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Abstract

This paper concerns the unicity of entire functions and the growth estimate of entire
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1 Introduction and main result

In this paper, it is assumed that the reader is familiar with the fundamental results in Nevan-
linna’s value distribution theory of meromorphic functions of a single complex variable in
the open complex plane C, such as the First main theorem, the Second main theorem, and
the Lemma of logarithmic derivative etc., and the basic notations, such as the character-
istic function T (r, f ), the proximity function m(r, f ), and the counting function N(r, f ) and
the reduced counting function N̄(r, f ) (of poles) of a non-constant meromorphic function
f in C. A meromorphic function a(6≡ ∞) is said to be a small function related to f , if
T (r,a) = o(T (r, f )) holds outside a set of r ∈ R+ with finite Lebesgue measure. For any
two distinct non-constant meromorphic functions f and g, and any common small mero-
morphic function a related to them, f and g are said to share a CM (resp. IM) if f −a and
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g−a have the same zeros counting (resp. ignoring) multiplicities. Also, S(r, f ) represents
any quantity satisfying S(r, f ) = o(T (r, f )), possibly outside a set of r ∈ R+ with finite
Lebesgue measure, but not necessarily the same at each occurrence (cf. [13, 16]).

In 1929, R. Nevanlinna proved his well-known Five-value and Four-value theorems,
which started the studies of the unicity problem of meromorphic functions in C. In 1977,
when thinking about the unicity problem of an entire function f in regard to its first order
derivative f ′, L.A. Rubel and C.C. Yang (cf. [20]) showed that f ≡ f ′ if they share two dis-
tinct finite values CM. Since then, this subject and some other related problems have been
further studied, and many results on the unicity of entire and meromorphic functions shar-
ing two or three distinct finite values or small functions with their derivatives or generated
linear differential polynomials have been obtained (some new results are [1, 12, 18], corre-
sponding to some previous ones therein the references). (On the other hand, some results
of similar type for entire or meromorphic functions of several complex variables defined on
Cn have been obtained by C.A. Bernstein, D.C. Chang and B.Q. Li (cf. [2-4]).)

However, for the unicity problem of entire or meromorphic functions sharing only one
finite value or small function with their derivatives or generated linear differential polyno-
mials, not too many results are known. In 1986, G. Jank, E. Mues and L. Volkmann (cf.
[15]) studied this problem first, and proved that: If a non-constant meromorphic function f
shares a finite, non-zero value a CM with f ′ and f ′′, then f ≡ f ′; if f is entire and shares
a finite, non-zero value a IM with f ′, and f ′′ = a whenever f = a, then also f ≡ f ′. In
2001, P. Li and C.C. Yang (cf. [17]) generalized the latter case on entire functions as: If a
non-constant entire function f shares a finite, non-zero value a CM with f ′ and f (k) (k≥ 2),
then f (z) = cebz + a(b−1)

b , where b, c are two non-zero constants with bk−1 = 1.
Recently, J.M. Chang and M.L. Fang (cf. [5-6]) obtained the following generalization

and supplement with respect to the above results concerning entire functions.

Theorem 1.1. Let f (z) be a non-constant entire function, let a(z) be a small meromorphic
function related to f (z), and let k(> 2) be a positive integer. If f (z), f ′(z) share a(z) IM,
and f ′′(z) = a(z) whenever f (z) = a(z) for the case a(z) 6≡ a′(z), or if f (z), f ′(z) and f (k)(z)
share a(z) CM for the case a(z) is non-constant, then f (z)≡ f ′(z).

In 2007, P. Li and W.J. Wang (cf. [19]), and independently, the first author and H.X. Yi
(cf. [12]) complemented and extended the above results as below.

Theorem 1.2. Let f (z) be a non-constant entire function, let a(z) be a small meromorphic
function related to f (z) and of finite order, and let k(≥ 2) be a positive integer. If f (z),
f ′(z) share a(z) CM, and f (k)(z) = a(z) whenever f (z) = a(z), then f (z) assumes one of
the following three forms:

(i) f (z) = a(z)+ cexp{
R

eα(z)dz} and a(z)≡ a′(z), where c is a non-zero constant and
α(z) is an entire function (Note that if a(z) is non-constant, so is α(z).);

(ii) f (z) = cebz + a(b−1)
b and a(z) is a non-zero constant, where b, c are two non-zero

constants such that bk−1 = 1;
(iii) f (z)≡ f ′(z) and a(z) is non-constat such that a(z) 6≡ a′(z),

where the order of a(z) is defined as ρ(a) := limsup
r→+∞

logT (r,a)
logr .
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Theorem 1.3. Let f (z) be a transcendental entire function, and let

L[ f ](z) := a2(z) f ′′(z)+a3(z) f ′′′(z)+ · · ·+an(z) f (n)(z) (an(z) 6≡ 0)

be a linear differential polynomial in f (z) with rational coefficients ak(z) for k = 2, 3,
. . ., n. If f (z), f ′(z) share a non-zero polynomial a(z) of degree p CM, and L[ f ](z) = a(z)
whenever f (z) = a(z), then f (z) = cebz +(b−1)Φ(z), where b, c are two non-zero constants

and Φ(z) :=
p+1
∑
j=1

a( j−1)(z)
b j such that, for Ψ(z) :=

n
∑

k=2
ak(z)bk, we have

b =
a(z)− (b−1)Φ′(z)
a(z)− (b−1)Φ(z)

and Ψ(z)≡ a(z)− (b−1)L[Φ](z)
a(z)− (b−1)Φ(z)

.

Remark 1.4. From (4.4), the equation immediately below (4.5) for k = 1 and (4.9) in [12,
pp 67-68], the identity b = a(z)−(b−1)Φ′(z)

a(z)−(b−1)Φ(z) follows immediately.

It is easy to see, from the assumptions and conclusions of Theorem 1.2, that, except
for the case (i), the small meromorphic function a related to f must satisfy ρ(a) < 1 there.
Inspired by this observation, we will prove the main result of this paper below.

Theorem 1.5. Let f (z) be a non-constant entire function, let a(z)(6≡ 0) be a small mero-
morphic function related to f (z) such that ρ(a) < 1, and let L[ f ](z) be a linear differential
polynomial in f (z) defined in the statement of Theorem 1.3 yet with small meromorphic
coefficients ak(z) related to f (z) such that ρ(ak) < 1 for k = 2, 3, . . ., n. If f (z), f ′(z) share
a(z) CM, and L[ f ](z) = a(z) whenever f (z) = a(z), then f (z) assumes the form

f (z) = cebz +(1−b)ebz
Z

a(z)e−bzdz, (1.1)

where b, c are two non-zero constants. Furthermore, a(z) is an entire solution to the fol-
lowing complex linear homogenous differential equation about ω(z)’s

n

∑
k=2

ak(z)
k−1

∑
j=0

b j
(

ω
(k−1− j)(z)−ω

(k− j)(z)
)

+
n

∑
k=2

ak(z)ω(k−1)(z)−ω(z) = 0. (1.2)

Remark 1.6. Under the assumptions of Theorem 1.3, we could show that b = a(z)−(b−1)Φ′(z)
a(z)−(b−1)Φ(z)

and Ψ(z)≡ a(z)−(b−1)L[Φ](z)
a(z)−(b−1)Φ(z) are sufficient for condition (1.2).

2 A lemma

Lemma 2.1. (cf. [19, Lemma 4]). Suppose that h(z) is a non-constant meromorphic func-
tion such that N(r,h)+ N̄

(
r, 1

h

)
= S(r,h), and suppose that

R(h)(z) =
a0(z)hp(z)+a1(z)hp−1(z)+ · · ·+ap(z)
b0(z)hq(z)+b1(z)hq−1(z)+ · · ·+bq(z)

(2.1)

is an irreducible rational function in h(z) with small meromorphic coefficients a0(z), a1(z),
. . ., ap(z) and b0(z), b1(z), . . ., bq(z) related to h(z) such that a0(z)b0(z) 6≡ 0. If N(r,R(h)) =
S(r,h), then we would have b1(z) = b2(z) = · · ·= bq(z) = 0.
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3 Proof of Theorem 1.5

We first define the following crucial auxiliary function ϕ as

ϕ(z) :=
(a(z)−a′(z))(L[ f ](z)−L[a](z))

f (z)−a(z)
− (a(z)−L[a](z))( f ′(z)−a′(z))

f (z)−a(z)
. (3.1)

The Lemma of logarithmic derivative yields m(r,ϕ) = S(r, f ). On the other hand, it is easy
to see that the poles of ϕ arise from the zeros of a−a′, since f and f ′ share a CM, and the
poles of ak for k = 2, 3, . . ., n. Then, by assumption, we also have N(r,ϕ) = S(r, f ) so that,
by definition, T (r,ϕ) = m(r,ϕ)+N(r,ϕ) = S(r, f ).

Since f and f ′ share a CM, there exists an entire function α such that

f ′(z)−a(z)
f (z)−a(z)

= eα(z). (3.2)

Rewriting (3.2) as
f ′(z) = eα(z) f (z)+

(
1− eα(z)

)
a(z), (3.3)

and applying similar discussions as those in [12, pp 70-71], we obtain

f (k)(z) =
(

ekα(z) +Pk−1
[
eα(z)

])
f (z)−a(z)ekα(z) +P∗k−1

[
eα(z)

]
(3.4)

for k = 1, 2, . . ., such that

a(z)
(

e(k+1)α(z) +Pk
[
eα(z)])−a(z)e(k+1)α(z) +P∗k

[
eα(z)]

= a(z)Pk
[
eα(z)

]
+P∗k

[
eα(z)

]
= (a(z)−a′(z))ekα(z) +P∗∗k−1

[
eα(z)

]
, (3.5)

where Pk−1[eα], P∗k−1[e
α] and P∗∗k−1[e

α] are differential polynomials in eα with small mero-
morphic coefficients (related to eα) written in terms of a, α, their derivatives and their
combinations such that max{γPk−1 , γP∗k−1

, γP∗∗k−1
} ≤ k− 1. Here, γPk−1 denotes the degree of

Pk−1[eα], and γP∗k−1
, γP∗∗k−1

are similarly defined (cf. [12, 16]).
Then, it follows that

L[ f ](z) =
n

∑
k=2

ak(z)
(

ekα(z) +Pk−1
[
eα(z)

])
f (z)+

n

∑
k=2

ak(z)
(
−a(z)ekα(z) +P∗k−1

[
eα(z)

])
. (3.6)

Since a is non-zero and ρ(a) < 1, it follows that a 6≡ a′. Combining (3.1), (3.3), the
second equality in (3.5), and (3.6) yields

an(z)enα(z) +Qn−1
[
eα(z)]− a(z)−L[a](z)

a(z)−a′(z)
eα(z)− ϕ(z)

a(z)−a′(z)

=
an(z)(a′(z)−a(z))e(n−1)α(z)−Q∗

n−2

[
eα(z)

]
+a(z)

f (z)−a(z)
, (3.7)

where Qn−1[eα] and Q∗
n−2[e

α] are differential polynomials in eα with small meromorphic
coefficients (related to eα) written in terms of a, α, their derivatives, ak (k = 2, 3, . . ., n),
and their combinations such that γQn−1 ≤ n−1 and γQ∗

n−2
≤ n−2.
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If anenα +Qn−1[eα]− a−L[a]
a−a′ eα− ϕ

a−a′ ≡ 0, then by (3.7) we have

an(z)(a(z)−a′(z))e(n−1)α(z) ≡ a−Q∗
n−2

[
eα(z)

]
. (3.8)

Considering the well-known Clunie’s Lemma (cf. [12, Lemma 1]), and noting that ρ(a) < 1,
ρ(ak) < 1 for k = 2, 3, . . ., n, it follows immediately that eα must be a non-zero constant,
say, b. Then, integrating (3.2) yields equation (1.1). On the other hand, replacing eα by the
constant b in (3.3)-(3.6) leads to the following identities

f (k)(z) = bk f +(1−b)
k−1

∑
j=0

b ja(k−1− j)(z) (3.9)

for k = 1, 2, . . ., and

L[ f ](z) =
n

∑
k=2

ak(z)bk f (z)+(1−b)
n

∑
k=2

ak(z)

(
k−1

∑
j=0

b ja(k−1− j)(z)

)
. (3.10)

Substituting (3.9) and (3.10) into (3.1), and noting (3.8), together with the same calculation
as that for the derivation of Q∗

n−2[e
α], would yield equation (1.2).

If anenα +Qn−1[eα]− a−L[a]
a−a′ eα− ϕ

a−a′ 6≡ 0, then it follows that

f (z)−a(z) =
an(z)(a′(z)−a(z))e(n−1)α(z)−Q∗

n−2

[
eα(z)

]
+a(z)

an(z)enα(z) +Qn−1
[
eα(z)

]
− a(z)−L[a](z)

a(z)−a′(z) eα(z)− ϕ(z)
a(z)−a′(z)

, (3.11)

where, without lose of generality, we may suppose that the right hand side rational function
of eα in (3.11) is irreducible (Otherwise, noting that the degrees in the leading terms of
the numerator and denominator of the right hand side rational function of eα in (3.11) are
n− 1 and n, respectively, after killing the common factors, we arrive at a new rational
function of eα of a similar form with the degrees in the leading terms of the numerator
and denominator being s−1 and s, respectively, which only affects the following proof by
switching n to s, where 1 ≤ s ≤ n.). Noting that N(r, f − a) = N(r,a) ≤ T (r,a) = S(r,eα)
since T (r, f ) = nT (r,eα), applying the conclusions of Lemma 2.1 to (3.11) yields

f (z)−a(z) =
Q∗∗

n−1

[
eα(z)

]
an(z)enα(z) , (3.12)

where Q∗∗
n−1[e

α] is a differential polynomial in eα of degree γQ∗∗
n−1

≤ n−1 with small mero-
morphic coefficients (related to eα). Also, the “constant term” of Q∗∗

n−1[e
α], say, β, is not

identically zero since we suppose the rational function of eα in (3.11) is irreducible. Then,

f ′(z) =
a2

n(z)e
nα(z)a′(z)+an(z)

(
Q∗∗

n−1

[
eα(z)

])′
− (a′n(z)+nα′(z)an(z))Q∗∗

n−1

[
eα(z)

]
a2

n(z)enα(z) . (3.13)

Since the “constant term”, anβ′− (a′n + nα′an)β, of the numerator of the right hand side
rational function of eα in (3.13) is not identically zero (Otherwise, it yields enα = β

an
, and

by (3.12), we derive that T (r, f ) = T (r,enα) = T
(

r, β

an

)
= S(r, f ), a contradiction.), (3.13)

implies that T (r, f ′) = nT (r,eα). However, combining (3.3) and (3.12) reads

f ′(z) =
Q∗∗

n−1

[
eα(z)

]
−a(z)an(z)e(n−1)α(z)

an(z)e(n−1)α(z) , (3.14)
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which further implies that T (r, f ′) = (n− 1)T (r,eα), and hence T (r,eα) = S(r, f ). A con-
tradiction follows immediately, since, by (3.12) and the foregoing discussions, we would
have T (r, f ) = nT (r,eα) = S(r, f ).

4 A related problem

In [12, Lemma 3], the first author showed that any entire solution of the following complex
linear non-homogenous differential equation

f (k)(z)− eQ(z) f (z) = P(z) (4.1)

would be of infinite order, where k(≥ 1) is an integer, and P(6≡ 0), Q are two polynomials
with Q non-constant.

For the following complex linear differential equation

f (n)(z)+ pn−1(z) f (n−1)(z)+ · · ·+ p0(z) f0(z) = H(z), (4.2)

a lot of beautiful results on the growth estimate of its entire solutions could be found in
[9-11, 16, 21], where pn−1, . . ., p1, p0(6≡ 0) are polynomials and H is an entire function. (If
H 6≡ 0, then equation (4.2) is non-homogenous.) Roughly speaking, except for polynomial
solutions, all the other entire solutions to equation (4.2) would be of order no less than one
or even of infinite order. (See also the fine paper [7] for basic tools.)

On the other hand, for the following complex linear differential equation

f (n)(z)+An−1(z) f (n−1)(z)+ · · ·+A0(z) f0(z) = H(z), (4.3)

G.G. Gundersen and E.M. Steinbart (cf. [8]), and independently, S. Hellerstein, J. Miles
and J. Rossi (cf. [14]) obtained the result below.

Theorem 4.1. If there exists one and only one index k ∈ {0, 1, . . ., n−1} such that

max
{

ρ(H), max
0≤ j≤n−1, j 6=k

ρ(A j)
}

< ρ(Ak)≤
1
2
, (4.4)

then any non-polynomial entire solution to equation (4.3) is of infinite order.

The above results make us wonder whether equation (1.2) admits non-polynomial finite
order entire solutions (Notice that its coefficients are of order less than one.), which were
also asked by S. Hellerstein, J. Miles and J. Rossi (cf. [14]). If the answer is negative, then
the only possible entire functions satisfying the hypothesis in our main result would be of
exponential type, and the shared small function would be rational.

On the other hand, it is natural to ask whether all the entire solutions to equation (4.1)
are of infinite order, provided that f (k) is replaced by a linear differential polynomial in f ′.
Also, is there any relationship between the hyper-order of the entire solutions to equation
(4.1) and the order of eQ? A counterexample below destroys our dream for the first question,
yet fortunately, we could give a definite answer to the second one.

Example 4.2. Let f := e−z(z2−2z+1) be an entire function of finite order. However, we
have f (4) +3 f ′′′+3 f ′′+ f ′+ ez f = z2−2z+1.
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Theorem 4.3. The hyper-order of any entire solution f (z) to equation (4.1) is equal to
the order of eQ(z), i.e., the degree of Q(z), where the hyper-order of f (z) is defined as
ρ2( f ) := limsup

r→+∞

log logT (r, f )
logr .

Proof. Without loss of generality, we suppose that k = 1. The classical Wiman-Valiron esti-
mate (cf. [16]) states that, for any transcendental entire function f , and for any sufficiently
small τ > 0, if we let z with |z|= r be such that | f (z)|> M(r, f )

(
ν(r, f )

)−τ, then there exists
a set E⊂ R(1,∞) with finite logarithmic measure such that

f (s)(z)
f (z)

=

(
ν(r, f )

z

)s

(1+o(1)) (4.5)

holds for all s ∈ N and all r 6∈ E∪R[0,1], where M(r, f ) denotes the maximal module of f
at |z|= r, and ν(r, f ) denotes the central index of f at |z|= r.

Suppose degP = l. A routine calculation of equation (4.1) leads to

f (l+2)(z)
f (z)

= eQ(z)

(
f (l+1)(z)

f (z)
+Ql(z)

f (l)(z)
f (z)

+ · · ·+Q0(z)

)
, (4.6)

where Q j’s are polynomials written in terms of Q, its derivatives and their combinations for
j = 0, 1, . . ., l.

Suppose degQ = µ. Noting that eQ is entire, we have µ = limsup
r→+∞

log logM(r,eQ)
logr (cf. [16]).

So, for any sufficiently small ε > 0 and some properly chosen γ > 1, we have∣∣∣Q∗(z)eQ(z)
∣∣∣
|z|=r

≤ M
(
r,Q∗eQ)≤ eγrµ+ε

, (4.7)

where Q∗ is any non-zero polynomial.
Now, since f is of infinite order, applying (4.5) and (4.7) to (4.6) yields(

ν(r, f )
r

)l+2

(1+o(1))≤ eγrµ+ε

(
ν(r, f )

r

)l+1

(1+o(1)), (4.8)

for |z|= r(6∈E∪R[0,1]) with r sufficiently large. Combining (4.8) and the defining formula
ρ2( f ) = limsup

r→+∞

log logν(r, f )
logr leads to the inequality below

ρ2( f ) = limsup
r→+∞

log logν(r, f )
logr

≤ limsup
r→+∞

log logeγrµ+2ε

logr
= µ+2ε, (4.9)

which further implies that ρ2( f )≤ µ since ε is arbitrary.
On the other hand, we rewrite (4.6) as

eQ(z) =
f (l+2)(z)

f (z)

f (l+1)(z)
f (z) +Ql(z)

f (l)(z)
f (z) + · · ·+Q0(z)

. (4.10)

Noting that ρ( f ) = limsup
r→+∞

logν(r, f )
logr = +∞, we have, for sufficiently large r outside the set

E∪R[0,1] with |z|= r, ∣∣∣eQ(z)
∣∣∣
|z|=r

≤

(
ν(r, f )

r

)l+2
(1+o(1))(

ν(r, f )
r

)l+1
(1−o(1))

, (4.11)
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which implies that

T
(
r,eQ)=

1
2π

Z 2π

0
log+

∣∣∣eQ(reiθ)
∣∣∣dθ+O(1)≤ log+

ν(r, f )+O(logr). (4.12)

Therefore, (4.12) leads to the inequality below

µ = limsup
r→+∞

logT (r,eQ)
logr

≤ limsup
r→+∞

log logν(r, f )+2loglogr
logr

= ρ2( f ), (4.13)

which together with the conclusion of (4.9) yields

ρ(eQ) = µ = ρ2( f ) (4.14)

and terminates our proof.
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