left\{u_{k}\right\}_{k \in \mathbb{N}_{0}} \in \Delta^{\infty} .
$$

In addition, we use the Weyl or Riemann-Liouville fractional derivative [13, 18, 22] of complex order $z, \operatorname{Re} z>0, W^{z}: \mathcal{S}\left(\mathbb{R}_{0}^{+}\right) \rightarrow \mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$, defined by

$$
\left(W^{z} f\right)(x):=\frac{(-1)^{n}}{\Gamma(v)} \frac{d^{n}}{d x^{n}} \int_{0}^{\infty}(t-x)_{+}^{v-1} f(t) d t
$$

with $n=\lceil\operatorname{Re} z\rceil$, and $v=n-z$. Here, $\mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$denotes the space of Schwartz functions restricted to \mathbb{R}_{0}^{+}, and $\lceil\cdot\rceil: \mathbb{R} \rightarrow \mathbb{Z}, x \mapsto \min \{n \in \mathbb{Z} \mid n \geq x\}$, the ceiling function.

The inverse operator of W^{z}, is the Weyl integral of complex order z, given by

$$
W^{-z} f=\frac{1}{\Gamma(z)} \int_{\bullet}^{\infty}(t-\bullet)_{+}^{z-1} f(t) d t .
$$

To simplify notation, we write $f^{(z)}$ for $W^{z} f$ and $f^{(-z)}$ for $W^{-z} f$.

Remark 2.3. Note that both W^{z} and W^{-z} are linear operators mapping $\mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$into itself [18, 22]. As the space $C^{\omega}\left(\mathbb{R}_{0}^{+}\right)$of real-analytic functions on \mathbb{R}_{0}^{+}is dense in $\mathcal{D}\left(\mathbb{R}_{0}^{+}\right)$, the space of compactly supported C^{∞}-functions on \mathbb{R}_{0}^{+}, (see, for instance, [20], p. 780), (2.2) holds for all $g \in \mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$since $\mathcal{D}\left(\mathbb{R}_{0}^{+}\right)$is dense in $\mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$. Moreover, since $\mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$is dense in $L^{2}\left(\mathbb{R}_{0}^{+}\right)$, we deduce that $B_{z}(\bullet \mid b, \tau) \in L^{2}\left(\mathbb{R}_{0}^{+}\right)$.
Remark 2.4. For finite $\tau=\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{n}\right\} \in\left(\mathbb{R}_{0}^{+}\right)^{n+1}$ and finite $b=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\} \in\left(\mathbb{R}^{+}\right)^{n}$, $n \in \mathbb{N}$, and $z:=n \in \mathbb{N}$, Eq. (2.2) defines also Dirichlet splines. (Cf. [6], where these splines were first introduced.) Recall that a Dirichlet spline $D_{n}(\bullet \mid b ; \tau)$ of order n is that function for which the equality

$$
\begin{equation*}
\int_{\mathbb{R}} g^{(n)}(t) D_{n}(t \mid b ; \tau) d t=\int_{\Delta^{n}} g^{(n)}(\tau \cdot u) d \mu_{b}(u), \tag{2.3}
\end{equation*}
$$

holds for all $g \in C^{n}(\mathbb{R})$. Hence, (2.3) also holds for $g \in \mathcal{S}(\mathbb{R})$.
To define a multivariate analogue of univariate complex B-splines, we proceed as follows. Let $\lambda \in \mathbb{R}^{s} \backslash\{0\}, s \in \mathbb{N}$, be a direction, and let $g: \mathbb{R} \rightarrow \mathbb{C}$ be a function. The ridge function g_{λ} corresponding to g is defined as the function $\mathbb{R}^{s} \rightarrow \mathbb{C}$ with

$$
g_{\lambda}(x):=g(\langle\lambda, x\rangle), \quad \text { for all } x \in \mathbb{R}^{s} .
$$

We denote the canonical inner product in \mathbb{R}^{s} by $\langle\bullet, \bullet\rangle$ and the norm induced by it by $\|\bullet\|$.
Definition 2.5 ([16]). Let $\tau=\left\{\tau^{n}\right\}_{n \in \mathbb{N}_{0}} \in\left(\mathbb{R}^{s}\right)^{\mathbb{N}_{0}}$ be a sequence of knots in \mathbb{R}^{s} with the property that

$$
\begin{equation*}
\exists \varrho \in[0, e): \limsup _{n \rightarrow \infty} \sqrt[n]{\left\|\tau^{n}\right\|} \leq \varrho . \tag{2.4}
\end{equation*}
$$

The multivariate complex B-spline $\boldsymbol{B}_{z}(\bullet \mid b, \tau): \mathbb{R}^{s} \rightarrow \mathbb{C}$ of order $z, \operatorname{Re} z>1$, with weight vector $b \in\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}}$ and knot sequence τ is defined by means of the identity

$$
\begin{equation*}
\int_{\mathbb{R}^{s}} g(\langle\lambda, x\rangle) \boldsymbol{B}_{z}(x \mid b, \tau) d x=\int_{\mathbb{R}} g(t) B_{z}(t \mid b, \lambda \tau) d t, \tag{2.5}
\end{equation*}
$$

where $g \in \mathcal{S}(\mathbb{R})$, and where $\lambda \in \mathbb{R}^{s} \backslash\{0\}$ such that $\lambda \tau:=\left\{\left\langle\lambda, \tau^{n}\right\rangle\right\}_{n \in \mathbb{N}_{0}}$ is separated, i.e., there exists a $\delta>0$, so that $\inf \left\{\left|\left\langle\lambda, \tau^{n}\right\rangle-\left\langle\lambda, \tau^{m}\right\rangle\right| \mid m, n \in \mathbb{N}_{0}\right\} \geq \delta$.

Remark 2.6. Since ridge functions are dense in $L^{2}\left(\mathbb{R}^{s}\right)$ (see, for instance, [21]), we conclude that $\boldsymbol{B}_{z}(\bullet \mid b, \tau) \in L^{2}\left(\left(\mathbb{R}_{0}^{+}\right)^{s}\right)$. Moreover, it follows from the Hermite-Genocchi formula for the univariate complex B-splines $B_{z}(\bullet \mid b, \lambda \tau)$ and (2.5), that

$$
\boldsymbol{B}_{z}(x \mid b, \tau)=0, \quad \text { when } x \notin[\tau],
$$

where $[\tau]$ denotes the convex hull of τ.

3 Dirichlet Averages

Let Ω be a non-empty open convex set in $\mathbb{C}^{s}, s \in \mathbb{N}$, and let $b \in\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}}$. Let $f \in \mathcal{S}(\Omega):=$ $\mathcal{S}(\Omega, \mathbb{C})$, the Schwartz space of complex-valued functions on Ω, be a measurable function.

For $\tau \in \Omega^{\mathbb{N}_{0}} \subset\left(\mathbb{C}^{s}\right)^{\mathbb{N}_{0}}$ and $u \in \Delta^{\infty}$, define $\tau \cdot u$ to be the bilinear mapping $(\tau, u) \mapsto \sum_{i=1}^{\infty} u_{i} \tau^{i}$.
The infinite sum exists if there exists a $\varrho \in[0, e)$ so that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sqrt[n]{\left\|\tau^{n}\right\|} \leq \varrho \tag{3.1}
\end{equation*}
$$

Here, $\|\bullet\|$ now denotes the canonical Euclidean norm on \mathbb{C}^{s}. (See also [8].)
Definition 3.1. Let $f: \Omega \subset \mathbb{C}^{s} \rightarrow \mathbb{C}$ be a measurable function. The Dirichlet average F : $\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}} \times \Omega^{\mathbb{N}_{0}} \rightarrow \mathbb{C}$ over Δ^{∞} is defined by

$$
F(b ; \tau):=\int_{\Delta^{\infty}} f(\tau \cdot u) d \mu_{b}(u)
$$

where $\mu_{b}=\lim \mu_{b}^{n}$ is the projective limit of Dirichlet measures on the n-dimensional standard simplex Δ^{n}.

We remark that the Dirichlet average is holomorphic in $b \in\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}}$ when $f \in C(\Omega, \mathbb{C})$ for every fixed $\tau \in \Omega^{\mathbb{N}_{0}}$. (See [4] for the finite-dimensional case and [16] for the infinitedimensional setting.)

Definition 3.2. [3] Let $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ be continuous. Let $b \in\left(\mathbb{C}^{+}\right)^{k+1}$ and $\beta \in\left(\mathbb{C}^{+}\right)^{x+1}$. Suppose that for fixed $k, \varkappa \in \mathbb{N}, X \in \mathbb{C}^{(k+1) \times(\varkappa+1)}$, and that the convex hull $[X]$ of X is contained in Ω. Then the double Dirichlet average of f is defined by

$$
\mathscr{F}(b ; X ; \beta):=\int_{\Delta^{k}} \int_{\Delta^{x}} f(u \cdot X v) d \mu_{b}^{k}(u) d v_{\beta}^{\chi}(v)
$$

where $u \cdot X v:=\sum_{i=0}^{k} \sum_{j=0}^{\varkappa} u_{i} X_{i j} v_{j}$ and $\sum_{i=0}^{k} u_{i}=1=\sum_{j=0}^{\varkappa} v_{j}$.
We remark that $\mathscr{F}(b ; X ; \beta)$ is holomorphic on Ω in the elements of b, β, and X ([3]).
We again use projective limits to extend the notion of double Dirichlet average to an infinite-dimenional setting. To this end, let $u, v \in \Delta^{\infty}$ and let $\mu_{b}=\lim _{\longleftarrow} \mu_{b}^{n}$ and $v_{\beta}=\lim _{\longleftarrow} v_{\beta}^{n}$ be the projective limits of Dirichlet measures μ_{b}^{n} and v_{β}^{n} of the form (2.1) on the n-dimensional standard simplex, where $b, \beta \in\left(\mathbb{C}^{+}\right)^{\mathbb{N}_{0}}$.

Now suppose that $X \in \mathbb{C}^{\mathbb{N}} \times \mathbb{N}_{0}$ is a infinite matrix with the property that $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|X_{i j}\right|$ converges. Let

$$
u \cdot X v:=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} u_{i} X_{i j} v_{j}
$$

Here, we have $\sum_{i=0}^{\infty} u_{i}=1=\sum_{j=0}^{\infty} v_{j}$.
Suppose that $\Omega \subset \mathbb{C}$ contains the convex hull $[X]$ of X and that $f: \Omega \rightarrow \mathbb{C}$ is continuous. The double Dirichlet average of f over Δ^{∞} is then given by

$$
\begin{equation*}
\mathscr{F}(b ; X ; \beta):=\int_{\Delta^{\infty}} \int_{\Delta^{\infty}} f(u \cdot X v) d \mu_{b}(u) d v_{\beta}(v) \tag{3.2}
\end{equation*}
$$

(In order to ease notation, we use the same symbol for the (double) Dirichlet average over Δ^{∞} and its finite-dimensional projections Δ^{n}.) It is easy to show that

$$
\begin{equation*}
\mathscr{F}(b ; X ; \beta)=\int_{\Delta^{\infty}} F(\beta ; u X) d \mu_{b}(u), \tag{3.3}
\end{equation*}
$$

where $u X:=\left\{\left\langle u, X_{j}\right\rangle\right\}_{j \in \mathbb{N}_{0}}$, with X_{j} denoting the j-column of X. We note that $\mathscr{F}(b ; X ; \beta)$ is holomorphic in the elements of b, β, and X over \triangle^{∞}.

For $z \in \mathbb{C}^{+}$, we define

$$
\mathscr{F}^{(z)}(b ; X ; \beta):=\int_{\Delta^{\infty}} \int_{\Delta^{\infty}} f^{(z)}(u \cdot X v) d \mu_{b}(u) d v_{\beta}(v)
$$

(See also [16] for the case of a single Dirichlet average.)

4 Double Dirichlet Averages and Complex B-Splines

Assume now that the matrix X is real-valued and of the form $X_{i j}=0$, for $i \geq s$ and all $j \in \mathbb{N}_{0}$, some $s \in \mathbb{N}$. In other words, $X \in \mathbb{R}^{s \times \mathbb{N}_{0}}$.

Theorem 4.1. Suppose that $\beta \in\left(\mathbb{R}^{+}\right)^{\infty}$ and that $z \in \mathbb{C}$ with $\operatorname{Re} z>1$. Let $b:=\left(b_{0}, b_{1}, \ldots, b_{s-1}\right)$ $\in \mathbb{R}^{s}$ be such that $\sum_{i=0}^{s-1} b_{i} \notin-\mathbb{N}_{0}$. Assume that $f \in \mathcal{S}\left(\mathbb{R}_{0}^{+}\right)$. Further assume that uX is separated for all $u \in \Delta^{s-1}$. Then

$$
\mathscr{F}^{(z)}(b ; X ; \beta)=\int_{\mathbb{R}^{s}} \boldsymbol{B}_{z}(x \mid \beta, u X) F^{(z)}(b ; x) d x .
$$

Proof. We prove the formula first for $b \in\left(\mathbb{R}^{+}\right)^{s}$. To this end, we identify $u=\left(u_{0}, u_{1}, \ldots, u_{s-1}\right.$, $0,0, \ldots) \in \Delta^{\infty}$ with $\left(u_{0}, u_{1}, \ldots, u_{s-1}\right) \in \Delta^{s-1}$. By the Hermite-Genocchi formula for complex B-splines (see [8] and to some extend [16]), we have that

$$
F^{(z)}(\beta ; u X)=\int_{\Delta^{\infty}} f^{(z)}\left(u^{\prime} \cdot u X\right) d \mu_{\beta}\left(u^{\prime}\right)=\int_{\mathbb{R}} f^{(z)}(t) B_{z}(t \mid \beta, u X) d t
$$

Substituting this expression into (3.3) and using (2.5) yields

$$
\mathscr{F}^{(z)}(b ; X ; \beta)=\int_{\Delta^{\infty}} \int_{\mathbb{R}^{s}} f^{(z)}(\langle u, x\rangle) \boldsymbol{B}_{z}(x \mid \beta, u X) d x d \mu_{b}(u) .
$$

Interchanging the order of integration, which is justified by the Lebesgue Dominated Convergence Theorem, proves the statement for $b \in\left(\mathbb{R}^{+}\right)^{s}$. To obtain the general case $b \in \mathbb{R}^{s}$, we note that by Theorem 6.3-7 in [4], the Dirichlet average F can be holomorphically continued in the b-parameters provided that $\sum_{i=0}^{s-1} b_{i} \notin-\mathbb{N}_{0}$.

Remark 4.2. Theorem 4.1 extends Theorem 6.1 in [19] to complex B-splines and the \triangle^{∞} setting.

5 Moments of Complex B-Splines

Following [4], we define the R-hypergeometric function $R_{a}(b ; \tau):\left(\mathbb{R}^{+}\right)^{s} \times \Omega^{s} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
R_{a}(b ; \tau):=\int_{\Delta^{s-1}}(\tau \cdot u)^{a} d \mu_{b}^{s-1}(u) \tag{5.1}
\end{equation*}
$$

where $\Omega:=H, H$ a half-plane in $\mathbb{C} \backslash\{0\}$, if $a \in \mathbb{C} \backslash \mathbb{N}$, and $\Omega:=\mathbb{C}$, if $a \in \mathbb{N}$. It can be shown (see [4]) that $R_{-a}, a \in \mathbb{C}^{+}$, has a holomorphic continuation in τ to \mathbb{C}_{0}, where $\mathbb{C}_{0}:=\{\zeta \in$ $\mathbb{C} \mid-\pi<\arg \zeta<\pi\}$.

Taking in the definition of the double Dirichlet average (3.2) for f the real-valued function $t \mapsto t^{-c}$, where $c:=\sum_{i=0}^{s-1} b_{i}$, the resulting double Dirichlet average is denoted by $\mathscr{R}_{-c}(b ; X ; \beta)$ and generalizes power functions. The corresponding single Dirichlet average $R_{-c}(b ; x)$, where $x=\left(x_{0}, \ldots, x_{s-1}\right)$, is given by

$$
\begin{equation*}
R_{-c}(b ; x)=\prod_{i=0}^{s-1} x_{i}^{-b_{i}}, \quad x \notin[X] . \tag{5.2}
\end{equation*}
$$

(See [4], (6.6-5).)
Definition 5.1. Let $p=\left(p_{0}, p_{1}, \ldots, p_{s-1}\right) \in \mathbb{R}^{s}, s \in \mathbb{N}$, be a multi-index with the property that $p_{i}<-\frac{1}{2}$, for all $i=1, \ldots, s$. The moment $\mathrm{M}_{p}(\beta ; X ; z):=\mathrm{M}_{p}\left(\left(\boldsymbol{B}_{z}(\bullet \mid \beta, X)\right)\right.$ of order $p:=\sum_{i=1}^{s} p_{i}$ of the complex B -spline $\boldsymbol{B}_{z}(\bullet \mid \beta, X)$ is defined by

$$
\begin{equation*}
\mathrm{M}_{p}(\beta ; X ; z):=\int_{\mathbb{R}^{s}} x^{p} \boldsymbol{B}_{z}(x \mid \beta, X) d x \tag{5.3}
\end{equation*}
$$

Note that since $\boldsymbol{B}_{z}(\bullet \mid \beta, X) \in L^{2}\left(\left(\mathbb{R}^{+}\right)^{s}\right)$ and $\boldsymbol{B}_{z}(\bullet \mid \beta, X)=0$, for $x \notin[X]$, an easy application of the Cauchy-Schwartz inequality shows that the above integral exists provided the multi-index p satisfies the afore-mentioned condition on its components.

Using a result from [13], namely Property 2.5 (b), and requiring that $\operatorname{Re} z<\operatorname{Re} c$, we substitute the function $f:=\frac{\Gamma(c-z)}{\Gamma(c)}(\bullet)^{-(c-z)}$ into (5.1) to obtain

$$
R_{-(c-z)}^{(z)}(b ; x)=R_{-c}(b ; x)=\prod_{i=0}^{s-1} x_{i}^{b_{i}} .
$$

The above considerations together with Theorem 4.1 immediately yield the next result.
Corollary 5.2. Suppose that $\beta \in\left(\mathbb{R}^{+}\right)^{\infty}$ and that $z \in \mathbb{C}$ with $\operatorname{Re} z>1$. Let $b:=\left(b_{0}, b_{1}, \ldots, b_{s-1}\right) \in$ $\left(-\infty,-\frac{1}{2}\right)^{s}$ be such that $c:=\sum_{i=0}^{s-1} b_{i} \notin-\mathbb{N}_{0}$. Moreover, suppose that $\operatorname{Re} z<\operatorname{Re} c$. Then

$$
\begin{equation*}
\mathrm{M}_{-c}(\beta ; X ; z)=\mathscr{R}_{-(c-z)}^{(z)}(b ; X ; \beta) \tag{5.4}
\end{equation*}
$$

Remark 5.3. Corollary 5.2 extends Corollary 6.2 in [19] to the infinite dimensional case and complex order setting.

6 Complex B-splines and Lauricella Functions

We briefly review some properties of the Lauricella function F_{B}, which are important for the purposes of this section and the relationship to complex B-splines and Dirichlet averages.

The Lauricella function $F_{B}: \mathbb{R}^{n} \rightarrow \mathbb{C}(c f .[1,14])$ is defined by the infinite series

$$
\begin{aligned}
& F_{B}\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}, \gamma ; x_{1}, \ldots, x_{n}\right):= \\
& \qquad \sum_{m_{1}, \ldots, m_{n} \in \mathbb{N}_{0}} \frac{\left(\alpha_{1}\right)_{m_{1}} \cdots\left(\alpha_{n}\right)_{m_{n}}\left(\beta_{1}\right)_{m_{1}} \cdots\left(\beta_{n}\right)_{m_{n}}}{\left(\gamma+m_{1}+\cdots+m_{n}\right) m_{1}!\cdots m_{n}!} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}
\end{aligned}
$$

where the parameters $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots \beta_{n}$ and γ are elements of \mathbb{C}, and $(z)_{n}$ is the Pochhammer symbol, given by

$$
(z)_{n}:=\frac{\Gamma(z+n)}{\Gamma(n)}, \quad n \in \mathbb{N}, z \in \mathbb{C} \backslash \mathbb{Z}_{0}
$$

The region of convergence for F_{B} is the interior of the n-cube $W^{n}:=[-1,+1]^{n} \subset \mathbb{R}^{n}, n \in \mathbb{N}$. Remark 6.1. For $n:=2$, the Lauricella function F_{B} becomes the Appell function F_{2}, and for $n:=1$ Gauß's hypergeometric ${ }_{2} F_{1}$ function.
Remark 6.2. There are three other Lauricella functions, F_{A}, F_{C}, and F_{D}, defined in a similar fashion and with different regions of convergence. For our intentions, however, in particular in light of Euler-type integral representations, we will deal exclusively with F_{B} in this article.

Remark 6.3. For a connection between Dirichlet averages, the Lauricella function F_{D}, and the generalized Mittag-Leffler function $E_{\alpha, \delta}^{\gamma}$, defined by

$$
E_{\alpha, \delta}^{\gamma}(z):=\sum_{k=0}^{\infty} \frac{(\gamma)_{k}}{\Gamma(\alpha k+\delta) k!} z^{k}
$$

we refer the interested reader to [12].
Using multi-index notation with $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta:=\left(\beta_{1}, \ldots, \beta_{n}\right), v:=\left(v_{1}, \ldots, v_{n}\right)$, and $x:=\left(x_{1}, \ldots, x_{n}\right)$, we can express the Euler-type integration representation of the Lauricella function F_{B} on the simplex Δ_{0}^{n} found in [14] in the following form:

$$
\begin{align*}
F_{B}(\alpha, \beta, \gamma ; x) & :=\frac{1}{B(\alpha, \gamma-|\alpha|)} \int_{\Delta_{0}^{n}} v^{\alpha-1}(1-|v|)^{\gamma-|\alpha|}(1-v x)^{-\beta} d v \\
& =\int_{\Delta_{0}^{n}}(1-v x)^{-\beta} d \mu_{(\alpha, \gamma-|\alpha|)}^{n}(v) \tag{6.1}
\end{align*}
$$

Here, we set $v x:=\left(v_{1} x_{1}, \ldots, v_{n} x_{n}\right)$ and denoted by B the $n+1$-dimensional Beta function:

$$
B(\alpha, \gamma-|\alpha|):=\frac{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right) \Gamma\left(\gamma-\alpha_{1}-\cdots \alpha_{n}\right)}{\Gamma(\gamma)}
$$

As usual, $|\alpha|$ denotes the length of a multi-index α.

Note that, following [3], but using a different matrix Z, which is more amenable to a generalization to infinite dimensions, we may write (6.1) in the form

$$
\int_{\Delta_{0}^{n}}(1-v x)^{-\beta} d \mu_{(\alpha, \gamma-|\alpha|)}^{n}(v)=\mathscr{R}_{-\gamma}(\gamma-|\beta|, \beta ; Z ; \gamma-|\alpha|, \alpha),
$$

with

$$
Z:=Z^{n+1}:=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{6.2}\\
1 & 1-x_{1} & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & 1 & 1 & 1-x_{n-1} & 1 \\
1 & 1 & 1 & 1 & 1-x_{n}
\end{array}\right) \in \mathbb{R}^{(n+1) \times(n+1)} .
$$

To obtain the above identity, we used that $\sum_{i=0}^{n} v_{i}=1$,

$$
\mathscr{R}_{-\gamma}(b ; Z ; \beta)=\int_{\Delta^{n}} \prod_{i=0}^{n}(i Z v)^{-b_{i}} d \mu_{\beta}^{n}(v), \quad \sum_{i=0}^{n} b_{i}=\gamma=\sum_{i=0}^{n} \beta_{i},
$$

and introduced the factor $1^{\gamma-|\beta|}$ in front of $(1-v x)^{-\beta}$. We chose the (immaterial) exponent of 1 so that the multi-indices $(\gamma-|\beta|, \beta)$ and $(\gamma-|\alpha|, \alpha)$ have the same length, namely, γ, (See also [3].), and denoted by ${ }_{i} Z$ the ($i+1$)-st row of the matrix $Z, i=0,1, \ldots, n$. Thus, we have

$$
F_{B}(\alpha, \beta, \gamma ; x)=\mathscr{R}_{-\gamma}(\gamma-|\beta|, \beta ; Z ; \gamma-|\alpha|, \alpha),
$$

where $Z \in \mathbb{R}^{(n+1) \times(n+1)}$ is given by (6.2).
The form of the matrix Z now lends itself to an extension of the above concepts to infinite dimensions. We define

$$
Z^{\infty}=\left(\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & \cdots \tag{6.3}\\
1 & 1-x_{1} & 1 & \cdots & 1 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \cdots \\
1 & 1 & 1 & 1-x_{n-1} & 1 & \cdots \\
1 & 1 & 1 & 1 & 1-x_{n} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \in \mathbb{R}^{\infty \times \infty},
$$

where $\left|x_{n}\right|<1$, for all $n \in \mathbb{N}$, and note that the finite sections of Z^{∞} are of the form (6.2), so that one may represent Z^{∞} as a projective limit of the matrices $Z^{n+1} \in \mathbb{R}^{(n+1) \times(n+1)}, n \in \mathbb{N}$ of the form (6.2). Similarly, one has $\mathbb{R}^{\infty \times \infty}=\underset{\longleftrightarrow}{\lim } \mathbb{R}^{(n+1) \times(n+1)}$ in the sense of matrix rings.

As $\left|x_{i}\right|<1$, for all $i \in \mathbb{N}$, and $\sum_{j=0}^{\infty} v_{j}=1$, we obtain, using a computation in [25], the convergence of the infinite product $\prod_{i=0}^{\infty}\left({ }_{i} Z^{\infty} v\right)^{-b_{i}}$ for $\operatorname{Re} b_{i}>0$. Thus, $\mathscr{R}_{-\gamma}(b ; Z ; \beta)$ may be extended to the infinite-dimensional simplex Δ^{∞} by a projective limit procedure. For the sake of notational simplicity, we denote this extension again by $\mathscr{R}_{-\gamma}(b ; Z ; \beta)$.

Note that this extension allows the definition of an infinite-dimensional Lauricelli function F_{B}^{∞} :

$$
\begin{equation*}
F_{B}^{\infty}(\alpha, \beta, \gamma ; x):=\mathscr{R}_{-\gamma}\left(\gamma-|\beta|, \beta ; Z^{\infty} ; \gamma-|\alpha|, \alpha\right), \tag{6.4}
\end{equation*}
$$

where $Z \in \mathbb{R}^{\infty \times \infty}$ is given by (6.3). Here the parameters α, β are elements of \mathbb{C}^{∞}, the projective limit of \mathbb{C}^{n}, and $\operatorname{Re} \beta>0$, in the sense of multi-indices. We remark, that F_{B}^{∞} converges in the interior of the infinite-dimensional cube $W^{\infty}:=\prod_{n=1}^{\infty}[-1,1]^{n}$, endowed with the weak*topology, i.e., the topology of pointwise convergence.

Combining Eqns. (5.4) and (6.4), we obtain an identity between the moments of complex B-splines and the infinite-dimensional Lauricella function F_{B}^{∞}, namely,

$$
\begin{equation*}
\left(F_{B}^{\infty}\right)^{(z)}(\alpha, \beta, \gamma ; x)=\mathrm{M}_{-\gamma}\left(\gamma-|\alpha|, \alpha ; Z^{\infty} ; \gamma-|\beta|, \beta\right), \tag{6.5}
\end{equation*}
$$

where the z-th fractional derivative of F_{B}^{∞} exists by the above identity (6.4).
Eqn. (6.5) is an extension of Corollary 6.4 in [19] to the infinite-dimensional setting involving multivariate complex B -splines of order $z, \operatorname{Re} z>1$.

7 Summary

We employed the natural infinite-dimensional setting for multivariate complex B-splines to extend the concept of double Dirichlet averages. As a result of this extension, we obtained in the following results.

- The moments of multivariate complex B-splines were defined.
- A formula for the moments of multivariate complex B-splines in terms of double Dirichlet averages associated with the infinite-dimensional analogue of Carlson's hypergeometric R-function was derived.
- Employing an Euler-type integral representation, an infinite-dimensional analogue of Lauricella's F_{B}-function was obtained and related to the double Dirichlet average of Carlson's R-hypergeometric function on the infinite-dimensional simplex \triangle^{∞}.
- An identity between the infinite-dimensional extension of Lauricella's F_{B}-function and the moments of multivariate complex B-splines was presented.

The results presented in this article generalize those given in [19] to infinite dimensions and splines of complex order.

Acknowledgments

The author thanks the referee for the careful reading of the manuscript and helpful comments.

References

[1] P. Appel and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques. Gauthiers-Villars, Paris, France 1926.
[2] P. L. Butzer and U. Westphal, An introduction to fractional calculus. In R. Hilfer Applications of Fractional Calculus in Physics, World Scientific Publishing 2000, pp 185.
[3] B. C. Carlson, Appell functions and multiple averages. SIAM J. Math. Anal. 2(3), pp 420-430.
[4] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York 1977.
[5] B. C. Carlson, B-splines, hypergeometric functions, and Dirichlet averages. J. Approx. Th. 67 (1991), pp 311-325.
[6] W. Dahmen and C. A. Micchelli, Statistical Encounters with B-splines. Contemp. Math. 59 (1986), pp 17-48.
[7] B. Forster and T. Blu and M. Unser, Complex B-splines. Appl. Comp. Harmon. Anal. 20 (2006), pp 261-282.
[8] B. Forster and P. Massopust, Statistical Encounters with complex B-splines. Constr. Approx. 29(3) (2009), pp 325-344.
[9] B. Forster and P. Massopust, Multivariate complex B-splines, Dirichlet averages and difference operators. Proceedings of SampTA (2009), pp 1-4.
[10] B. Forster and P. Massopust, Splines of complex order: Fourier, filter, and fractional derivatives. Sampling Theory in Signal and Image Analysis. 10(1-2) (2011), pp 89109.
[11] S. Karlin, C. A. Micchelli and Y. Rinott, Multivariate Splines: A Probabilistic Perspective. Journal of Multivariate Analysis 20 (1986), pp 69-90.
[12] A. A. Kilbas and A. Kattuveettil, Representations of Dirichlet averages of generalized Mittag-Leffler functions via fractional integrals and special functions. Fractional Calculus \mathcal{E} Applied Analysis 11(4) (2008), pp 471-491.
[13] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, The Netherlands 2006.
[14] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili. Rendiconti Circ. mat. Palermo. VII (1893), pp 111-158.
[15] P. Massopust, Double Dirichlet averages and complex B-splines. Proceedings of SampTA. (2009), pp 1-4.
[16] P. Massopust and B. Forster, Multivariate complex B-splines and Dirichlet averages. J. Approx. Th. 162 (2010), pp 252-269.
[17] C. A. Micchelli, A constructive approach to Kergin interpolation in \mathbb{R}^{k} : Multivariate B-splines and Lagrange interpolation. Rocky Mt. J. Math. 10(3) (1980), pp 485-497.
[18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York 1993.
[19] E. Neuman and P. J. Van Fleet, Moments of Dirichlet splines and their applications to hypergeometric functions. J. Comput. and Appl. Math. 53 (1994), pp 225-241.
[20] O. V. Odinokov, Spectral analysis in certain spaces of entire functions of exponential type and its applications, Spectral analysis in certain spaces of entire functions of exponential type and its applications. Izv. Math. 64(4) (2000), pp 777-786.
[21] A. Pinkus, Approximating by ridge functions. In A. Le Méhauté and C. Rabut and L. L. Schumaker Surface Fitting and Multiresolution Methods, Vanderbilt University Press 1997, pp 1-14.
[22] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Minsk, Belarus 1987.
[23] A. N. Shiryayev, Probability, Springer Verlag, New York 1984.
[24] M. Unser and T. Blu, Fractional Splines and Wavelets. SIAM Review. 42(1) (2000), pp 43-67.
[25] A. M. Vershik and A. A. Shmidt, Limit measures arising in the asymptotic theory of symmetric groups I. Theory Probab. Appl. XXII(1) (1977), pp 70-85.
[26] U. Westphal, An approach to fractional powers of operators via fractional differences. Proc. Lond. Math. Soc. 29(3) (1974), pp 557-576.

[^0]: *E-mail address: massopust@ma.tum.de

