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Abstract

In this paper we study an elliptic equation involving variable exponents and containing
a singular lower order terms with p(x)−growth in the gradient. Through an approx-
imation approach, we prove the existence of a nonnegative distributional solution in
the whole space RN .
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1 Introduction

Quasilinear equations containing a gradient term with different growth conditions without
singularity, have been exhaustively studied in several papers in which many results of ex-
istence or nonexistence of solutions have been established. Among them are for instance
[5-8, 18, 20, 21, 25]. Problems with terms having different kinds of singularities at the
origin have known a great interest in the recent years and many papers dealing with this
subject have been published. See for instance [3, 4, 15, 30]. In [3], the authors considered
the problem

−div(M(x,u)∇u)+g(x,u) |∇u|2 = f in Ω

where Ω is a bounded domain of RN and g(·, ·) : Ω× (0,+∞) → R is some nonnegative
Carathéodory function having singularity at s = 0. Under suitable conditions on M(·, ·) and
on the data f , a result of existence of positive solution was found. This solution was ob-
tained through a convergence process of some sequence of approximated solutions and, in
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order to overcome the main difficulty they had to face, which was the passage to the limit in
the singular term, the authors established an important result ( see [3, Proposition 2.3]) in
which it was proved that the sequence of the approximated solutions is uniformly bounded
from below in every compactly contained open subset ofΩ. In [15], the authors investigated
the problem of existence of distributional solution to the following elliptic equation

−∆u+λu = ±
|∇u|2

|u|k
+ f in Ω

where λ > 0, k > 0 and f ∈ L∞(RN) such that f ≥ 0. In the case 0 < k < 1, existence re-
sult has been proved independently of the singular term’s sign, while, for the case k ≥ 1,
a positivity condition is needed. Using, as in [3], approximation approach but arguing
differently concerning the passage to the limit in the singular term, Giachetti and Murat
established the existence of a finite energy solution satisfying some properties. Inspired
by their work, we have tried to extend their result to the case of anisotropic equations. In
fact, quasilinear equations involving variable exponent is one of the most interesting topic
in recent years. This great interest given for such type of equations could be explained by
the many applications of such type of equations in modelling various physical phenomena
as electrorheological fluids, image restoration and elastic mechanics. Concerning this type
of problem with non-standard growth condition, we can refer, for example, to [12-14, 16,
19, 22, 23]. In the present work, we are concerned by a quasilinear equation modelling
the motion of an incompressible fluid in a nonhomogeneous and anisotropic medium. Let
us denote by ~V and p the velocity and the pressure of the fluid. In a homogeneous and
isotropic medium, the incompressible fluid satisfies the continuity equation: −div

(
~V
)
= 0.

With the Darcy law, i.e. ~V = −ξ |∇p|λ−2∇p where λ and ξ are constants, the above conti-
nuity equation becomes: −div

(
|∇p|λ−2∇p

)
= 0. Let now the medium be nonhomogeneous

and anisotropic, i.e. its characteristics may vary in dependence on directions and points. So
λ ≡ λ(x) and ξ ≡ ξ(x). In this case, if we also assume the existence of exterior forces, then
the pression of the incompressible fluid satisfies the following quasilinear equation:

−div
(
ξ(x) |∇p|λ(x)−2∇p

)
= h (x, p,∇p) .

If h (x, p,∇p) contains a term of type A(x, p) |∇p|λ(x) , this last term describes the diffusion of
mass factor. For more details, see[1]. We are mainly interested by coefficient A(·, ·) having a
singular behaviour which seems to represent a new topic. As in [15], for the case 0 < k < 1,
we establish an existence result of a nonnegative and nontrivial solution without specifying
the sign of the singular term and a similar result is proved for the case k ≥ 1 in the particular
case of positive singular term. Furthermore, and in contrast of [15], by making modification
in the approximating problem, we have been able to prove an existence result for the case
k = 1 when the singular term is negative.

2 Overview on Generalized Sobolev Spaces

Assume Ω ⊂ RN is an nonempty domain( bounded or unbounded).
Set C+(Ω) =

{
h ∈C(Ω)∩L∞(Ω), h(x) > 1 for all x ∈Ω

}
.

For any p ∈C+(Ω), we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).
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For each p ∈C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) =
{

u; u :Ω→ R mesurable such that
∫
Ω

|u(x)|p(x) dx < +∞
}
.

This space becomes a Banach space with respect to the Luxemburg norm, that is

|u|Lp(·)(Ω) = inf
{
µ > 0;

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)
dx ≤ 1

}
.

Moreover, Lp(·)(Ω) is a reflexive space provided that 1 < p− ≤ p+ < +∞. Denoting by
Lp′(·)(Ω) the conjugate space of Lp(·)(Ω) where 1

p(x) +
1

p′(x) = 1; for any u ∈ Lp(·)(Ω) and
v ∈ Lp′(·)(Ω) we have the following Hölder type inequality∣∣∣∣∣∫

Ω

uvdx
∣∣∣∣∣ ≤ (

1
p−
+

1
p′−

)
|u|Lp(·)(Ω) |v|Lp′(·)(Ω)

≤ 2 |u|Lp(·)(Ω) |v|Lp′(·)(Ω) .

(2.1)

Similarly, if 1
p1(x) +

1
p2(x) +

1
p3(x) = 1 ∀x ∈ Ω, then for any u ∈ Lp1(·)(Ω), v ∈ Lp2(·)(Ω) and

w ∈ Lp3(·)(Ω), ∣∣∣∣∣∫
Ω

uvw dx
∣∣∣∣∣ ≤ (

1
p−1
+

1
p−2
+

1
p−3

)
|u|Lp1 (Ω) |v|Lp2 (Ω) |w|Lp3 (Ω)

≤ 3 |u|Lp1 (Ω) |v|Lp2 (Ω) |w|Lp3 (Ω) .

(2.2)

If |Ω| < +∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x) for all x ∈ Ω, then
there exists the continuous embedding

Lp2(·)(Ω) ↪→ Lp1(·)(Ω).

We introduce now the modular of the Lebesgue-Sobolev space Lp(·)(Ω), as the mapping

ρp(·) : Lp(·)(Ω)→ R defined by ρp(·)(u) =
∫
Ω

|u|p(x) dx.

We give here some relations which can be established between the Luxemburg norm
and the modular. If (un), u ∈ Lp(·)(Ω) and 1 ≤ p− ≤ p+ < +∞, then the following relations
hold true

|u|Lp(·)(Ω) > 1⇒ |u|p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ |u|p

+

Lp(·)(Ω)
, (2.3)

|u|Lp(·)(Ω) < 1⇒ |u|p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ |u|p

−

Lp(·)(Ω)
, (2.4)

|un−u|Lp(·)(Ω)→ 0 ⇔ ρp(·)(un−u)→ 0. (2.5)

Next, we define W1,p(·)(Ω) as the space

W1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
and it can be equipped with the norm

‖u‖1,p(·) = |u|Lp(·)(Ω)+ |∇u|Lp(·)(Ω) .
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The space W1,p(·)(Ω) is a Banach space which is reflexive under condition

1 < p− ≤ p+ < +∞.

Let p,q ∈C+(Ω). If we have p Lipschitz continuous and

p(x) ≤ q(x) ≤ p∗(x) =
N p(x)

N − p(x)
∀ x ∈Ω,

then there is a continuous embedding W1,p(·)(Ω) ↪→ Lq(·)(Ω).
This last embedding is compact provided thatΩ is bounded inRN and that q(x)< p∗(x) ∀ x ∈
Ω. Finally, we denote by W1,p(·)

0 (Ω) the closure of C∞0 (Ω) in W1,p(·)(Ω).

In the present work, we look for solution in W1,p(·)(RN) which is supposed equipped
with the norm

‖u‖ = |∇u|Lp(·)(RN )+ |u|Lp(·)(RN ) .

For more properties of anisotropic variable exponent Lebesgue-Sobolev spaces, we re-
fer to the book [24] and the papers [9-11, 26, 27].

3 Hypotheses and Main Results

In the present paper we are concerned by the problem of existence of nonnegative solution
for the following equation:

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = A(x,u) |∇u|p(x)+ f (x,u)+h in RN (P)

where p(·) ∈ C+(RN) is a Lipschitz continuous function such that 1 < p− ≤ p+ < N, N > 2
and A(·, ·) : RN ×R→ R is a Carathéodory function. Our basic hypotheses are cited below:

(H1) f : RN ×R→ R is a Carathéodory function such that

| f (x, s)| ≤ |g(x)| |s|β(x)−1 a.e. x in RN and for every s ∈ R

with β(·) ∈C+(RN), β+ < p−, g ∈ Lr(·)(RN)∩L∞(RN) where
r ∈C+(RN) and there exists µ ∈C+(RN) such that

p(x) ≤ µ(x) ≤ p∗(x),
1

r(x)
+
β(x)
µ(x)

= 1, ∀x ∈ RN .

We also assume that f (x, s) = 0 a.e. x in RN and for every s ≤ 0.

(H2) h ∈ L∞(RN)∩Lp′(·)(RN), h ≥ 0 and h , 0 where p′(·) denotes the conjugate of p(·).

By (H1) and (H2), we can easily find a positive real number M > 1 such that

p(x)−β(x)
p(x)−1

|g(x)|
p(x)−1

p(x)−β(x) +h(x)−
p(x)−β(x)

p(x)−1
Mp(x)−1 ≤ 0 a.e. x in RN . (3.1)

We define, for s ∈ R, the function
Φ(s) = seηs2

, (3.2)
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where η is a positive real number. Also, we introduce the following truncature function,
defined for s ≥ 0 and t > 0, by

Tt(s) =
{

t if s ≤ t
s if s ≥ t

(3.3)

From now on, we will denote by C∞0 (RN) the space of all functions in C∞(RN) with compact
support.

Definition 3.1 We define a weak (or distributional) solution of the problem (P) as a
function u ∈W1,p(·)

loc (RN) satisfying∫
RN
|∇u|p(x)−2∇u · ∇vdx+

∫
RN
|u|p(x)−2 uvdx =

∫
RN

A(x,u) |∇u|p(x) vdx

+

∫
RN

f (x,u)vdx+
∫
RN

hvdx ∀ v ∈C∞0 (RN).

If moreover u ∈W1,p(·)(RN), we say that u is a finite energy solution.

The main results of the present paper are cited in the following theorems :

Theorem 3.1 Assume that (H1) and (H2) hold true. If we also suppose that

(H3) |A(x, s)| ≤ ψ(s) a.e x ∈ RN and for every s > 0 where ψ : (0,+∞) → (0,+∞) is a
continuous function such that

• sup
|s|≥δ

(ψ(s)) < +∞ ∀ δ > 0

• s 7−→ sψ(s) is nondecreasing in (0,1)

• ψ is integrable in a neighborhood of zero.

then the problem (P) has at least one weak nontrivial and nonnegative solution u ∈W1,p(·)(RN)∩
L∞(RN). Furthermore, the function u satisfies that

(
|∇u|p(·)ψ(u)χ{u>0}

)
∈ L1

loc(RN).

Theorem 3.2 Assume that (H1) and (H2) hold true. If we also suppose that

(H4) ψ(s) ≤ A(x, s) ≤ ψ(s) a.e. x in RN and for every s > 0 where ψ, ψ : (0,+∞)→
(0,+∞) are two continuous functions such that

• sup
|s|≥δ

ψ(s) < +∞ ∀ δ > 0

• ψ is nonincreasing in (0,M) where M is defined by (3.1).

then the problem (P) has at least one weak nontrivial and nonnegative solution u ∈W1,p(·)
loc (RN)∩

L∞(RN). Furthermore, the function u satisfies that
(
|∇u|p(·)ψ(u)χ{u>0}

)
∈ L1

loc(RN).

Theorem 3.3 Assume that (H1) and (H2) hold true. If we also suppose that
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(H5) there exists a positive constant c0 > 0 such that

−
c0

s
≤ A(x, s) ≤ 0 a.e x ∈ RN and for every s > 0

then the problem (P) has at least one weak nontrivial and nonnegative solution u ∈W1,p(·)(RN)∩

L∞(RN). Furthermore, the function u satisfies that
(
|∇u|p(·)

u χ{u>0}

)
∈ L1

loc(RN) and(
uA(·,u) |∇u|p(·)χ{u>0}

)
∈ L1(RN).

In the next sections, we shall try to prove these three theorems. The keystone of the
proofs is approximating (P) by a sequence of problems (Pn) for which we construct a se-
quence of weak solutions (un). We are essentially interested by the behaviour of this se-
quence. A uniform a priori estimates of (un) are proved. We point out that there is many
common points in the proofs of Theorems 3.1, 3.2 and 3.3. We shall emphasize on the
differences existing between these proofs.

4 Proof of Theorem 3.1

We begin by defining, for s ≥ 0 and n ≥ 1 an integer, the following functions

ψn(s) =

 ψ(s) if s ≥ 1
n

ψ
(

1
n

)
if 0 ≤ s ≤ 1

n

and γn(s) =
∫ s

0
ψn(t)dt.

For n ≥ 1 an integer, we consider the problem

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = An(x,u)

|∇u|p(x)

1+ 1
n |∇u|p(x) + f (x,u)+h(x) in Bn (Pn)

where Bn =
{
x ∈ RN ; |x| < n

}
and An(x, s) =


A(x, s) if s ≥ 1

n

nsA(x, s) if 0 < s ≤ 1
n

0 if s ≤ 0

We observe first that An satisfies, for a.e. x in RN and for every s > 0,
lim

n→+∞
An(x, s) = A(x, s)

|An(x, s)| ≤ |A(x, s)|

|An(x, s)| ≤ ψn(s)

Next, we note that there exists a positive constant cn > 0 such that

|An(x, s)| ≤ cn a.e. x in RN and for every s ∈ R.

Hence, as for constant coefficient p(·), we prove the existence of a solution un ∈W1,p(·)
0 (Bn)∩

L∞(Bn) of the problem (Pn). Indeed, set Xn = W1,p(·)
0 (Bn) and X∗n its dual and define the

operator L : Xn→ X∗n by

L(u) = −div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u−An(x,u)

|∇u|p(x)

1+ 1
n |∇u|p(x) − f (x,u).
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Note first that
〈L(u),u〉
‖u‖n

→ +∞ as ‖u‖n→ +∞

where ‖u‖n = |∇u|Lp(·)(Bn) is a norm on Xn. Thus L is coercive. We claim now that L is a
pseudomonotone operator(see [29]). Let (uk) ⊂ Xn be such that uk ⇀ u in Xn and

limsup
k→+∞

〈L(uk)−L(u),uk −u〉 ≤ 0.

By the boundedness of the open set Bn, it follows that

0 ≤ limsup
k→+∞

∫
Ωn

(
|∇uk|

p(x)−2∇uk − |∇u|p(x)−2∇u
)
∇(uk −u)dx ≤ 0.

Then uk → u strongly in Xn and therefore L is of (S +) type. Observing also that L is
demicontinuous, it yields that L is pseudomonotone. According to [29, Theorem 27.A], we
deduce that the operator L is surjective. Moreover, this solution satisfies un ≥ 0. Indeed,
denoting, for s ∈ R, s+ =max(s,0) and s− =min(s,0) and taking u−n as test function in (Pn),
we get ∫

Bn

∣∣∣∇u−n
∣∣∣p(x)

dx+
∫

Bn

∣∣∣u−n ∣∣∣p(x)
dx ≤ 0

and therefore un ≥ 0 a.e in Bn. Observe now that we can extend un by zero outside of Bn.

We will continue denoting by un the zero-extension of un outside of Bn and it belongs now
to W1,p(·)(RN)∩L∞(RN).

Lemma 4.1 The sequence (un) is bounded in L∞(RN).

Proof Since un ∈W1,p(·)
0 (Bn)∩L∞(Bn), then the function eγn(un) (un−M)+ ∈W1,p(·)

0 (Bn)∩
L∞(Bn) ( M is defined by (3.1)) and we can take it as test function in (Pn) getting∫

Bn

|∇un|
p(x)−2∇un · ∇ (un−M)+ eγn(un)dx+

∫
Bn

|∇un|
p(x)ψn(un) (un−M)+ eγn(un)dx

+

∫
Bn

(un)p(x)−1 (un−M)+ eγn(un)dx ≤
∫

Bn

ψn(un) |∇un|
p(x) eγn(un) (un−M)+ dx

+

∫
Bn

|g(x)| |un|
β(x)−1 (un−M)+ eγn(un)dx+

∫
Bn

h(x) (un−M)+ eγn(un)dx.

Cancelling identical terms and forgetting the nonnegative term∫
Bn

|∇un|
p(x)−2∇un · ∇ (un−M)+ eγn(un)dx =

∫
Bn

∣∣∣∇ (un−M)+
∣∣∣p(x)

eγn(un)dx ≥ 0,

we obtain∫
Bn

(un)p(x)−1 (un−M)+ eγn(un)dx ≤
∫

Bn

|g(x)| |un|
β(x)−1 (un−M)+ eγn(un)dx

+

∫
Bn

h(x) (un−M)+ eγn(un)dx.
(4.1)
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Observe now that by Young’s inequality, we have

|g(x)| |un|
β(x)−1 (un−M)+ eγn(un) ≤

p(x)−β(x)
p(x)−1

(
|g(x)|

p(x)−1
p(x)−β(x) (un−M)+ eγn(un)

)
+
β(x)−1
p(x)−1

(un)p(x)−1 (un−M)+ eγn(un).

(4.2)

Using (4.2), it follows from (4.1) that∫
Bn

p(x)−β(x)
p(x)−1

(un)p(x)−1 (un−M)+ eγn(un)dx

≤

∫
Bn

p(x)−β(x)
p(x)−1

|g(x)|
p(x)−1

p(x)−β(x) (un−M)+ eγn(un)dx

+

∫
Bn

h(x) (un−M)+ eγn(un)dx.

(4.3)

Adding to both sides
(
−

∫
Bn

p(x)−β(x)
p(x)−1

Mp(x)−1 (un−M)+ eγn(un)dx
)
, we get from (4.3)

∫
Bn

p(x)−β(x)
p(x)−1

(
(un)p(x)−1−Mp(x)−1

)
(un−M)+ eγn(un)dx

≤

∫
Bn

(
p(x)−β(x)

p(x)−1
|g(x)|

p(x)−1
p(x)−β(x) +h(x)−

p(x)−β(x)
p(x)−1

Mp(x)−1
)
(un−M)+ eγn(un)dx.

Taking into account (3.1), it yields∫
Bn

(
(un)p(x)−1−Mp(x)−1

)
(un−M)+ eγn(un) ≤ 0. (4.4)

Observe now that (see [13, 17, 23, 28]) we have the following strict monotonicity inequali-
ties satisfied for ξ and η in RN

[(
|ξ|p−2 ξ− |η|p−2 η

)
(ξ−η)

] p
2 (
|ξ|p+ |η|p

) 2−p
2 ≥ (p−1) |ξ−η|p (4.5)

for 1 < p < 2

and (
|ξ|p−2 ξ− |η|p−2 η

)
(ξ−η) ≥ 2−p |ξ−η|p , p ≥ 2. (4.6)

Using now (4.5) and (4.6), we deduce from (4.4) that

0 ≤ un(x) ≤ M a.e. x in Bn ∀n ≥ 1

and by the zero-extension of un outside of Bn, we finally get

0 ≤ un(x) ≤ M a.e. x in RN ∀n ≥ 1. (4.7)

Lemma 4.2 The sequence (un) is bounded in W1,p(·)(RN).
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Proof Taking uneγn(un) as test function, we get∫
RN
|∇un|

p(x) eγn(un)dx+
∫
RN
|∇un|

p(x)ψn(un)eγn(un)dx+
∫
RN

(un)p(x)eγn(un)dx

≤

∫
RN
ψn(un) |∇un|

p(x) eγn(un)dx+
∫
RN

f (x,un)uneγn(un)dx+
∫
RN

huneγn(un)dx.

Since 0 ≤ un ≤ M uniformly in n and γn(un) ≥ 0, then by (2.1), (H1) and (H2)∫
RN
|∇un|

p(x) dx+
∫
RN
|un|

p(x) dx

≤ c1 |g|Lr(·)(RN )

∣∣∣|un|
β(·)

∣∣∣
Lr′(·)(RN )+ c1 |h|Lp′(·)(RN ) |un|Lp(·)(RN )

≤ c1 |g|Lr(·)(RN ) |un|
β

Lµ(·)(RN )
+ c1 |h|Lp′(·)(RN ) |un|Lp(·)(RN )

where β ∈
[
β−,β+

]
(see[11, Lemma 3.4]). It follows, by (2.3) and (2.4), that

inf
(
‖un‖

p+ ,‖un‖
p−

)
≤ c2 |g|Lr(·)(RN ) ‖un‖

β+ c2 |h|Lp′(·)(RN ) ‖un‖ .

Since 1 ≤ β− ≤ β+ < p−, then the sequence (un) is bounded in W1,p(·)(RN). Hence, there
exists u ∈W1,p(·)(RN) such that (un) is weakly convergent to u in W1,p(·)(RN) as n tends to
+∞. Moreover, we deduce from (4.7) that u ∈ L∞(RN) and 0 ≤ u(x) ≤ M a.e. x in RN .

Lemma 4.3 The sequence
(
ψn(un) |∇un|

p(·)
)

is bounded in L1
loc(RN).

Proof Let ϕ ∈C∞0 (RN) be such that ϕ ≥ 0. Taking
(
eγn(un)−1

)
ϕ as test function, we get∫

RN
|∇un|

p(x)−2∇un · ∇ϕ
(
eγn(un)−1

)
dx

+

∫
RN
|∇un|

p(x)ψn(un)eγn(un)ϕdx

+

∫
RN
|un|

p(x)−2 un
(
eγn(un)−1

)
ϕdx

≤

∫
RN
ψn(un) |∇un|

p(x)
(
eγn(un)−1

)
ϕdx

+

∫
RN

f (x,un)
(
eγn(un)−1

)
ϕdx+

∫
RN

h
(
eγn(un)−1

)
ϕdx.

Since (un) is bounded in W1,p(·)(RN) and in L∞(RN), we obtain the existence of a constant
c3 > 0 such that ∫

RN
ψn(un) |∇un|

p(x)ϕ(x)dx ≤ c3 ∀ n ≥ 1. (4.8)

Let K be any compact of RN , there exists ϕ ∈ C∞0 (RN) such that ϕ ≡ 1 on K. By (4.8), it

yields that the sequence
(∫

K
ψn(un) |∇un|

p(x) dx
)

is bounded.

We give here a convergence result of the nonlinearity term f (·, ·). The proof of this result
can be found in [12, Lemma 3.2] and, for the convenience of the reader, we have included
it in the appendix.
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Lemma 4.4 Denoting by W−1,p′(·)(RN) the dual space of W1,p(·)(RN), then we have

f (·,un)→ f (·,u) strongly in W−1,p′(·)(RN).

Lemma 4.5 The sequence (un) is strongly convergent to u in W1,p(·)(RN).

Proof Taking eγn(un)(un−u)+ as test function, we get∫
RN
|∇un|

p(x)−2∇un · ∇(un−u)+eγn(un)dx

+

∫
RN
ψn(un) |∇un|

p(x) (un−u)+eγn(un)dx

+

∫
RN
|un|

p(x)−2 un(un−u)+eγn(un)dx

≤

∫
RN
ψn(un) |∇un|

p(x) (un−u)+eγn(un)dx

+

∫
RN

f (x,un)(un−u)+eγn(un)dx+
∫
RN

h(un−u)+eγn(un)dx.

Cancelling identical terms, it yields∫
RN

(
|∇un|

p(x)−2∇un− |∇u|p(x)−2∇u
)
· ∇(un−u)+eγn(un)dx

+

∫
RN

(
|un|

p(x)−2 un− |u|p(x)−2 u
)
(un−u)+eγn(un)dx

≤

∫
RN

f (x,un)(un−u)+eγn(un)dx+
∫
RN

h(un−u)+eγn(un)dx

−

∫
RN
|∇u|p(x)−2∇u · ∇(un−u)+eγn(un)dx

−

∫
RN
|u|p(x)−2 u(un−u)+eγn(un)dx.

(4.9)

By the weak convergence of (un) to u in W1,p(·)(RN) and the boundedness of (eγn(un)), it
follows that the following equalities hold true

lim
n→+∞

∫
RN

h(un−u)+eγn(un)dx = 0, (4.10)

lim
n→+∞

∫
RN
|∇u|p(x)−2∇u · ∇(un−u)+eγn(un)dx = 0, (4.11)

lim
n→+∞

∫
RN
|u|p(x)−2 u(un−u)+eγn(un)dx = 0. (4.12)

On the other hand, in virtue of Lemma 4.4, we have

lim
n→+∞

∫
RN

f (x,un)(un−u)+eγn(un)dx = 0. (4.13)
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Combining (4.10), (4.11), (4.12) and (4.13) and having in mind the nonnegativity of (γn(un)),
we deduce from (4.9) that

lim
n→+∞

∫
RN

(
|∇un|

p(x)−2∇un− |∇u|p(x)−2∇u
)
· ∇(un−u)+dx

+ lim
n→+∞

∫
RN

(
|un|

p(x)−2 un− |u|p(x)−2 u
)
(un−u)+dx = 0.

(4.14)

Using the strict monotonicity conditions (4.5) and (4.6), we get from (2.5) that

(un−u)+→ 0 strongly in W1,p(·)(RN).

In a similar way, taking (un−u)−e−γn(un) as test function and using the fact that

e−γn(un) ≥ e−γn(M) ≥ c4 > 0 ∀n ≥ 1,

we get
(un−u)−→ 0 strongly in W1,p(·)(RN).

Therefore, we conclude that

un→ u strongly in W1,p(·)(RN).

In order to pass to the limit in the singular term, we need the following lemma:

Lemma 4.6 For every compact K in RN , we have

lim
t→0+

∫
K∩{un≤t}

ψn(un) |∇un|
p(x) dx = 0 uniformly in n.

Proof For ϕ ∈ C∞0 (RN) such that ϕ ≥ 0 and 0 < t < 1, we take −
(
eγn(t)−γn(un)−1

)+
ϕp+ as

test function, getting

− p+
∫
{un≤t}

|∇un|
p(x)−2∇un · ∇ϕ

(
eγn(t)−γn(un)−1

)
ϕp+−1dx

+

∫
{un≤t}

|∇un|
p(x) eγn(t)−γn(un)ψn(un)ϕp+dx

−

∫
{un≤t}

|un|
p(x)−2 un

(
eγn(t)−γn(un)−1

)
ϕp+dx

≤

∫
{un≤t}

|∇un|
p(x)ψn(un)

(
eγn(t)−γn(un)−1

)
ϕp+dx

+

∫
{un≤t}

|g(x)| (un)β(x)−1
(
eγn(t)−γn(un)−1

)
ϕp+dx

−

∫
{un≤t}

h
(
eγn(t)−γn(un)−1

)
ϕp+dx.

Since h ≥ 0, then∫
{un≤t}

ψn(un) |∇un|
p(x)ϕp+dx ≤ c5

∫
{un≤t}

|∇un|
p(x)−1 |∇ϕ|ϕp+−1dx
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+c5

∫
RN

tβ(x)−1ϕp+dx+ c5

∫
RN

tp(x)−1ϕp+dx. (4.15)

Taking now (un− t)−ϕp+ as test function, we obtain

p+
∫
{un≤t}

ϕp+−1 |∇un|
p(x)−2∇un · ∇ϕ(un− t)dx

+

∫
{un≤t}

|∇un|
p(x)ϕp+dx+

∫
{un≤t}

|un|
p(x)−2 un(un− t)ϕp+dx

≤

∫
{un≤t}

ψn(un) |∇un|
p(x) (un− t)ϕp+dx+

∫
{un≤t}

f (x,un)(un− t)ϕp+dx.

(4.16)

Observing that ∫
{un≤t}

ψn(un) |∇un|
p(x) |un− t|ϕp+dx

≤ t
∫
RN
ψn(un) |∇un|

p(x)ϕp+dx

≤ c6t (by Lemma 4.3)

and ∣∣∣∣∣∣
∫
{un≤t}

|∇un|
p(x)−2∇un · ∇ϕ(un− t)dx

∣∣∣∣∣∣
≤ t

∫
RN
|∇un|

p(x)−1 |∇ϕ|dx

≤ c7t
(
by the boundedness of (un) in W1,p(·)(RN)

)
.

It follows from (4.16) that∫
{un≤t}

|∇un|
p(x)ϕp+dx ≤ c8

∫
RN

(
tp(x)+ tβ(x)

)
ϕp+dx+ c8t. (4.17)

Using (4.17) with (4.15), we deduce

lim
t→0+

∫
{un≤t}

ψn(un) |∇un|
p(x)ϕp+dx = 0 uniformly in n.

Let K a compact on RN , choosing ϕ ∈ C∞0 (RN) such that ϕ ≡ 1 on K, we get the claimed
result.

Lemma 4.7 The function u is a weak solution of the problem (P). Moreover u satisfies∫
K∩{u>0}

|∇u|p(x)ψ(u)dx < +∞ for every compact K ⊂ RN .

Proof Let K be a compact of RN and E a measurable set such E ⊂ K. We have, for
0 < t < 1, ∫

E
|An(x,un)|

|∇un|
p(x)

1+ 1
n |∇un|

p(x) dx ≤
∫

E∩{un≤t}
|An(x,un)| |∇un|

p(x) dx

+

∫
E∩{un≥t}

|An(x,un)| |∇un|
p(x) dx.
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From Lemma 4.6, we get that

lim
t→0+

∫
E∩{un≤t}

|An(x,un)| |∇un|
p(x) = 0 uniformly in n.

Hence, for every ε > 0, there exists 0 < t0 < 1 such that∫
E∩{un≤t0}

|An(x,un)| |∇un|
p(x) dx <

ε

2
∀n ≥ 1. (4.18)

On the other hand, we have∫
E∩{un≥t0}

|An(x,un)| |∇un|
p(x) dx ≤

∫
E∩{un≥t0}

ψn(un) |∇un|
p(x) dx

≤ c9

∫
E
|∇un|

p(x) dx.

By Lemma 4.5, we can choose mes(E) small enough that

c9

∫
E
|∇un|

p(x) dx <
ε

2
. (4.19)

Combining (4.18) and (4.19), we get the equi-integrability of the sequence
(
An(·,un) |∇un |

p(·)

1+ 1
n |∇un |

p(·)

)
.

This, together with the convergence of
(
An(x,un) |∇un |

p(x)

1+ 1
n |∇un |

p(x)

)
to A(x,u) |∇u|p(x) a.e. x in

{
x ∈ RN ; u(x) > 0

}
implies by Vitali’s theorem that

lim
n→+∞

∫
{u>0}

An(x,un)
|∇un|

p(x)

1+ 1
n |∇un|

p(x)ϕdx =
∫
{u>0}

A(x,u) |∇u|p(x)ϕdx ∀ϕ ∈C∞0 (RN). (4.20)

It remains to prove that

lim
n→+∞

∫
{u=0}

An(x,un)
|∇un|

p(x)

1+ 1
n |∇un|

p(x)ϕdx = 0 ∀ ϕ ∈C∞0 (RN).

Observe first that by the equi-integrability of
(
An(·,un) |∇un |

p(·)

1+ 1
n |∇un |

p(·)

)
, for every ε > 0, there

exists δε > 0 such that

∀ E ⊂ supp(ϕ), mes(E) < δε ,
∫

E
|An(x,un)|

|∇un|
p(x)

1+ 1
n |∇un|

p(x) <
ε

2‖ϕ‖∞
. (4.21)

Next, by the boundedness of
(
supp(ϕ)

)
in RN and in virtue of Egorov’s theorem, we can

divide it into two measurable sets: Kε with mes(Kε) < δε and
(
supp(ϕ)\Kε) in which the

sequence (un) converges uniformly to u. By (4.21), we have∫
Kε∩{u=0}

|An(x,un)|
|∇un|

p(x)

1+ 1
n |∇un|

p(x) |ϕ|dx

≤ ‖ϕ‖∞

∫
Kε∩{u=0}

|An(x,un)|
|∇un|

p(x)

1+ 1
n |∇un|

p(x) dx

≤
ε

2
.

(4.22)
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On the other hand, there exists tε > 0 small enough and n0(ε) large enough such that, for all
n ≥ n0(ε) ∫

(supp(ϕ)\Kε)∩{u=0}
|An(x,un)|

|∇un|
p(x)

1+ 1
n |∇un|

p(x) |ϕ|dx

≤ ‖ϕ‖∞

∫
(supp(ϕ)\Kε)∩{un≤tε }

|An(x,un)| |∇un|
p(x)

and it follows from Lemma 4.6 that∫
(supp(ϕ)\Kε)∩{u=0}

|An(x,un)| |∇un|
p(x) |ϕ|dx ≤

ε

2
∀n ≥ n0(ε). (4.23)

Combining (4.22) and (4.23), we get

lim
n→+∞

∫
{u=0}

An(x,un)
|∇un|

p(x)

1+ 1
n |∇un|

p(x)ϕdx = 0 ∀ϕ ∈C∞0 (RN). (4.24)

By (4.20) and (4.24), we deduce that, for every ϕ ∈C∞0 (RN), we have

lim
n→+∞

∫
RN

An(x,un)
|∇un|

p(x)

1+ 1
n |∇un|

p(x)ϕdx =
∫
RN

A(x,u) |∇u|p(x)χ{u>0}ϕdx. (4.25)

In a similar way, we can easily establish that, for every ϕ ∈C∞0 (RN),

lim
n→+∞

∫
RN
|∇un|

p(x)−2∇un · ∇ϕdx =
∫
RN
|∇u|p(x)−2∇u · ∇ϕdx (4.26)

and
lim

n→+∞

∫
RN
|un|

p(x)−2 unϕdx =
∫
RN
|u|p(x)−2 uϕdx. (4.27)

On the other hand, by Lemma 4.4, we also get

lim
n→+∞

∫
RN

f (x,un)ϕdx =
∫
RN

f (x,u)ϕdx. (4.28)

(Note, that this result can be obtained directly by applying Lebesgue dominated conver-
gence theorem because of the boundedness of ( f (x,un)) ). Combining (4.25), (4.26), (4.27)
and (4.28), we conclude that u is a weak solution of the problem (P) and since h , 0, then
u, 0. By inequality (4.7), we get 0≤ u(x)≤M a.e. x in RN .Moreover, in virtue of Fatou’s
Lemma, we immediately deduce from Lemma 4.3 that(

ψ(u) |∇u|p(·)χ{u>0}
)
∈ L1

loc(RN).

This ends the proof of Theorem 3.1.

5 Proof of Theorem 3.2

Here, the function A(·, ·) is no longer assumed to be bounded from above by an integrable
function in a neighborhood of zero. In this case and in order to get a solution for the problem
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(P), we have to make changes concerning the coefficients An(·, ·) defined in section 4. For
n ≥ 1 an integer, we define, now,

An(x, s) =

 A(x, s) if s ≥ 1
n

A
(
x, 1

n

)
if s ≤ 1

n

(5.1)

We define, also, for s ∈ R, the three following functions

ψn(s) =

 ψ(s) if s ≥ 1
n

ψ
(

1
n

)
if s ≤ 1

n

, ψn(s) =

 ψ(s) if s ≥ 1
n

ψ
(

1
n

)
if s ≤ 1

n

, γn(s) =
∫ s

M
ψn(t)dt

with M defined by (3.1). We consider the approximate problem

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = An(x,u)

|∇u|p(x)

1+ 1
n |∇u|p(x) + f (x,u)+h in Bn (Pn)

where Bn =
{
x ∈ RN ; |x| < n

}
and An(·, ·) is now defined by (5.1). The existence of a solution

un ∈W1,p(·)
0 (Bn)∩L∞(Bn) of the problem (Pn) can be justified exactly as in section 4. Indeed,

it is sufficient to notice that there exists a positive constant c′n > 0 such that

|An(x, s)| ≤ c′n a.e. x in RN and for every s ∈ R.

The nonnegativity of (un) is immediate. We mention again that un can be extended by zero
outside of Bn getting that un ∈ W1,p(·)(RN)∩ L∞(RN). Taking now vn = eγn(un)(un −M)+ as
test function in (Pn) and following the same steps as in Lemma 4.1, we can prove that
the estimate (4.7) still holds true. The main difference here arises when we are searching
to estimate the sequence (un) in W1,p(·)(RN). Whereas, in section 4, we have been able to
prove the uniform boundedness of the sequence (un) in W1,p(·)(RN), for the present case and
under hypothesis (H4), we can only obtain a local estimate.

Lemma 5.1 The sequence (un) is bounded in W1,p(·)
loc (RN). Moreover

(
An(·,un) |∇un|

p(·)
)

is
bounded in L1

loc(RN).

Proof Let ϕ ∈C∞0 (RN) be such that ϕ ≥ 0. Taking
(
eγn(un)−1

)
ϕp+ as test function in (Pn)

and observing that
(
eγn(un)−1

)
≤ 0, we get

p+
∫
RN
|∇un|

p(x)−2∇un · ∇ϕϕ
p+−1

(
eγn(un)−1

)
dx

+

∫
RN
|∇un|

p(x)ψn(un)eγn(un)ϕp+dx

+

∫
RN
|un|

p(x)−2 un
(
eγn(un)−1

)
ϕp+dx

≤

∫
RN
|∇un|

p(x)ψn(un)eγn(un)ϕp+dx

−

∫
RN

An(x,un) |∇un|
p(x)ϕp+dx

+

∫
RN

f (x,un)
(
eγn(un)−1

)
ϕp+dx.



Singular Problem with Variable Exponent Containing Gradient Term 61

Since (un) is bounded in L∞(RN) (by relation (4.7)), it follows that∫
RN

An(x,un) |∇un|
p(x)ϕp+dx ≤ c10

∫
RN
ϕp+dx+ c10

∫
RN
|∇un|

p(x)−1 |∇ϕ|ϕp+−1dx. (5.2)

By (H4), we deduce from (5.2) that∫
RN
ψn(un) |∇un|

p(x)ϕp+dx ≤ c11+ c11

∫
RN
|∇un|

p(x)−1 |∇ϕ|ϕp+−1dx. (5.3)

For 0 < ε < 1, writing p+−1 = p+
(
1− 1

p(x)

)
+

p+

p(x) −1, it yields from Young inequality that

|∇un|
p(x)−1 |∇ϕ|ϕp+−1 ≤ ε

p(x)
p(x)−1 |∇un|

p(x)ϕp+ + c12
|∇ϕ|p(x)

ε p(x)

≤ εψ(M)ψn(un) |∇un|
p(x)ϕp+ + c12

|∇ϕ|p(x)

ε p(x) .

(5.4)

Using (5.4) and choosing ε such that 0 < 1− c11εψ(M), we obtain by (5.3) that(∫
RN
ψn(un) |∇un|

p(x)ϕp+
)

is bounded.

Observing that ψn(un) ≥ 1
ψ(M) ∀ n ≥ 1, then we get immediately that

(
|∇un|

p(·)
)

is bounded

in L1
loc(RN). Taking again into account that (un) is uniformly bounded in L∞(RN), we con-

clude that (un) is bounded in W1,p(·)
loc (RN). We denote by u the weak limit of (un).

Lemma 5.2 The sequence (Tt(un)) (where Tt(·) is defined by (3.3)) is strongly convergent
to Tt(u) in W1,p(·)

loc (RN) for every t > 0.

Proof For simplicity in notation, we will denote by ε1
n , ε

2
n , · · · various sequences of real

numbers converging to zero when n tends to +∞. For n ≥ 1 and t > 0, we also denote by
wn,t = Tt(un)−Tt(u) and γn,t = γn(un)−γn(Tt(un)). Let ϕ be a function in C∞0 (RN) such that
ϕ ≥ 0 and Φ be as in (3.2). Taking Φ

((
wn,t

)+)eγn,tϕ as test function, we get∫
RN
|∇un|

p(x)−2∇un · ∇(w+n,t)Φ
′(w+n,t)e

γn,tϕdx

+

∫
RN
|∇un|

p(x)ψn(un)eγn,tΦ(w+n,t)ϕdx

+

∫
RN
|∇un|

p(x)−2∇un · ∇ϕ Φ
((

wn,t
)+)eγn,t dx

−

∫
RN
|∇un|

p(x)−2∇un · ∇ (Tt(un))ψn (Tt(un))eγn,tΦ(w+n,t)ϕdx

+

∫
RN
|un|

p(x)−2 unΦ(w+n,t)e
γn,tϕdx

≤

∫
RN
ψn(un) |∇un|

p(x)Φ(w+n,t)e
γn,tϕdx

+

∫
RN

f (x,un)Φ(w+n,t)e
γn,tϕdx+

∫
RN

hΦ(w+n,t)e
γn,tϕdx.

(5.5)
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Let R > 0 be such that supp(ϕ) ⊂ B(0,R); since β(x) < p∗(x) ∀ x ∈ RN , then the embedding
of W1,p(·)(B(0,R)) into Lβ(·)(B(0,R)) is compact. This fact together with the weak conver-
gence of (w+n,t) to zero and the boundedness of the sequence (eγn,t ) imply that∫

RN
f (x,un)Φ(w+n,t)e

γn,tϕdx→ 0 (5.6)

and ∫
RN

hΦ(w+n,t)e
γn,tϕdx→ 0. (5.7)

On the other hand, using again the boundedness of (eγn,t ) , by (2.1) we have∣∣∣∣∣∫
RN
|∇un|

p(x)−2∇un · ∇ϕ Φ
((

wn,t
)+)eγn,t dx

∣∣∣∣∣
≤ c13

∣∣∣|∇un|
p(·)−1

∣∣∣
Lp′(·)(B(0,R))

∣∣∣ |∇ϕ| ∣∣∣Φ(w+n,t)
∣∣∣ ∣∣∣

Lp(·)(B(0,R))

Since (un) is bounded in W1,p(·)
loc (RN) and Φ(w+n,t) converges to zero a.e. in RN , we immedi-

ately deduce that ∫
RN
|∇un|

p(x)−2∇un · ∇ϕ Φ
((

wn,t
)+)eγn,t dx→ 0 (5.8)

Observe now that∫
RN
|un|

p(x)−2 unΦ(w+n,t)e
γn,tϕdx

=

∫
{un≥t}

|Tt(un)|p(x)−2 Tt(un)Φ(w+n,t)ϕdx

=

∫
RN

(
|Tt(un)|p(x)−2 Tt(un)− |Tt(u)|p(x)−2 Tt(u)

)
Φ(w+n,t)ϕdx

+

∫
RN
|Tt(u)|p(x)−2 Tt(u)Φ(w+n,t)ϕdx.

By the weak convergence of (w+n,t) to zero, we get∫
RN
|Tt(u)|p(x)−2 Tt(u)Φ(w+n,t)ϕdx→ 0

and it follows that∫
RN
|un|

p(x)−2 unΦ(w+n,t)e
γn,tϕdx

=

∫
RN

(
|Tt(un)|p(x)−2 Tt(un)− |Tt(u)|p(x)−2 Tt(u)

)
Φ(w+n,t)ϕdx+ ε1

n .

(5.9)

Next, we have∫
RN
|∇un|

p(x)−2∇un · ∇
(
w+n,t

)
Φ′(w+n,t)e

γn,tϕdx

=

∫
{un≥t}

|∇Tt(un)|p(x)−2∇Tt(un) · ∇
(
w+n,t

)
Φ′(w+n,t)ϕdx

=

∫
RN

(
|∇Tt(un)|p(x)−2∇Tt(un)− |∇Tt(u)|p(x)−2∇Tt(u)

)
· ∇(w+n,t)Φ

′(w+n,t)ϕdx

+

∫
RN
|∇Tt(u)|p(x)−2∇Tt(u) · ∇(w+n,t)Φ

′(w+n,t)ϕdx.



Singular Problem with Variable Exponent Containing Gradient Term 63

Again by the weak convergence of (w+n,t) to zero, we obtain∫
RN
|∇un|

p(x)−2∇un · ∇(w+n,t)Φ
′(w+n,t)e

γn,tϕdx

=

∫
RN

(
|∇Tt(un)|p(x)−2∇Tt(un)− |∇Tt(u)|p(x)−2∇Tt(u)

)
· ∇(w+n,t)Φ

′(w+n,t)ϕdx

+ ε2
n .

(5.10)

In a similar way, for n large enough, we have∫
RN
|∇un|

p(x)−2∇un · ∇(Tt(un))ψn(Tt(un))eγn,tΦ(w+n,t)ϕdx

=

∫
{un≥t}

|∇Tt(un)|p(x)ψn(un)Φ(w+n,t)ϕdx

≤ c14(t)
∫
RN

(
|∇Tt(un)|p(x)−2∇Tt(un)− |∇Tt(u)|p(x)−2∇Tt(u)

)
· ∇(w+n,t)Φ(w+n,t)ϕdx

+ ε3
n

which implies that

−

∫
RN
|∇un|

p(x)−2∇un · ∇(Tt(un))ψn(Tt(un))eγn,tΦ(w+n,t)ϕdx

≥ −c14(t)
∫
RN

(
|∇Tt(un)|p(x)−2∇Tt(un)− |∇Tt(u)|p(x)−2∇Tt(u)

)
· ∇(w+n,t)Φ(w+n,t)ϕdx

− ε3
n .

(5.11)

Combining (5.6), (5.7), (5.8), (5.9), (5.10) and (5.11) with (5.5), we obtain∫
RN

(
|∇Tt(un)|p(x)−2∇Tt(un)− |∇Tt(u)|p(x)−2∇Tt(u)

)
· ∇((Tt(un)−Tt(u))+)

×
(
Φ′(w+n,t)− c13(t)Φ(w+n,t)

)
ϕdx

+

∫
RN

(
|Tt(un)|p(x)−2 Tt(un)− |Tt(u)|p(x)−2 Tt(u)

)
(Tt(un)−Tt(u))+ϕdx ≤ ε4

n .

(5.12)

Notice now that( see [2, Lemma 1.2]) we can choose η > 0 such that

Φ′(w+n,t)− c14(t)Φ(w+n,t) ≥
1
2
∀n ≥ 1.

Using the strict monotonicity conditions (4.5) and (4.6), we deduce from (5.12) and (2.5)
that

(Tt(un)−Tt(u))+→ 0 strongly in W1,p(·)
loc (RN).

Similarly, taking Φ(w−n,t)e
−γn,tϕ as test function, we get

(Tt(un)−Tt(u))−→ 0 strongly in W1,p(·)
loc (RN).

Therefore, we conclude that Tt(un)→ Tt(u) strongly in W1,p(·)
loc (RN).
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Lemma 5.3 For every compact K in RN , we have

lim
t→0+

∫
K∩{un≤t}

An(x,un)
|∇un|

p(x)

1+ 1
n |∇un|

p(x) dx = 0 uniformly in n.

Proof Let ϕ ∈ C∞0 (RN) be such that ϕ ≥ 0, for 0 < t < 1, taking
(
eγn(un)−γn(t)−1

)−
ϕp+ as

test function and observing that
(
eγn(un)−γn(t)−1

)−
is bounded, we get∫

{un≤t}
An(x,un)

|∇un|
p(x)

1+ 1
n |∇un|

p(x)ϕ
p+dx ≤ c15

∫
{un≤t}

|∇un|
p(x)−1 |∇ϕ|ϕp+−1dx

+ c15

∫
RN

tβ(x)−1ϕp+dx+ c15

∫
RN

tp(x)−1ϕp+dx.

Continuing as in the proof of Lemma 4.6, we reach the claimed result.

Using the previous results, the passage to the limit can be achieved by following the
same steps as in Lemma 4.7. Therefore, we prove that u is a nontrivial and nonnegative
weak solution of the problem (P) which ends the proof of Theorem 3.2.

6 Proof of Theorem 3.3

In order to prove Theorem 3.3, we have to consider a modified approximating problem. We
introduce, here, the following approximate coefficients

An(x, s) =


A
(
x, s1− 1

n
)

if s ≥ 1
n

(ns)
1
n A

(
x, s1− 1

n
)

if 0 < s ≤ 1
n

0 if s ≤ 0

(6.1)

and the corresponding approximate problem

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = An(x,u)

|∇u|p(x)

1+ 1
n |∇u|p(x) + f (x,u)+h in Bn (Pn)

where Bn still denotes the set Bn =
{
x ∈ RN ; |x| < n

}
. It is clear that, for every n ≥ 1, the

coefficient An(·, ·) defined by (6.1) satisfies

|An(x, s)| ≤ c′′n a.e. x in RN and for every s ∈ R

for some positive constant c′′n . It yields, as in sections 4 and 5, the existence of un ∈

W1,p(·)
0 (Bn)∩ L∞(Bn) which is a weak solution of the problem (Pn). By zero-extension out-

side of Bn, un may be assumed to belong to W1,p(·)(RN)∩L∞(RN).

Putting u−n =min(un,0) as test function in (Pn) and taking into account the nonpositivity
of An(·, ·), we get immediately the nonnegativity of un. We prove now that relation (4.7) still
holds true giving a uniform estimate of the sequence (un) in L∞(RN).
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Lemma 6.1 The sequence (un) is uniformly bounded in L∞(RN).

Proof Let M be as in relation (3.1). Observing that (un−M)+ ∈W1,p(·)
0 (Bn) and taking it

as test function, we get by the nonpositivity of An(·, ·) that∫
Bn

∣∣∣∇(un−M)+
∣∣∣p(x)

dx+
∫

Bn

(un)p(x)−1(un−M)+dx

≤

∫
Bn

|g(x)| (un)β(x)−1(un−M)+dx+
∫

Bn

h(un−M)+dx.

Continuing exactly as in Lemma 4.1, we get that

0 ≤ un(x) ≤ M a.e. x in RN .

The boundedness of (un)n in W1,p(·)(RN) is immediate. Indeed, taking un as test function
in (Pn) and using again the nonpositivity of An(·, ·) and the nonnegativity of un, we obtain,
so easily, that (un)n is bounded in W1,p(·)(RN). It follows the existence of u ∈ W1,p(·)(RN)
such that (un) is weakly convergent to u in W1,p(·)(RN). Moreover, by (4.7), u ∈ L∞(RN) and
u ≥ 0.

Lemma 6.2 The sequence
(
|An(·,un)| |∇un |

p(·)

1+ 1
n |∇un |

p(·)

)
is bounded in L1

loc(RN).

Proof Let ϕ ∈C∞0 (RN) be such that ϕ ≥ 0. Taking ϕ as test function, we get∫
RN
|∇un|

p(x)−2∇un · ∇ϕdx+
∫
RN

(un)p(x)−1ϕdx+
∫
RN
|An(x,un)|

|∇un|
p(x)

1+ 1
n |∇un|

p(x)ϕdx

=

∫
RN

f (x,un)ϕdx+
∫
RN

hϕdx.

By the boundedness of (un) in W1,p(·)(RN), we obtain the claimed result.

We notice now that under minor modifications, we can prove, as in Lemma 5.2, that

Tt(un)→ Tt(u) strongly in W1,p(·)
loc (RN) for every t > 0.

Indeed, for n ≥ 1 and s ≥ 0, we define the following functions

ψ̃n(s) =


1

s1− 1
n

if s ≥ 1
n(

1
n

) 1
n−1

if s ≤ 1
n

and γ̃n(s) =
∫ s

0
ψ̃n(t)dt.

Reasoning as in Lemma 5.2 by taking successively, as test function, φ
(
w+n,t

)
ϕec0γ̃n(un)−c0γ̃n(Tt(un))

and φ
(
w−n,t

)
ϕec0γ̃n(Tt(un))−c0γ̃n(un) where ϕ ∈C∞0 (RN) be such that ϕ ≥ 0, we can easily get the

strong convergence result. In same way, we can also establish that

lim
t→0+

∫
K∩{un≤t}

ψ̃n(un) |∇un|
p(x) dx = 0 uniformly in n
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for every compact K ⊂ RN . Passing now to the limit by proceeding as in Lemma 4.7, we
obtain that u is a weak nontrivial and nonnegative solution of the problem (P). Furthermore,
we have ∫

RN
|A(x,u)| |∇u|p(x)χ{u>0}ϕdx < +∞

for every ϕ ∈ C∞0 (RN) verifying that ϕ ≥ 0. Taking now account of the boundedness of the

sequence
(∫
RN
|An(x,un)| |∇un|

p(x) undx
)
, we get that

∫
RN
|A(x,u)| |∇u|p(x) uχ{u>0}dx < +∞.

So that, the proof of Theorem 3.3 is complete.

Appendix

Proof of Lemma 4.4 For t > 0, we denote by Bt the open ball in RN of radius t, i.e.
Bt =

{
x ∈ RN ; |x| < t

}
. Let now t > 0 and v ∈W1,p(·)(RN) such that ‖v‖ ≤ 1, by (2.1) we have∫

Bt

| f (x,un)− f (x,u)| |v|dx ≤ 2 | | f (·,un)− f (·,u)| |Lβ′(·)(Bt) |v|Lβ(·)(Bt)

Since Bt is bounded in RN and β(x) < p∗(x) ∀ x ∈ RN , then

| | f (·,un)− f (·,u)| |Lβ′(·)(Bt)→ 0 as n→ +∞

which implies that

lim
n→+∞

 sup
v∈W1,p(·)(RN )
‖v‖≤1

∣∣∣∣∣∣
∫

Bt

( f (x,un)− f (x,u))vdx

∣∣∣∣∣∣
 = 0 ∀t > 0. (A.1)

Observing that
1
µ(x)
+
β(x)−1
µ(x)

+
1

r(x)
= 1 ∀ x ∈ RN

and using (2.2), we get∫
RN\Bt

| f (x,un)− f (x,u)| |v|dx

≤

∫
RN\Bt

|g(x)|
∣∣∣|un|

β(x)−1+ |u|β(x)−1
∣∣∣ |v|dx

≤ 3 |g|Lr(·)(RN\Bt)

∣∣∣|un|
β(·)−1+ |u|β(·)−1

∣∣∣
L

µ(·)
β(·)−1 (RN\Bt)

|v|Lµ(·)(RN\Bt) .

(A.2)

Since (un) is bounded in W1,p(·)(RN), from (A.2) we deduce that∫
RN\Bt

| f (x,un)− f (x,u)| |v|dx ≤ c16 |g|Lr(·)(RN\Bt) . (A.3)
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Now, since g ∈ Lr(·)(RN), then

|g|Lr(·)(RN\Bt)→ 0 as t→ +∞.

Thus for every ε > 0, there exists t0 > 0 large enough such that

c16 |g|Lr(·)(RN\Bt0 ) <
ε

2
.

By (A.3), we get ∫
RN\Bt0

| f (x,un)− f (x,u)| |v|dx <
ε

2
∀n ≥ 1. (A.4)

Taking t = t0 in (A.1) and combining (A.1) with (A.4), we obtain the claimed result.
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[16] P. Harjulehto, P. Hästö, Ùt V. Lê, and M. Nuorto, Overview of differential equations
with non-standard growth, Nonlinear Anal. 72 (2010), 4551–4574.

[17] S. Kichenassamy and L. Veron, Singular solutions of the p-Laplace equation, Math.
Ann. 275 (1985), 599–615.

[18] J. Leray, J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non
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