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Abstract

The main goal of the paper is to define new type of integrals for vector-valued functions
on time scales. This allows to make possible the advantages of dynamic equations also
for vector-valued functions i.e. for dynamic modeling in Banach spaces. To do it we
define some appropriate integrals for vector-valued functions on time scales and we
prove their properties.

We emphasize on the particular ones, which are useful for solving dynamic equa-
tions in Banach spaces.
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1 Introduction

Differential and difference equations in infinite dimenensional Banach spaces are inten-
sively studied (at least from the paper of E.H. Moore in 1908). When we consider infinite
systems of differential equations, evolution equations or functional-differential equations
such problems should be considered as the problems in infinite dimensional spaces. This
justify still growing development of equations in Banach spaces. Moreover, in many prob-
lems arising, for instance, in the control theory or mathematical economics it is necessary
to consider both continuous and discrete models which lead to superfluous duplicating of
the theory. One of the procedure of avoiding such problems is based on utilization of the
notion of a time scale.
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We need to enlarge this procedure also for problems in infinite dimensional Banach
spaces by introducing new type of integrals for vector valued functions defined on a general
time scale. Due to equivalence of differential or dynamic problems to the integral form we
are able to fully cover all theories for differential and difference equations in Banach spaces
including all types of considered solutions (cf. [19]).

A time scale T is a nonempty closed subset of real numbers R with the subspace topol-
ogy inherited from the standard topology of R. Thus R,Z,N or the set of harmonic numbers
{Hn = ∑

n
k=1

1
k : n∈N}∪{0} are the examples of time scales while Q, {1

n : n∈N} and (0,1)
are not time scales. For simplicity, we will denote by [a,b] a time scale interval i.e. [a,b]∩T.

The notion of a time scale was introduced by Hilger and allows us to treat by unified
manner differential equations, integral equations and difference equations. Moreover, the
so-called dynamic equations cover different kind of hybrid equations which do not involve
solely continuous aspects or solely discrete aspects. For instance, neither difference equa-
tions nor differential equations give a good description of most population growth. We deal
with similar problem when we try to describe a population dynamics where nonoverlapping
generations occur (cf. [11], [12] or [33]).

The main goal of this paper is to make possible such an advantage of dynamic equations
also for vector-valued functions i.e. for dynamic modeling in Banach spaces. To do it we
define appropriate integrals on time scales and we prove their properties which are useful
for solving dynamic equations. For simplicity, we present some definitions and results in
terms of delta derivatives and integrals. The case of nabla-type derivatives and integrals can
be obtained in a similar manner (cf. [31] or [11]). We stress also on a possibly complete
list of references, in such a way to make the paper useful as a short survey about integrals
on time scales.

Let us also note, that by using our new integrals we are able to extend all existing results
for dynamic equations in Banach spaces including the latest one [21] for other classes of
solutions.

Define the so-called delta derivative and delta Cauchy-Newton integral for Banach val-
ued functions in the same manner as usual ∆-derivative and ∆-integral on time scales.

Definition 1.1. Fix an arbitrary t ∈ (a,b) ⊂ T. Let f : [a,b] → E. Then we define ∆-
derivative f ∆(t) by

f ∆(t) = lim
s→t

f (σ(t))− f (s)
σ(t)− s

.

The ∆-derivative turns out that in particular cases we have

(i) f ∆ = f ′ is the usual derivative if (a,b)⊂ T = R and

(ii) f ∆ = ∆ f is the usual forward difference operator if (a,b)⊂ T = Z.

Hence time scale allows us to unify the treatment of differential and difference equations
(and not only these cases).

Let E be an arbitrary Banach space and E∗ be its topological dual.

Definition 1.2. We say that f : [a,b]→ E is right dense continuous (rd-continuous) if f is
continuous at every right dense point t ∈ [a,b] and lims→t− f (s) exists and is finite at every
left dense point t ∈ [a,b].
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The above notion, specific for time scales, is important in view of existence of an-
tiderivatives:

Remark. [11] Every rd-continuous function has an antiderivative. In particular, if
t, t0 ∈ T then F defined by

F(t) :=
Z t

t0
f (τ)∆τ, t ∈ T

is an antiderivative of f .

Definition 1.3. If F∆(t) = f (t) for each t ∈ T then we define the Cauchy-Newton integral
by

(CN)
tZ

a

f (τ)∆τ = F(t)−F(a).

The main disadvantage of the Cauchy-Newton integral is its inapplicability in real prob-
lems for differential equations: too small class of integrable functions (cf. [41] or [8]).
Moreover, we are unable to check many important properties of such an integral, including
convergence theorems.

There exist a few interesting generalizations of the notion of the Cauchy-Newton inte-
gral for real-valued functions on time scale, namely the Riemann integral ([29], [8], [14]),
the improper Riemann integral (or: the Cauchy-Riemann integral)([8]), the Lebesgue inte-
gral (Aulbach and Neidhard [8], Guseinov [29], Cabada and Vivero [13], [14], Rzeżuchowski
[42], Chyan and Fryszkowski [18] or Agarwal et al. [5]), the Lebesgue-Stjeltjes integral
(Deniz and Ufuktepe [24]) or the Henstock-Kurzweil integral (Peterson and Thompson [41]
and for unbounded time scales: [10], [30], [9]). Let us stress, that the case of integrals for
real-valued functions is still intensively investigated. Each of such extensions of the notion
of integral has some important advantages (bigger class of integrable functions, mean-value
theorems, convergence theorems etc.), in particular each new definition of the integral has
applications in the theory of differential and difference equations.

Nevertheless, for the vector-valued functions this topic is not sufficiently investigated.
Such integrals are necessary to unify theories of differential, difference, q-difference equa-
tions for vector-valued functions. Each of these theories is intensively developed, but the
unification is still an open problem, mainly due to lack of research dealing with different
kind of derivatives and integrals. Some interesting considerations about derivatives were
presented in [45] (in the real-valued context), for instance. We will deal with a new type of
integrals.

Even in the case T = R new definition of integrals was motivated by some problems
arising in the theory of differential equations (the problem of primitives) (cf. Cichoń [19]).
In the case T = Z our study has some applications in the theory of difference equations in
Banach spaces. Since the unification of continuous and discrete case lies at the basis of the
theory of time scales we present some results about weak type integral in Banach spaces.

Till now, except the Cauchy-Newton integral and the Riemann integral, only the Bochner
integral was described for functions defined on time scales with values in a Banach space.
Such an integral was necessary to investigate some problems for differential equations in
Banach spaces (see [19], for instance). Note, that the function u is Bochner integrable on
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[a,b] iff the real-valued function ‖u‖ is Lebesgue integrable (cf. [8]) so it is the absolute
integration.

In the present paper we will stress on weak type integrals which are important in a
new field of research concerned with weak solutions for dynamic equations (covering both
differential and difference equations) - cf. [21]. Let us recall selected papers for differential
equations: [46] or [40] for the weak Riemann integral, [34] or [20] for the Pettis integral,
[37], [38], [7], [43], [16], [17] or [22] for the Henstock-Kurzweil integral (cf. also [44])
or finally [19] for the Henstock-Kurzweil-Pettis integral and comparison results between
classes of solutions.

For difference equations in Banach spaces see [2], [4], [6], [39], [23], [26] or [25], for
instance. For integral equations on time scales see [36]. In particular, regarding on the
papers dealing with continuous and discrete equations as similar results (in the same paper)
see [35] or [3], for instance. In this paper, a basis for such a unification is introduced.

All the integrals mentioned above could be defined on time scales and used for solving
dynamical equations on time scales.

For all our definitions and results there are corresponding ones for nabla derivatives and
integrals. We will not bother to consider that case.

The paper contains results about basic properties of the new integrals. We emphasize
the properties which are necessary when we solve some problems for differential, integral
or difference equations. In such a case the equivalence of differential Cauchy problems and
integral equations is a really standard method. But to take advantage from this equivalence
the integral problem should be effectively studied. This depends on the properties of inte-
grals which are used in the proof (cf. [19] for differential equations on compact intervals).

2 Integrals.

Now, we define new type of integrals on time scales and we check some of their proper-
ties. We will check the new integral to make possible the application of defined integrals
for checking the existence of solutions for differential (or: dynamic) equations in Banach
spaces. We will define both strong and weak type of integrals.

A function y : [a,b] → E is said to be weakly-∆ differentiable at point t ∈ [a,b] if for
each x∗ ∈ E∗ the real valued function x∗y is ∆ differentiable in the usual sense on time scales
i.e. for any ε > 0 there is a neighborhood U of t with

|[x∗y(σ(t))− x∗y(s)]− x∗yw∆(t)[σ(t)− s]|< ε|σ(t)− s|,

where yw∆(t) is an element of E called the weak-∆ derivative of y at t.

In this paper we will prove some basic properties of the weak-∆ derivative. The defini-
tion of weak Cauchy-Newton integral follows directly from the real-valued one.

Definition 2.1. If Fw∆(t) = f (t) for each t ∈ T then we define the weak Cauchy-Newton
integral by

(wCN)
tZ

a

f (τ)∆τ = F(t)−F(a).
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A function y : [a,b] → E is said to be weakly rd-continuous iff for each x∗ ∈ E∗ the
real-valued function is rd-continuous. Thus from this definition it follows that

Lemma 2.2. Every weakly rd-continuous function f has a weak antiderivative i.e. for each
t0 ∈ T then

F(t) := (wCN)
Z t

t0
f (τ)∆τ, t ∈ T

is a weak antiderivative of f .

Recall the definition of the Riemann integral for vector-valued function on time scales:

Definition 2.3. (Aulbach and Neidhart [8], Guseinov [29]) The function f : [a,b] → E
is Riemann integrable on [a,b] if there exists A ∈ E with the following property: for every
ε > 0 there exists a positive constant δ on [a,b] such that for every partition D of [a,b]
given by x0 < x1 < .. . < xn which is finer then δ and any set of points y0,y1, . . . ,yn ∈ D
with yi ∈ [xi−1,xi) for i = 1,2, . . . ,n one has

‖
n

∑
i=1

f (yi)(xi− xi−1)−A‖< ε .

We write (R)
R b

a f (t)∆t = A. A partition D is called ”finer than δ” if for each i = 1,2, ...,n
we have either (xi− xi−1)≤ δ or both (xi− xi−1) > δ and xi = σ(xi−1).

Definition 2.4. The function f : [a,b]→ E is weak Riemann integrable on [a,b] if there
exists A ∈ E with the following property: for every ε > 0 and every x∗ ∈ E∗ there exists
a positive constant δ on [a,b] such that for every partition D of [a,b] given by x0 < x1 <
.. . < xn which is finer then δ and any set of points y0,y1, . . . ,yn ∈ D with yi ∈ [xi−1,xi) for
i = 1,2, . . . ,n one has

|x∗(
n

∑
i=1

f (yi)(xi− xi−1)−A)|< ε .

We write (wR)
R b

a f (t)∆t = A.

Note, that for vector-valued functions even in the case T = R Riemann-type integrable
functions need not be measurable which is a necessary condition for the Bochner integrabil-
ity. Such functions are also neither continuous almost everywhere nor weakly continuous
almost everywhere, in general (cf. [27]). Then we cannot expect that we will be able to
characterize a class of all Riemann integrable functions, which make such an integral al-
most useless in the theory of dynamic equations in Banach spaces. We will prove mainly
the properties of another type of integrals.

As in a classical case ([15] or [19], cf. [41] for real-valued functions), we need to
introduce two definitions of vector-valued Henstock-Kurzweil integrals.

Let δ be a pair (δL,δR) of positive functions. We say that a partition D of [a,b]
given by x0 ≤ ξ1 < x1 ≤ ξ2 < .. . ≤ ξn < xn is δ-fine and we can write D = {[u,v],ξ} =
{[xi−1,xi];ξi , i = 1,2, . . .n} whenever the following condition is satisfied

ξi ∈ [xi−1,xi]⊂ (ξi−δL(ξi),ξi +δR(ξi))
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if only xi 6= σ(xi−1). Let us recall that such a partition exists for arbitrary positive pair
of functions (Cousin’s Lemma i.e. Lemma 1.9 in [41]) (even taking into account some
changes in the above definition). We sometimes use the abbreviation ∑D f (ξ)(v−u) instead
of ∑

n
i=1 f (ξi)(xi− xi−1).

Definition 2.5. A function f : [a,b] → E is (HK) integrable on [a,b] if there exists a
function F : [a,b] −→ E, defined on the subintervals of [a,b], satisfying the following
property: given ε > 0 there exists a pair δ of positive functions (δL(·),δR(·)) on [a,b] such
that if D = {[u,v],ξ} is a δ-fine division of [a,b], we have

‖∑
D

f (ξ)(v−u)− (F(v)−F(u))])‖< ε .

Definition 2.6. A function f : [a,b] → E is (HL) integrable on [a,b] if there exists a
function F : [a,b] −→ E, defined on the subintervals of [a,b], satisfying the following
property: given ε > 0 there exists a pair δ of two positive functions (δL(·),δR(·)) on [a,b]
such that if D = {[u,v],ξ} is a δ-fine division of [a,b], we have

∑
D
‖ f (ξ)(v−u)− (F(v)−F(u))])‖< ε .

Remark. We note that, by the triangle inequality, if f is (HL) integrable it is also (HK)
integrable. In general, the converse is not true. For real-valued functions, the two integrals
are equivalent. Nevertheless, in [41] for real-valued function is considered a definition of
the (HK) type of integral.

The above integrals are really applicable in the theory of differential equations and
solves the problem of primitives for the strong (norm) topology (integrability of an arbitrary
derivative). Recall that they are nonabsolute integrals, covering as particular cases both
Riemann integrals (for the case of constant function δ(·)) and Bochner integrals (for the
case of integrability for both f and ‖ f‖). Nevertheless, let us remark, that the existence of
the Henstock-Kurzweil integral over [a,b] implies the existence of such integrals over all
subintervals of [a,b] but not for all measurable subsets of this interval, so the theory of such
integrals on T does not follows from general theory on R.

We need to define also some integrals which are important when we consider the weak
topology on the Banach space E. The first one is an adaptation of the definition of Pettis
integrals from R.

Definition 2.7. The function f : [a,b]→ E is Pettis integrable ((P) integrable for short) if
(i) ∀x∗∈E∗ x∗ f is Lebesgue integrable on [a,b],
(ii) ∀ A⊂[a,b]

A measurable
∃g ∈ E ∀x∗∈E∗ x∗g = (L)

R
A x∗ f (s)∆(s).

Now, we present a new definition of the integral on time scales which is a generalization
for both Pettis and Henstock-Kurzweil integrals.

Definition 2.8. The function f : [a,b]→E is Henstock-Kurzweil-Pettis integrable ((HKP)
integrable for short) if there exists a function g : [a,b]→ E with the following properties:
(i) ∀x∗∈E∗ x∗ f is Henstock-Kurzweil integrable on [a,b],
(ii) ∀t∈[a,b] ∀x∗∈E∗ x∗g(t) = (HK)

R t
0 x∗ f (s)∆(s).
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This function g we denote by (HKP)
R

f (t)∆(t) and will be called Henstock-Kurzweil-
Pettis integral of f on the time scale interval [a,b].

We have the following diagram of implications for vector-valued integration on time
scales which is, in fact, similar to those for integration on R

(Bochner) ⇒ (HL) ⇒ (HK) ⇒ (HKP) ⇐ (Pettis) ⇐ (Bochner)

Here, we need to present some examples. Please find the considered spaces T as time
scales, not simply as subsets of R. In particular, the Lebesgue measure on T is taken in the
sense of time scales.

1) Considering the case T = R. For [a,b] ⊂ T we can recall, that all the classes of
integrable functions are essentially different. For such examples cf. [19] and references
therein.

2) For T = Z+ we have the function f defined on T is Bochner integrable if the series
∑ti∈T f (ti) is absolutely convergent, Henstock-Kurzweil integrable if the series is condition-
ally convergent and finally is Pettis integrable if the series is weakly convergent. Of course,
the sum of the series should be an element of the target space for f (cf. an example below).

A definite example is the following: take a sequence a1 =(1,0,0,0,0, ...), a2 =(−1,1,0,
0,0, ...), a3 = (0,−1,1,0,0, ...), ... of elements considered as elements of l2. Define a func-
tion f : T→ l2 by the following formula f (n) = an for each n ∈ T.

Consider the series ∑
∞
k=1 ak in l2. A partial sum for this series is in the form: S1 =

(1,0,0,0, ...), S2 = (0,1,0,0, ...), S3 = (0,0,1,0, ...) ... . Since ‖Sn− Sm‖2 =
√

2 for each
n 6= m, (Sn) cannot be a Cauchy sequence (due to completeness of the space l2) consequently
is not (strongly) convergent.

Nevertheless, taking an arbitrary x∗ ∈ (l2)∗ = l2 we have x∗ = (sk) ∈ l2, so

x∗Sn =
∞

∑
k=1

δk,n · sk = sn,

where δk,n = 1 for k = n and δk,n = 0 for k 6= n.

But x∗ = (sk) ∈ l2, so sn → 0 as n→ ∞. Finally x∗Sn → 0 as n→ ∞.

Remark that
R
T f (t)∆(t) = ∑

∞
k=1 ak when the integral is considered in the sense of

Bochner (strong convergence of the series) or in the sense of Pettis (weak convergence
of the series). Thus (B)

R
T f (t)∆(t) does not exist, but (P)

R
T f (t)∆(t) = 0.

3) We need to show an example which clarifies the importance of both conditions in
definitions of weak integrals.

For T = qN∪{0} with q = 1
2 . Put An = { 1

2k : k ≥ n}. Consider a function f : T→ c0 by
the formula

f (t) = (χA0(t),2 ·χA1(t),2
2 ·χA2(t),2

3 ·χA3(t), ...) ∈ c0,

where χA denotes a characteristic function of A.
As in a classical case we see, that if g(s)= (g1(s),g2(s),g3(s), ...)∈ c0 then

R
A g(t)∆(t)=

(
R

A g1(s)∆(s),(
R

A g2(s)∆(s),(
R

A g3(s)∆(s), ...). Hence for any x∗ ∈ (c0)∗ = l1 we have x∗ =
(α1,α2, ...) and then x∗ f = ∑

∞
n=1 αn · 2n ·χAn , the series is convergent and this function is
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(HK) integrable (or even Lebesgue integrable). However

(L)
Z

[0,1]
x∗ f (t)∆(t) = ((L)

Z
[0,1]

χA0(s)∆(s),(L)
Z

[0,1]
2χA1(s)∆(s),(L)

Z
[0,1]

22
χA2(s)∆(s), ...)

= (
∞

∑
n=0

1 · 1
2n ,2

∞

∑
n=1

1 · 1
2n ,22

∞

∑
n=2

1 · 1
2n , ...)

= (2,2,2, ...) 6∈ c0.

Thus this function is neither (HKP) nor (P) integrable on T.

3 Basic properties.

Now, we prove some basic properties for the integrals defined above, in such a way to
explain their usefulness. All of them will be necessary for proving the existence of solutions
for the Cauchy problem in Banach spaces. Applicability of the presented results will be
shown elsewhere ([21], for instance).

Without repetition of a full theory for Henstock-Kurzweil integrals on T we refer the
reader to [41] for the proofs of indispensable properties of such an integral which will be
used in the sequel for the proof of the following lemma:

Theorem 3.1. Let f and g be functions defined on the interval of time scale [a,b]⊂ T into
the Banach space E and let α , β ∈ R.

a) If f is (HKP) integrable on [a,c] and on [c,b] then this function is (HKP) integrable
on [a,b]. Moreover

(HKP)
Z b

a
f (s)∆(s) = (HKP)

Z c

a
f (s)∆(s)+(HKP)

Z b

c
f (s)∆(s).

b) If f ang g be (HKP) integrable on [a,b], then α f + βg is (HKP) integrable on [a,b]
and

(HKP)
Z b

a
(α f +βg)(s)∆(s) = α(HKP)

Z b

a
f (s)∆(s)+β(HKP)

Z b

a
f (s)∆(s).

Proof. a) Since f is (HKP) integrable on [a,c] ([c,b]), for each x∗ ∈ E∗ ,x∗ f is (HK) inte-
grable on [a,c] ([c,b], respectively). Such functions are real-valued, so by Theorem 2.12
from [41] x∗ f are (HK) integrable on [a,b].

Thus
x∗((HKP)

Z c

a
f (s)∆(s)) = (HK)

Z c

a
(x∗ f (s))∆(s)

and

x∗((HKP)
Z b

c
f (s)∆(s)) = (HK)

Z b

c
(x∗ f (s))∆(s).

We have

x∗((HKP)
Z c

a
f (s)∆(s)+(HKP)

Z b

c
f (s)∆(s))

= (HK)
Z c

a
x∗ f (s)∆(s)+(HK)

Z b

c
x∗ f (s)∆(s)

= (HK)
Z b

a
x∗ f (s)∆(s)
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It follows that f is (HKP) integrable on [a,b] and

(HKP)
Z b

a
f (s)∆(s) = (HKP)

Z c

a
f (s)∆(s)+(HKP)

Z b

c
f (s)∆(s).

b) It follows easily that from the above consideration and from linearity of x∗:

x∗((HKP)
Z b

a
(α f +βg)(s)∆(s)) = α(HK)

Z b

a
x∗ f (s)∆(s)+β(HK)

Z b

a
x∗ f (s)∆(s).

Since the class of real-valued Lebesgue integrable functions defined on T is essentially
contained in the class of such functions which are Henstock-Kurzweil integrable (cf. [41]
Example 2.5 and Theorem 2.19, for instance), the same holds true for vector-valued func-
tions. Thus we do not need to formulate similar lemmas for Pettis, Henstock-Kurzweil or
Bochner integrals.

A few necessary results about weak differentiability:

Lemma 3.2. If y is weakly continuous at the point t ∈ [a,b] and t is right dense then y is
weakly ∆ differentiable at t iff its weak ∆ derivative yw∆ ∈ E satisfies for each x∗ ∈ E∗

x∗yw∆(t) = lim
s→t+

x∗y(t)− x∗y(s)
t− s

provided this limit exists as a finite number (i.e. yw∆ is a weak ∆ derivative).

Proof. Recall that a function y is weakly ∆ differentiable at t iff for every ε > 0 and every
x∗ ∈ E∗ we have:

|[x∗y(σ(t))− x∗y(s)]− x∗yw∆(t)[σ(t)− s]|< ε|σ(t)− s|.

Thus
|[x∗y(σ(t))− x∗y(s)]− x∗yw∆(t)[σ(t)− s]|

|σ(t)− s|
< ε

so

| [x
∗y(σ(t))− x∗y(s)]

[σ(t)− s]
− x∗yw∆(t)|< ε.

Since t is right dense, σ(t) = t and

| [x
∗y(t)− x∗y(s)]

[t− s]
− x∗yw∆(t)|< ε.

The thesis easily follows from the above inequality.

Lemma 3.3. If y is weakly continuous at the point t ∈ [a,b] and t is right-scattered then y
is weakly ∆ differentiable at t iff its weak ∆ derivative yw∆ ∈ E satisfies

yw∆(t) =
y(σ(t))− y(t)

σ(t)− t
.
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Proof. As in the previous lemma: y is weakly ∆ differentiable at t iff for every ε > 0
and every x∗ ∈ E∗ we have:

|[x∗y(σ(t))− x∗y(s)]− yw∆(t)[σ(t)− s]|< ε|σ(t)− s|.

But by the weak continuity of y at t:

lim
s→t

[x∗y(σ(t))− x∗y(s)]
[σ(t)− s]

=
x∗y(σ(t))− x∗y(t)

[σ(t)− t]
.

Thus for a fixed ε > 0 there exists a neighborhood U of t such that for every s ∈U

| [x
∗y(σ(t))− x∗y(s)]

[σ(t)− s]
− [x∗y(σ(t))− x∗y(t)]

[σ(t)− t]
< ε.

By multiplying the two side of this inequality by |σ(t)− s| we get

|[x∗y(σ(t))− x∗y(t)]− x∗y(σ(t))− x∗y(t)
σ(t)− t

[σ(t)− s]|< ε|σ(t)− s|.

Finally, the definition of the ∆ derivative for x∗y holds true with x∗y(σ(t))−x∗y(t)
σ(t)−t . Then

x∗yw∆(t) =
x∗y(σ(t))− x∗y(t)

σ(t)− t
.

From the linearity of x∗ it follows that x∗yw∆(t) = x∗(yw∆(t) = x∗( y(σ(t))−y(t)
σ(t)−t ). The last

equality holds for each x∗ ∈ E∗ so the weak ∆ derivatives exist iff yw∆(t) = y(σ(t))−y(t)
σ(t)−t .

We will check some properties of the (HKP) integral considered as a function of the
right endpoint of integration. Since (HK) integrable functions need not to be bounded nor
absolutely integrable, we are unable to repeat a simple proof from [29] (Th. 4.3), so a full
proof using the Saks-Henstock lemma instead will be presented. Similar statements hold
true for another weak type integrals.

Theorem 3.4. If f : [a,b]→E is (HKP) integrable, then the function F(t)= (HKP)
R t

0 f (s)∆(s)
is weakly continuous at each point t ∈ [a,b]. Moreover, for every point t of the weak conti-
nuity of f we have Fw∆(t) = f (t).

Proof. Fix an arbitrary x∗ ∈ E∗ , ε > 0 and τ ∈ [a,b]. If τ is isolated, then x∗F is
continuous at τ. The function x∗ f is (HK) integrable on [a,b] and by the Saks-Henstock
lemma ([41], Th. 2.14) we ensure that there exists a ∆-gauge δ0 = (δL,δR) of [a,b] such
that

n

∑
i=1
|(HK)

Z ti

ti−1

x∗ f (s)∆(s)− x∗ f (ξi)(ti− ti−1)| ≤ ε

for all δ0-fine partitions of [a,b].
But for all [α,β] ⊂ [a,b] and τ ∈ [a,b] such that τ ∈ [α,β] ⊂ (τ− δL(τ),τ + δR(τ)) we

have

|
Z

β

α

x∗ f (s)∆(s)| ≤ ε+ |x∗ f (τ)|(β−α).
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Indeed, taking t0 = α, t1 = β and ξ1 = τ ∈ [α,β] ⊂ ((τ− δL(τ),(τ + δR(τ))∪ [a,b] in the
inequality from the Saks-Henstock lemma, we have |x∗ f (τ)(β−α)−(HK)

R
β

α
x∗ f (s)∆(s)| ≤

ε. Consequently

|(HK)
Z

β

α

x∗ f (s)∆(s)| ≤ |x∗ f (τ)(β−α)− (HK)
Z

β

α

x∗ f (s)∆(s)|+ |x∗ f (τ)(β−α)|

≤ ε+ |x∗ f (τ)|(β−α).

It is well-known that for every δ0-fine partition, by adding a point τ as a tag point we still
have δ0-fine partition ([41], Remark 2.10). Then without loss of generality let us assume,
that the points t and τ are tag points of δ0.

From the above consideration it follows that for t ∈ (τ− δL(τ),τ + δR(τ))∪ [a,b] we
have |t− τ|< δL(τ), |t− τ|< δR(τ) and

|x∗F(t)− x∗F(τ)|= |(HK)
Z t

τ

x∗ f (s)∆(s)|

≤ ε+ |x∗ f (τ)|(t− τ)

Taking a ε1 in such a way that 0 < ε1 < min(δL(τ),δR(τ), ε

1+|x∗ f (τ)|), we obtain (τ− ε1,τ+
ε1)⊂ [a,b]. Thus for |t− τ|< ε1

|x∗F(t)− x∗F(τ)| ≤ ε+ |x∗ f (τ)|(t− τ)≤ ε+ |x∗ f (τ)| ε

1+ |x∗ f (τ)|
< 2ε.

This means that for every ε > 0 there exists a ε1 > 0 such that |t−τ|< ε1 implies |x∗F(t)−
x∗F(τ)|< ε i.e. x∗F is continuous at t. This means that F is weakly continuous at this point.
The last thesis can be proved as in a classical case T = R.

As a corollary we obtain also a new result for real-valued functions:

Corollary 3.5. If f : [a,b]→R is (HK) integrable, then the function F(t) = (HK)
R t

0 f (s)∆(s)
is continuous at each point t ∈ [a,b]. Moreover, for every point t of the continuity of f we
have F∆(t) = f (t).

A second statement of the lemma follows easily from our previous Lemmas 3.2 and 3.3
about weak ∆-differentiability.

The crucial role of the Saks-Henstock lemma for unbounded, nonabsolutely integrable
functions is clear. Since exactly the same proof as in [15] for the usual (HL) integral holds
true for the case of time scales, for the (HL) integral we have (cf. also [28, Theorem 9.12]
or [41]):

Lemma 3.6. If f : [a,b]→ E is (HL) integrable, then the function F(t) =(HL)
R t

0 f (s)∆(s)
is continuous at each point t ∈ T. Moreover, F Delta(t) = f (t) for almost all t in the sense
of Lebesgue ∆-measure on T. In particular, if t is right-scattered then y is ∆ differentiable
at t and its ∆ derivative y∆ ∈ E satisfies

y∆(t) =
y(σ(t))− y(t)

σ(t)− t
.
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From the Lebesgue criterion for Riemann ∆-integrability ([29] Th. 5.8) it follows that
for bounded real-valued functions a class of Riemann integrable functions on [a,b) coincide
with a class of functions for which the set of all right-dense points of discontinuity of f on
[a,b) is a set of ∆-measure zero. In particular, this means that weakly Riemann ∆-integrable
functions are ∆ almost everywhere weakly continuous on the set of right dense points of T.
Due to Lemma 3.4 for a particular case of weakly Riemann ∆-integrable functions we can
ensure that F is weakly ∆-differentiable ∆ a.e.

It might be expected, that F(t) = (HKP)
R t

a f (s)∆(s) if exists, is also weakly ∆ differen-
tiable (at least ∆ almost everywhere). Unfortunately, this is not true, in general. Such a prop-
erty does not holds even in the case T = R and F(t) = (P)

R t
a f (s)∆(s) = (P)

R t
a f (s)ds. Such

functions may be even nowhere weakly differentiable (cf. examples in the case T = R). To
characterize such a primitive F for arbitrary integrable function f another notion of weak
differentiability was introduced by Pettis in 1938, i.e. so-called pseudo-differentiability.
This exceeds the scope of this paper and will be presented elsewhere (cf. [19] for ordinary
calculus).

Finally, let us present some mean-value theorems for vector-valued integrals.

Theorem 3.7. (mean-value theorem) For each measurable subset A ⊂ T of [a,b] the inte-
gral (int)

R
A y(s)∆(s) we have

(int)
Z

A
y(s)∆(s) ∈ µ∆(A) · conv y(A),

where the integral (int)
R t

a y(s)∆(s) is understood in the sense of weak Riemann or Pettis
integral.

Proof. It is clear that we can restrict our attention to the Pettis integral. Fix arbitrary x∗ ∈
E∗. From the definition of the (HKP) integral it follows, that a real-valued function x∗y is
Lebesgue integrable on A. Moreover, we have the decomposition ([13] Th. 5.2):Z

A
x∗y(s)∆(s) =

Z
A

x∗y(s)ds+ ∑
ti∈IE

x∗y(ti)µ(ti).

Thus by Proposition 3.1 and Theorem 5.2 in ([13]):Z
A

x∗y(s)∆(s) =
Z

A
x∗y(s)ds+ ∑

ti∈IE

x∗y(ti)µ(ti)

∈mes(A) · conv(x∗y)(A)+ ∑
ti∈IE

x∗y(ti)µ(ti)

⊂mes(A) · conv(x∗y)(A)+(x∗y)(A) · ∑
ti∈IE

µ(ti)

⊂ (mes(A)+ ∑
ti∈IE

µ(ti)) · conv(x∗y)(A)

= µ∆(A) · conv(x∗y)(A).

Put v = (P)
R

A y(s)∆(s) and W = µ∆(A) ·conv y(A). Suppose, contrary to our claim, that
v 6∈W . As W is closed and convex, by separation theorem, there exists z∗ ∈ E∗ such that
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supx∈W z∗W = α < z∗(v). Thus z∗(v) =
R

A z∗(y(s)∆(s) > α. On the other hand, from the
above consideration, µ∆(A)z∗(y(s)) ∈ z∗(W ), so µ∆(A)z∗(y(s))≤ α. Hence

(P)
Z

A
z∗y(s)∆(s)≤ µ∆(A)

α

µ∆(A)
= α,

a contradiction.

By the same manner it can be easily proved, that for (HKP) integrable functions we
have a little weaker result:

Theorem 3.8. For each interval [c,d]⊂ [a,b] if the integral (HKP)
R d

c y(s)∆(s) exists, then
we have

(HKP)
Z d

c
y(s)∆(s) ∈ µ∆([c,d]) · convy([c,d]).

The aim of the paper is to extend the notions of vector-valued integrals for the func-
tions defined on time scales. Applicability of such definitions in the theory of dynamic
equations on Banach spaces is evident and exceed the scope of this paper. Some examples
of applications can be found in [21]. Now, let us restrict ourselves to the one of the basic
problems.

Consider a boundary value problem:

y∆∆ = f (t,yσ(t)), y(a) = 0 , y(b) = 0 (3.1)

provided a,b ∈ T.
Such a problem is important from an application point of view and was investigated

separately for two most typical cases: T = R (differential equations) or T = Z (difference
equations, cf. [23] or [2]) for both strong and weak topologies. Nevertheless, by using
the dynamic equation (3.1) rewritten in the integral form with just defined integrals, it is
possible to unify all existing results and to extend these theorems for another problems.
Namely, as special cases we have the following equations:

1. Difference equation: T = Z, y∆(t) = ∆y(t) = y(t +1)− y(t)

∆
2y(n) = f (n,y(n+1)),

2. Differential equation: T = R, y∆(t) = y′(t)

y′′(t) = f (t,y(t)),

3. Generalized difference equation: T = hZ, for h > 0, y∆(t) = ∆hy(t) = y(t+h)−y(t)
h

∆
2
hy(n) = f (t,y(t +h)),

4. q-difference equation: T = {0}∪qN, y∆(t) = ∆qy(t) = y(qt)−y(t)
(q−1)t

∆
2
qy(n) = f (t,y(qt)).
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5. Difference equation: T = {0}∪N2, y∆(t) = ∆Ny(t) = y(
√

t+1)2)−y(t)
1+2

√
t

∆
2
Ny(n) = f (t,y((

√
t +1)2)).

It is clear, that we consider also different types of time scales and different dynamic prob-
lems, not only for the existence of solutions, but also for all type of problems investigated
in Banach spaces (periodicity, asymptotic properties etc.).

All the above problems can be solved by finding a fixed point of the operator

Ty(t) =
Z t

0
G(t,s) f (s,yσ(s))∆(s),

where G is a Green function for the considered problem (3.1). The integral sign ”
R

” is con-
sidered in the sense which agree with a type of solutions (cf. [19] for the case of differential
equations or [21] for the case of dynamic equations). Thus any of the defined integrals can
be useful for solving the above problem. It depends only on the desired type of solutions.
For details of the presented method let us refer to [23] (the necessity of the results proved in
this paper will be then clear). The statements of exact results and the proofs are too big to
be placed here and do not fully harmonize with the results presented above, then they will
be published elsewhere.
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