
Communications in Mathematical Analysis
Volume 9, Number 2, pp. 130–148 (2010)
ISSN 1938-9787

www.math-res-pub.org/cma

ON THE STABILITY AND STABILIZATION OF
PARAMETER DEPENDENT PERTURBED

SYSTEMS

MOUNA BELGUITH ∗

Faculty of Sciences of Sfax
Department of Mathematics
BP 1171, Sfax, 3000 Tunisia

MOHAMED ALI HAMMAMI †

Faculty of Sciences of Sfax
Department of Mathematics
BP 1171, Sfax, 3000 Tunisia

(Communicated by Gaston M. N’Guérékata)

Abstract

We treat in this paper the problem of stability of a class of parameter dependent per-
turbed systems. Furthermore, the problem of stabilization using an estimated state
feedback is developed. Under some sufficient conditions, we construct, first, an ob-
server which provides an estimation of the state, then we consider the system in closed
loop by the state estimated feedback. The results of this paper are illustrated by nu-
merical examples.
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1 Introduction

Lyapunov stability of linear time-varying systems and applications to control theory have
received considerable attention ([3], [7], [12], [17]). Parameter dependent systems ([8],
[10], [14], [16]) are now established as one of important representations of these classes of
systems . The use of Lyapunov functions is certainly the main tool for solving the stability
problem ([1], [5], [6], [11], [13]). In order to provide less conservative results, parameter
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dependent Lyapunov functions have recently been employed and several techniques involv-
ing these functions have been proposed for the stability and stabilization ([2], [4], [16]).
Moreover, observers have been a topic of interest and variety of methods has been devel-
oped for constructing nonlinear observers for some classes of systems ([9], [15], [18]).
In fact, since there is no way that we can measure the hole state x of a dynamical system
and what we can really measure is a part of the system, then the problem of state estimate
will be investigated and consequently we get an estimation x̂ of x.

In this paper, we begin with the stability problem for a perturbed time-varying poly-
topic system. We continue with the problems of stabilization and the conception of a global
exponential observer for the same type of systems. Finally, we establish a separation prin-
ciple (stabilization by an estimated state feedback given by an observer). This investigation
is done through parameter dependent Lyapunov functions and Lyapunov matrix inequali-
ties (LyMIs) conditions. Numerical examples in dimension two illustrating the results are
given.

Consider the nonautonomous system

ẋ = g(t,x), (1.1)

where g : [0,∞)×D −→ Rn is piecewise continuous in t and locally Lipschitz in x on
[0,∞)×D, and D ⊂ Rn is a domain that contains the origin x = 0. The origin is an equilib-
rium point for (1.1), if

g(t,0) = 0, ∀t ≥ 0.

Definition 1.1. (Exponential stability) The equilibrium point x = 0 of (1.1) is exponen-
tially stable if there exist positive constants c,k, and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀ ‖x(t0)‖< c, (1.2)

and it is globally exponentially stable if (1.2) is satisfied for any initial state x(t0).

Definition 1.2. (Convergence to a neighborhood) System (1.1) is said globally uniformly
exponentially convergent to the following neighborhood

v = {x ∈ Rn,‖x‖ ≤ η},

if there exist λ1, λ2 and η such that

‖x(t)‖ ≤ λ1‖x(t0)‖exp(−λ2(t− t0))+η, ∀t ≥ t0. (1.3)

Definition 1.3. (Stabilization) An equilibrium point x∗ of a dynamical system

ẋ = f (x,u),

with f a smooth function, x in Rn and u in R is said to be stabilizable if there exists a
smooth function ũ such that x∗ is a globally asymptotically stable equilibrium point of
ẋ = f (x, ũ(x)).
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Definition 1.4. (Exponential observer) We consider the system

ẋ = F(t,x,u)
y = Cx,

(1.4)

where t ∈ R+, x ∈ Rn, u ∈ Rp and y ∈ Rq.
The function F : [0,+∞[×Rn×Rp −→ Rn is piecewise continuous in t and globally Lips-
chitz in x on [0,+∞]×Rn and C is a constant matrix (q×n).
An exponential observer for system (1.4) is a dynamical system which has the following
form:

˙̂x = F(t, x̂,u)−L(Cx̂− y), (1.5)

where L is the gain matrix and the origin of the error equation with e = x̂− x, given by

ė = F(t, x̂,u)−F(t,x,u)−LCe, (1.6)

is globally exponentially stable. It means that, there exist positive constants c,k, and λ, such
that

‖e(t)‖ ≤ k‖e(t0)‖e−λ(t−t0), ∀ t ≥ t0. (1.7)

2 Stability

Consider the system
ẋ(t) = A(α(t))x(t)+ f (t,α(t),x). (2.1)

The matrix A(α(t)) ∈ Rn×n is defined as

A(α(t)) = α1(t)A1 +α2(t)A2, (2.2)

where αi(t), i = 1,2 are continuous functions such that αi(t) ≥ 0, α1(t)+ α2(t) = 1, A1,
A2 ∈ Rn×n are constant matrices and |α̇1(t)| ≤ ρ1 with ρ1 ∈ R+.
The function f : R+×R×Rn −→ Rn is the perturbation of the nominal system

ẋ(t) = A(α(t))x(t), (2.3)

which could result in general from modeling errors, aging of parameters, uncertainties or
disturbances.

Consider the system (2.1)-(2.2), suppose that for all t ≥ 0, x ∈Rn, there exist ε > 0 and
k > 0, such that

(H1) ‖ f (t,α(t),x)‖ ≤ k‖x‖+ ε.

Let V (x,α) = xT P(α)x , P(α) = PT (α) > 0, a Lyapunov function candidate for (2.1).
The time derivative of V along the trajectories of perturbed system is given by

V̇ (x,α) = xT [P(α)A(α)+AT (α)P(α)+ Ṗ(α)]x+2xT P(α) f (t,α(t),x).

Using Lyapunov matrix inequalities and by imposing some particular conditions on the
nominal part of system (2.1), we will give some classes of perturbed dependent systems
which can be globally uniformly exponentially convergent to a neighborhood of the origin.
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Theorem 2.1. Suppose that, for strict positive reals l1, l2, l3, l4 and a given parameter
ρ4 ∈R+, there exist symmetric positive definite matrices P1 ∈Rn×n, P12 ∈Rn×n, P2 ∈Rn×n

such that (P1 −P2), (2P1 −P12), (P12 − 2P2) and (P1 −P12 + P2) are symmetric positive
definite matrices with λmin(P1) > λmin(P2), λmin(P12) > 2λmin(P2), that satisfying

(AT
1 +

l1
2

I)P1 +P1(A1 +
l1
2

I)+ l1(P2−P12)+ρ4(2P1−P12) < 0 (2.4)

(AT
1 −

3
2

l2I)P12 +P12(A1−
3
2

l2I) + (AT
2 +

3
2

l2I)P1 +P1(A2 +
3
2

l2I)+3l2P2

+ ρ4(4P1−P12−2P2) < 0

(2.5)

(AT
1 +

3
2

l3I)P2 +P2(A1 +
3
2

l3I) + (AT
2 −

3
2

l3I)P12 +P12(A2−
3
2

l3I)+3l3P1

+ ρ4(2P1 +P12−4P2) < 0

(2.6)

and
(AT

2 +
l4
2

I)P2 +P2(A2 +
l4
2

I)+ l4(P1−P12)+ρ4(P12−2P2) < 0 (2.7)

where ρ4 satisfies |α̇1(t)| ≤ ρ4. Assume that (H1) holds with

k <
l
2

λmin(P1−P12 +P2)
λmax(P1)+λmax(P12)+λmax(P2)

, l = inf(l1, l2, l3, l4). (2.8)

Then, the solutions of system (2.1) converge globally uniformly exponentially to the follow-
ing neighborhood of the origin

v1 = {x ∈ Rn,‖x‖ ≤ η1} (2.9)

where

η1 =
2 ε(λmax(P1)+λmax(P12)+λmax(P2))2

λmin(P2)(lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2)))
.

Proof. Let P(α) = α2
1P1 +α1α2P12 +α2

2P2. On the one hand, P(α) satisfies

P(α) ≥ α
2
1λmin(P1)I +α1α2λmin(P12)I +α

2
2λmin(P2)I

≥ α
2
1λmin(P1)I +α1α2λmin(P12)I +(1−2α1α2−α

2
1)λmin(P2)I

≥ α
2
1(λmin(P1)−λmin(P2))I +α1α2(λmin(P12)−2λmin(P2))I +λmin(P2)I

≥ λmin(P2)I,

and the time derivative of P(α) is given by

Ṗ(α) = 2α1α̇1P1 + α̇1α2P12−α1α̇1P12−2α2α̇1P2.
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Multiplying the last equality by (α1 +α2)2 which equal to 1, one gets

Ṗ(α) = α
3
1(α̇1(2P1−P12))+α

2
1α2(α̇1(4P1−P12−2P2))

+ α1α
2
2(α̇1(2P1 +P12−4P2))+α

3
2(α̇1(P12−2P2)).

On the other hand, the time-derivative of V along the trajectories of system (2.1) is given
by

V̇ (x,α) = xT ( α
3
1(A

T
1 P1 +P1A1 + α̇1(2P1−P12))

+ α
2
1α2(AT

1 P12 +P12A1 +AT
2 P1 +P1A2 + α̇1(4P1−P12−2P2))

+ α
2
2α1(AT

1 P2 +P2A1 +AT
2 P12 +P12A2 + α̇1(2P1 +P12−4P2))

+ α
3
2(A

T
2 P2 +P2A2 + α̇1(P12−2P2)) )x

+ 2xT (α2
1P1 +α1α2P12 +α

2
2P2) f (t,α(t),x).

Since |α̇1| ≤ ρ4, we have

V̇ (x,α) ≤ xT ( −l1α
3
1(P1−P12 +P2)−3l2α

2
1α2(P1−P12 +P2)

− 3l3α1α
2
2(P1−P12 +P2)− l4α

3
2(P1−P12 +P2) )x

+ 2(‖α
2
1P1 +α1α2P12 +α

2
2P2‖) (k‖x‖+ ε)

≤ −( lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)
+ λmax(P2)) ) ‖x‖2 +2 ε(λmax(P1)+λmax(P12)+λmax(P2))‖x‖

≤ − lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2))
λmax(P1)+λmax(P12)+λmax(P2)

V (x,α)

+
2 ε(λmax(P1)+λmax(P12)+λmax(P2))√

λmin(P2)

√
V (x,α).

Let
v(t) =

√
V (x,α),

hence

v̇(t) ≤ − lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2))
2(λmax(P1)+λmax(P12)+λmax(P2))

v(t)

+
ε(λmax(P1)+λmax(P12)+λmax(P2))√

λmin(P2)
.

Integrating between t0 and t, one obtains

v(t) ≤ v(t0)e−ξ(t−t0)

+
2 ε(λmax(P1)+λmax(P12)+λmax(P2))2√

λmin(P2)(lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2)))
,

where

ξ =
lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2))

2(λmax(P1)+λmax(P12)+λmax(P2))
,
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which implies that

‖x(t)‖ ≤

√
λmax(P1)+λmax(P12)+λmax(P2)

λmin(P2)
‖x(t0)‖e−ξ(t−t0)

+
2 ε(λmax(P1)+λmax(P12)+λmax(P2))2

λmin(P2)(lλmin(P1−P12 +P2)−2k(λmax(P1)+λmax(P12)+λmax(P2)))
.

Then, the solutions of system (2.1) converge globally uniformly exponentially to v1 given
in (2.9).

Remark We can use the same argument to prove the previous theorem by taking not
four LyMIs but just two or three. In fact, in the case of two LyMIs

(AT
1 +

l1
2

I)P+P(A1 +
l1
2

I) < 0 (2.10)

(AT
2 +

l2
2

I)P+P(A2 +
l2
2

I) < 0 (2.11)

when P(α) = P and (H1) holds with

k <
l
2

λmin(P)
λmax(P)

, l = inf(l1, l2), (2.12)

where l1 ∈ R∗
+ and l2 ∈ R∗

+, solutions of system (2.1) converge globally uniformly expo-
nentially to the following neighborhood of the origin

v2 =
{

x ∈ Rn,‖x‖ ≤ 2 ελ2
max(P)

λmin(P)(lλmin(P)−2kλmax(P))

}
.

Now, the use of these three LyMIs

(AT
1 +

l1
2

I)P1 +P1(A1 +
l1
2

I)− l1P2 +ρ3(P1−P2) < 0 (2.13)

(AT
2 −

l2
2

I)P2 +P2(A2−
l2
2

I)+ l2P1 +ρ3(P1−P2) < 0 (2.14)

and

(AT
1 − l3I)P2 +P2(A1− l3I)+(AT

2 + l3I)P1 +P1(A2 + l3I)+2ρ3(P1−P2) < 0, (2.15)

with P(α) = α1(t)P1 +α1(t)P1, l1, l2, l3 are strict positive reals, ρ3 satisfies
|α̇1(t)| ≤ ρ3 and for (H1) holding with

k <
l
2

λmin(P1−P2)
λmax(P1)+λmax(P2)

, l = inf(l1, l2, l3), (2.16)

ensures that solutions of system (2.1) converge globally uniformly exponentially to the
following neighborhood of the origin

v3 =
{

x ∈ Rn,‖x‖ ≤ 2 ε(λmax(P1)+λmax(P2))2

λmin(P2)(lλmin(P1−P2)−2k(λmax(P1)+λmax(P2)))

}
.

Note that, if ε −→ 0, then the trajectories of system (2.1) converge globally uniformly
exponentially to the origin when t −→+∞.
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Example 2.2.

Consider the system

ẋ(t) = (α1(t)A1 +α2(t)A2)x(t)+
kx

1+ t2 (α1(t),α2(t))+ ε,

where k = 5. 10−3, ε = 10−4 and matrices A1, A2 are given by

A1 =

 2 −6

140 −11

 and A2 =

 −75 3

4 −1

 .

It is clear that

‖ f (t,α(t),x)‖2 ≤ k‖x‖2 + ε.

For ρ4 = 0.009, l1 = 20, l2 = 20, l3 = 20.8 and l4 = 20.6, there exist symmetric positive
definite matrices P1, P12, P2 and (P1 −P12 + P2) that satisfy (2.4)-(2.5)-(2.6)-(2.7). These
solutions are given by

P1 =

 0.4229 −0.0210

−0.0210 0.0202

 , P12 =

 0.3161 −0.0148

−0.0148 0.0343

 ,

P2 =

 0.0360 −0.0010

−0.0010 0.0156

 and P1−P12 +P2 =

 0.1428 −0.0072

−0.0072 0.0016

 .

Moreover, we have

l
2

λmin(P1−P12 +P2)
λmax(P1)+λmax(P12)+λmax(P2)

= 15.4×10−3.

When we consider (2.10)-(2.11), for l1 = 1.3 and l2 = 0.6, there exists a symmetric
positive definite matrix P given by

P =

 0.1083 −0.0046

−0.0046 0.0048

 ,

and has the eigenvalues λmin(P) = 0.0046 and λmax(P) = 0.1085, which implies that

1
2

λmin(P)
λmax(P)

= 12.7×10−3.

Moreover, the use of (2.13)-(2.14)-(2.15) for ρ3 = 2.8, l1 = 28, l2 = 20 and l3 = 37
ensures the existence of two symmetric positive definite matrices P1, P2 given by

P1 =

 0.4562 −0.0242

−0.0242 0.0208

 and P2 =

 0.3489 −0.0166

−0.0166 0.0192

 ,
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with

P1−P2 =

 0.1073 −0.0076

−0.0076 0.0017

 .

Hence, one has
l
2

λmin(P1−P2)
λmax(P1)+λmax(P2)

= 13.6×10−3.

Then, we get

k <
1
2

λmin(P)
λmax(P)

<
l
2

λmin(P1−P2)
λmax(P1)+λmax(P2)

<
l
2

λmin(P1−P12 +P2)
λmax(P1)+λmax(P12)+λmax(P2)

,

which shows the robustness of the algorithm.

3 Stabilization

Consider the non linear perturbed system

ẋ(t) = A(α(t))x(t)+B(α(t))u(t)+ f (t,α(t),x)
y = Cx(t),

(3.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the control and y(t) ∈ Rq is the output, matrices
A(α(t)), B(α(t)) belong to the convex envelope D defined by

D =

{
m

∑
i=1

αi(t)Di, αi(t) ∈ R+ and
m

∑
i=1

αi(t) = 1

}
,

where Di are constant matrices and the function f : R+×R×Rn −→Rn is the perturbation
such that f (t,α(t),0) = 0 for all t ≥ 0 and

(H ) ‖ f (t,α(t),x)− f (t,α(t),y)‖ ≤ θi‖x− y‖, ∀x,y ∈ Rn, ∀t ≥ 0,
and θi > 0, f or i = 1,2,3.

Note that the nominal system of (3.1) in closed-loop with the linear feedback u(x) = Kx
is globally uniformly exponentially stable. In fact, it’s sufficient to take the case where
A(α(t)) = α1(t)A1 +α2(t)A2, B(α(t)) = α1(t)B1 +α2(t)B2 such that the pairs (A1,B1) and
(A2,B2) are controllable, which implies the existence of two constant matrices K1 ∈ Rp×n,
K2 ∈ Rp×n, and a symmetric positive definite matrix Q ∈ Rn×n, such that

Q(A1 +B1K1)+(A1 +B1K1)T Q < 0

Q(A2 +B2K2)+(A2 +B2K2)T Q < 0.

We suppose also that LyMIs

Q(A1 +B1K)+(A1 +B1K)T Q < 0

Q(A2 +B2K)+(A2 +B2K)T Q < 0
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are satisfied with K = K1 +K2.
Now, we consider system (3.1) with

A(α(t)) = α
2
1(t)A1 +2α1(t)α2(t)A12 +α

2
2(t)A2 (3.2)

and
B(α(t)) = α

2
1(t)B1 +2α1(t)α2(t)B12 +α

2
2(t)B2. (3.3)

Assume that
(H1) The pairs (A1,B1), (A12,B12) and (A2,B2) are controllable, then there exist con-

stant matrices K1 ∈ Rp×n, K12 ∈ Rp×n, K2 ∈ Rp×n and a symmetric positive definite matrix
Q3 such that

Q3(A1 +B1K1)+(A1 +B1K1)T Q3 < 0, (3.4)

Q3(A12 +B12K12)+(A12 +B12K12)T Q3 < 0, (3.5)

and
Q3(A2 +B2K2)+(A2 +B2K2)T Q3 < 0. (3.6)

(H2) The following LyMIs are satisfied

Q3(A1 +B1K)+(A1 +B1K)T Q3 <−l1Q3, (3.7)

Q3(A12 +B12K)+(A12 +B12K)T Q3 <−l12Q3, (3.8)

and
Q3(A2 +B2K)+(A2 +B2K)T Q3 <−l2Q3, (3.9)

where l1, l12 and l2 are strict positive reals and K = K1 +K12 +K2.

Theorem 3.1. Assume that (H1) and (H2) are satisfied. Moreover, if (H ) holds with

θ3 <
lλmin(Q3)
2λmax(Q3)

f or l = inf{l1, l12, l2},

then, the system (3.1) in closed-loop with the linear feedback u(x) = Kx is globally expo-
nentially stable.

Proof. Let V (t,x) = xT Q3x a Lyapunov function candidate. The time derivative of V along
the trajectories of system (3.1) is given by

V̇ (t,x) = xT (
α

2
1(t)(Q3(A1 +B1K)+(A1 +B1K)T Q3)

+ 2α1(t)α2(t)(Q3(A12 +B12K)+(A12 +B12K)T Q3)
+ α

2
2(t)(Q3(A2 +B2K)+(A2 +B2K)T Q3)

)
x+2xT Q3 f (t,α(t),x)

≤ −(lλmin(Q3)−2 θ3λmax(Q3))‖x‖2

≤ − lλmin(Q3)−2 θ3λmax(Q3)
λmax(Q3)

V (t,x),

which implies that the system (3.1) in closed-loop with the linear feedback u(x) = Kx is
globally uniformly exponentially stable.
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Remark We can study the stabilization using just two or three Lyapunov matrix in-
equalities as we did in the previous section. In fact, when we consider constant matrices, it
is sufficient to suppose that the pair (A,B) is controllable, so there exist a constant matrix
K ∈ Rp×n and a symmetric positive definite matrix Q1 such that

Q1(A+BK)+(A+BK)T Q1 < 0.

Also, if the LyMI
Q1(A+BK)+(A+BK)T Q1 <−lQ1

is satisfied where l is a strict positive real and the assumption (H ) holds with

θ1 <
lλmin(Q1)
2λmax(Q1)

,

we obtain the global uniform exponential stability of system (3.1) in closed-loop with the
linear feedback u(x) = Kx.

Moreover, if we consider system (3.1) with A(α(t)) = α1(t)A1 +α2(t)A2 and B(α(t)) =
α1(t)B1 + α2(t)B2 such that the pairs (A1,B1) and (A2,B2) are controllable, then there ex-
ist constant matrices K1 ∈ Rp×n, K2 ∈ Rp×n and a symmetric positive definite matrix Q2
satisfying

Q2(A1 +B1K1)+(A1 +B1K1)T Q2 < 0, (3.10)

Q2(A2 +B2K2)+(A2 +B2K2)T Q2 < 0. (3.11)

If the following LyMIs are satisfied

Q2(A1 +B1K)+(A1 +B1K)T Q2 <−l1Q2, (3.12)

Q2(A2 +B2K)+(A2 +B2K)T Q2 <−l2Q2, (3.13)

where l1, l2 are strict positive reals, K = K1 +K2 and (H ) holds with

θ2 <
lλmin(Q2)
2λmax(Q2)

, l = inf{l1, l2},

then, the system (3.1) in closed-loop with the linear feedback u(x) = Kx is globally uni-
formly exponentially stable.

4 Conception of the observer

Consider the system (3.1), to obtain an estimation of the state (we can reconstitute the state),
we shall consider the following observer

˙̂x = A(α(t))x̂+B(α(t))u+ f (t,α(t), x̂)−L(α(t))C(x̂− x)
ŷ = Cx̂

(4.1)

where x̂(t) is the state estimate of x(t) and L(α(t)) ∈ D.
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Note that the nominal system of (4.1) is a global exponential observer for the nominal
part of system (3.1).To prove it, it is sufficient to take A(α(t)) = α1(t)A1 + α2(t)A2 and
B(α(t)) = α1(t)B1 +α2(t)B2 and we suppose that the pairs (A1,C) and (A2,C) are observ-
able, then there exist some gain matrices L1 ∈ Rn×q, L2 ∈ Rn×q and a symmetric positive
definite matrix P ∈ Rn×n, such that

P(A1−L1C)+(A1−L1C)T P < 0,

P(A2−L2C)+(A2−L2C)T P < 0.

Now, in the same context, we consider systems (3.1) and (4.1) with A(α(t)) is given by
(3.2) and

L(α(t)) = α
2
1(t)L1 +2α1(t)α2(t)L12 +α

2
2(t)L2. (4.2)

Suppose that
(H ′

1) The pairs (A1,C), (A12,C) and (A2,C) are observable, then there exist some
gain matrices L1 ∈ Rn×q, L12 ∈ Rn×q, L2 ∈ Rn×q and a symmetric positive definite matrix
P3 ∈ Rn×n, such that

P3(A1−L1C)+(A1−L1C)T P3 < 0, (4.3)

P3(A12−L12C)+(A12−L12C)T P3 < 0, (4.4)

and
P3(A2−L2C)+(A2−L2C)T P3 < 0. (4.5)

(H ′
2) The following LyMIs

P3(A1−L1C)+(A1−L1C)T P3 + l′1P3 < 0, (4.6)

P3(A12−L12C)+(A12−L12C)T P3 + l′12P3 < 0, (4.7)

and
P3(A2−L2C)+(A2−L2C)T P3 + l′2P3 < 0, (4.8)

are satisfied, where l′1, l′12 and l′2 are strict positive reals.

Theorem 4.1. Assume that (H ′
1) and (H ′

2) are satisfied. If assumption (H ) holds with

θ3 <
l′

2
λmin(P3)
λmax(P3)

, and l′ = inf{l1, l12, l2},

then, the system (4.1) is a global exponential observer for system (3.1).

Proof. Let W (t,e) = eT P3e a Lyapunov function candidate. The time derivative of W along
the trajectories of system (3.1) is given by

Ẇ (t,e) = eT ((A(α(t))−L(α(t))C)T P3 +P3(A(α(t))−L(α(t))C))e
+ 2eT P3( f (t,α(t), x̂)− f (t,α(t),x))
= eT (

α
2
1(t)(P3(A1−L1C)+(A1−L1C)T P3)

+ 2α1(t)α2(t)(P3(A12−L12C)+(A12−L12C)T P3)
+ α

2
2(t)(P3(A2−L2C)+(A2−L2C)T P3)

)
e

+ 2eT P3( f (t,α(t), x̂)− f (t,α(t),x))
≤ −(l′λmin(P3)−2θ3λmax(P3))‖e‖2.
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Since

θ3 <
l′

2
λmin(P3)
λmax(P3)

,

it follows that
Ẇ (t,e)≤− γ3

λmax(P3)
W (t,e),

where γ3 = l′λmin(P3)− 2θ3λmax(P3) > 0. Hence, the system (4.1) is a global exponential
observer for system (3.1).

Remark As we did in the previous sections, we can establish an observer for system
(3.1) using just two or three LyMIs. For the case of constant matrices, where the pair (A,C)
is observable, there exist a gain matrix L ∈ Rn×q and a symmetric positive definite matrix
P1 ∈ Rn×n, such that

P1(A−LC)+(A−LC)T P1 < 0.

If also the following LyMI is satisfied

P1(A−LC)+(A−LC)T P1 + l′P1 < 0,

with l′ is a strict positive real and (H ) holds with

θ1 <
l′

2
λmin(P1)
λmax(P1)

,

this allows to conclude that system (4.1) is a global exponential observer for system (3.1).
In the case where A(α(t)) = α1(t)A1 + α2(t)A2 and L(α(t)) = α1(t)L1 + α2(t)L2 such

that the pairs (A1,C) and (A2,C) are observable, there exist some gain matrices L1 ∈ Rn×q,
L2 ∈ Rn×q and a symmetric positive definite matrix P2 ∈ Rn×n, such that

P2(A1−L1C)+(A1−L1C)T P2 < 0, (4.9)

P2(A2−L2C)+(A2−L2C)T P2 < 0. (4.10)

If the LyMIs given by

P2(A1−L1C)+(A1−L1C)T P2 + l′1P2 < 0, (4.11)

P2(A2−L2C)+(A2−L2C)T P2 + l′2P2 < 0, (4.12)

are satisfied with l′1 and l′2 are strict positive reals and (H ) holds with

θ2 <
l′

2
λmin(P2)
λmax(P2)

,

it follows, in this case ,that system (4.1) is a global exponential observer for system (3.1).
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5 Stabilization with an estimated state feedback

In order to obtain a separation principle(stabilization with an estimated state feedback) for
(3.1), we consider the system (3.1) controlled by the linear feedback u(x̂) = Kx̂ and esti-
mated with the observer (4.1).

Let us consider the system

˙̂x = A(α(t))x̂+B(α(t))Kx̂+ f (t,α(t), x̂)−L(α(t)) Ce
ė = (A(α(t))−L(α(t))C)e+ f (t,α(t), x̂)− f (t,α(t),x).

(5.1)

Theorem 5.1. Assume that (H1), (H2), (H ′
1), and (H ′

2) are satisfied. If (H ) holds with

θ3 ≤ inf
(

lλmin(Q3)
2λmax(Q3)

,
l′λmin(P3)
2λmax(P3)

)
,

then, the system (5.1) is globally exponentially stable.

Proof. In order to study the stabilization problem via an observer, we consider the equiva-
lent system

˙̂x = ψ(t,α(t), x̂)+g(t,α(t), x̂)e
ė = h(t,α(t), x̂,e),

(5.2)

where
ψ(t,α(t), x̂) = A(α(t))x̂+B(α(t))Kx̂+ f (t,α(t), x̂),

g(t,α(t), x̂) =−L(α(t))C,

and
h(t,α(t), x̂,e) = (A(α(t))−L(α(t))C)e+ f (t,α(t), x̂)− f (t,α(t),x).

Note that, ˙̂x = ψ(t,α(t), x̂) is globally exponentially stable with a Lyapunov function asso-
ciated to this system can be chosen as

V (t, x̂) = x̂T Q3x̂,

which satisfies
λmin(Q3)‖x̂‖2 ≤V (t, x̂)≤ λmax(Q3)‖x̂‖2

V̇ (t, x̂)≤− lλmin(Q3)−2θ3λmax(Q3)
λmax(Q3)

V (t, x̂).

Also, the following differential equation

ė = h(t,α(t), x̂,e)

is globally exponentially stable with the following estimation on the trajectories

‖e(t)‖ ≤

√
λmax(P3)
λmin(P3)

‖e(t0)‖exp
(
− l′λmin(P3)−2θ3λmax(P3)

2λmax(P3)
(t− t0)

)
.
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Now, if we take the derivative of V along the trajectories of system (5.2), one obtains

V̇ (t, x̂) =
∂V
∂t

(t, x̂)+
∂V
∂x̂

˙̂x

=
∂V
∂t

(t, x̂)+
∂V
∂x̂

ψ(t,α(t), x̂)+
∂V
∂x̂

g(t,α(t), x̂)e

≤ − lλmin(Q3)−2θ3λmax(Q3)
λmax(Q3)

V (t, x̂)+
∥∥∥∥∂V

∂x̂

∥∥∥∥ ‖g(t,α(t), x̂)‖ ‖e‖

≤ − lλmin(Q3)−2θ3λmax(Q3)
λmax(Q3)

V (t, x̂)

+
2λmax(Q3)√

λmin(Q3)
(‖L1‖+2‖L12‖+‖L2‖)‖C‖ ‖e‖

√
V (t, x̂).

Let
v(t) =

√
V (t, x̂),

hence,

v̇ ≤ − lλmin(Q3)−2θ3λmax(Q3)
2λmax(Q3)

v(t)+
λmax(Q3)√

λmin(Q3)
(‖L1‖+2‖L12‖+‖L2‖)‖C‖ ‖e‖

≤ − lλmin(Q3)−2θ3λmax(Q3)
2λmax(Q3)

v(t)+
λmax(Q3)√

λmin(Q3)
(‖L1‖+2‖L12‖+‖L2‖)‖C‖[√

λmax(P3)
λmin(P3)

‖e(t0)‖exp
(
− l′λmin(P3)−2θ3λmax(P3)

2λmax(P3)
(t− t0)

)]
.

Setting

λ1 =
lλmin(Q3)−2θ3λmax(Q3)

2λmax(Q3)
,

λ2 =
λmax(Q3)√

λmin(Q3)
(‖L1‖+2‖L12‖+‖L2‖)‖C‖

√
λmax(P3)
λmin(P3)

,

and

λ3 =
l′λmin(P3)−2θ3λmax(P3)

2λmax(P3)
,

it follows that
v̇ ≤−λ1v+λ2‖e(t0)‖e−λ3(t−t0).

We pose
y(t) = v(t)eλ1(t−t0),

hence,

ẏ(t) = (v̇(t)+λ1v(t))eλ1(t−t0)

≤ λ2‖e(t0)‖e−λ3(t−t0)eλ1(t−t0)

≤ λ2‖e(t0)‖e(λ1−λ3)(t−t0).

Similar approach toTheorem 2.1 implies that system (5.2) is globally exponentially stable.
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Remark For the case of constant matrices, it is sufficient to take in assumption (H )

θ1 ≤ inf
(

lλmin(Q1)
2λmax(Q1)

,
l′λmin(P1)
2λmax(P1)

)
,

to obtain the same result as in Theorem 5.1. Moreover, for

A(α(t)) = α1(t)A1 +α2(t)A2, (5.3)

B(α(t)) = α1(t)B1 +α2(t)B2, (5.4)

L(α(t)) = α1(t)L1 +α2(t)L2, (5.5)

and
K = K1 +K2,

we take the case where

θ2 ≤ inf
(

lλmin(Q2)
2λmax(Q2)

,
l′λmin(P2)
2λmax(P2)

)
.

Example 5.2.

Consider system

ẋ(t) = A(α(t))x(t)+B(α(t))u(t)+
θx

1+ t2 (α1(t),α2(t))

y = Cx(t),
(5.6)

where θ = 10−2 and C =
(

0
1

)
.

It is clear that,

‖ f (t,α(t),x)− f (t,α(t),y)‖ ≤ θ‖x− y‖, ∀t ≥ 0 ∀x,y ∈ Rn.

If we consider this system such that A(α(t)), B(α(t)) and L(α(t)) satisfy respectively
(3.2), (3.3) and (4.2)with

A1 =
(

1 −9
11 −3

)
, A12 =

(
−90 2

2 −3

)
, A2 =

(
−75 3

4 −1

)

B1 =
(

1
2

)
, B12 =

(
3

2.2

)
, B2 =

(
1.3
0.8

)
,

and for l1 = 2.2, l12 = 3.8, and l2 = 1.8, there exist some constant matrices

K1 =
(
−3.7760
−5.7185

)
, K12 =

(
12.8427
−7.9423

)

K2 =
(
−11.9518
−6.0970

)
and Q3 =

(
0.1246 −0.0289
−0.0289 0.2013

)
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that satisfy (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9). Furthermore, there exist some gain
matrices L1, L12, L2 and a symmetric positive definite matrix P3 which are given respectively
by

L1 =
(

12.3652
20.3942

)
, L12 =

(
44.0796
29.7807

)
, L2 =

(
46.2207
29.6407

)
and

P3 =
(

0.6712 −0.2281
−0.2281 0.8930

)
that satisfy LyMIs given in (4.3), (4.4), (4.5),(4.6) ,(4.7) and (4.8).

Moreover, assumption (H ) is satisfied since we have

θ < inf
(

l
2

λmin(P3)
λmax(P3)

,
l
2

λmin(Q3)
λmax(Q3)

)
where

l
2

λmin(P3)
λmax(P3)

= 45.92×10−2

and
l
2

λmin(Q3)
λmax(Q3)

= 49.03×10−2.

Therefore, all assumptions of Theorem 5.1 are satisfied, it follows that system (5.6) is
globally exponentially stable.

Now, if we take into account the case of constant matrices with

A =
(
−75 3

4 −1

)
and B =

(
1
2

)
then, for l = 1.8, there exist two constant matrices K, L and two symmetric positive

definite matrices Q1 and P1 given respectively by

K =
(

108.3781 −26.9856
)
, L =

(
53.4823
0.5613

)

Q1 =
(

0.4036 −0.0642
−0.0642 0.0378

)
and P1 =

(
0.0627 0.0361
0.0361 1.4802

)
that satisfy LyMIs described before. Moreover, we get

θ < inf
(

l
2

λmin(P1)
λmax(P1)

,
l
2

λmin(Q1)
λmax(Q1)

)
where

l
2

λmin(P1)
λmax(P1)

= 3.76×10−2

and
l
2

λmin(Q1)
λmax(Q1)

= 5.84×10−2.

Furthermore, if we consider system (5.6) for equalities (5.3), (5.4) and (5.5) with
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A1 =
(

1 −9
11 −3

)
, A2 =

(
−75 3

4 −1

)

B1 =
(

1
2

)
and B2 =

(
1.3
0.8

)
,

then, for l1 = 3.2 and l2 = 1.8, there exist two constant matrices K1, K2 and a symmetric
positive definite matrix Q2 that satisfy LyMIs (3.10), (3.11), (3.12), (3.13) and two gain
matrices L1, L2 and a symmetric positive definite matrix P2 that satisfy LyMIs (4.9), (4.10),
(4.11) and (4.12). These solutions are given by

K1 =
(

3.6154
−7.5710

)
, K2 =

(
3.6220

−12.7903

)

L1 =
(

20.1847
29.5718

)
, L2 =

(
61.3860
31.9246

)

Q2 =
(

0.1566 −0.0765
−0.0765 0.1757

)
and P2 =

(
0.6810 −0.3190
−0.3190 0.9488

)
.

Moreover, assumption (H ) is satisfied since we get

θ < inf
(

l
2

λmin(P2)
λmax(P2)

,
l
2

λmin(Q2)
λmax(Q2)

)
where

l
2

λmin(P2)
λmax(P2)

= 36.36×10−2

and
l
2

λmin(Q2)
λmax(Q2)

= 32.92×10−2.

6 conclusion

Based on Lyapunov techniques, it is shown in this paper that a class of perturbed systems
with parameter dependence can be globally uniformly exponentially convergent to a neigh-
borhood of the origin using lyMIs. Moreover, the stabilization by an estimated state feed-
back given by an observer can be achieved, provided that the nominal system is globally
uniformly exponentially stabilizable by a linear feedback and the perturbation term is sub-
ject to some conditions. The effectiveness of the proposed criteria is verified in numerical
examples.
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