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Gisèle Ruiz Goldstein∗

Department of Mathematical Sciences
University of Memphis

Memphis, TN 38152, USA

Jerome A Goldstein†

Department of Mathematical Sciences
University of Memphis

Memphis, TN 38152, USA

Naima Naheed‡

Department of Mathematics and Computer Science
Benedict College

Columbia, SC 29204, USA

Dedicated in great admiration to Peter Lax

(Communicated by Toka Diagana)

Abstract

We find the largest convex minorant of the function

F (x, y) = ax2 + xy + by2

where a, b are positive constants and x ≥ 0, y ≥ 0. We explain how the prob-
lem is closely connected with finding the ground state Thomas-Fermi electron
density for a spin polarized quantum mechanical system with the Fermi-Amaldi
correction.
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1 THOMAS-FERMI THEORY

The Hamiltonian for an N electron system is

H = T + Vee + Vne

= −1
2
4+

1
2

N∑
i,j=1
i6=j

1
|xi − xj |

+
N∑

j=1

V (xj) . (1.1)

The underlying Hilbert space is

H = L2
a

(
R3N

)
= {u ∈ L2(R3N , C) :

u(xπ1 , ..., xπN ) = (sign π) u (x1, ..., xN ) for all
x = (x1, ..., xN ) ∈ R3N and all permutations π of {1, ..., N}.

Here x = (x1, ..., xN ) with xj ∈ R3 representing the position of the jth electron, sign
π is 1 or −1, according as the permutation π is even or odd, and the antisymmetry is
a mathematical expression of the Pauli exclusion principle for electrons. The kinetic
energy operator is

T = −1
2
4 = −1

2

N∑
i=1

4i (1.2)

with4i the Laplacian on R3 corresponding to the ith electron. The electron-electron
(repulsive) potential energy operator is

Vee =
1
2

N∑
i,j=1
i6=j

1
|xi − xj |

(1.3)

(Throughout this discussion, various constants have been normalized to be one.)
The electron-nuclear (attractive) potential energy operator is

Vne =
N∑

j=1

V (xj) (1.4)

where V : R3 → R is a given potential. For a molecule with M nuclei at fixed
position Rj , 1 ≤ j ≤ M, V is given by

V (y) = −
M∑

j=1

Zj

|y −Rj |
; (1.5)

here Zj is the positive charge of the nucleus at Rj . But, for us, V is allowed to vary
in a large class of functions.

A basic problem in quantum chemistry is to find the ground state. That is,
one wishes to find EGS ∈ R, ΨGS ∈ H such that ‖ΨGS‖ = 1 and HΨGS =
EGSΨGS where

EGS = inf{〈Hϕ,ϕ〉 : ϕ ∈ D (H) , ‖ϕ‖ = 1}.
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For problems of bulk matter, with N ' 1026 or so, this problem is extraordinarily
difficult, both theoretically and numerically.

In 1927, L. Thomas [17] and E. Fermi [6] independently had the idea to replace
this problem by one for the ground state density. If ϕ is a wave function, i.e. a unit
vector in H, then

ρ (x1) = N

∫
R3(N−1)

|ϕ (x1, ..., xN )|2 dx2...dxN

is the corresponding position density. That is,
∫
∧

ρ (x1) dx1 is the expected number

of electrons in the Borel set ∧ ∈ R3 when ϕ describes the state of the system.
Thomas and Fermi proposed to write the energy 〈Hϕ,ϕ〉 in the state ϕ as a

functional of ρ, E (ρ) , and to solve the minimization problem

E (ρGS) = inf{E (ρ) : ρ ≥ 0,

∫
R3

ρ (x) dx = N, and ρ ∈ D (E)}

for ρGS ∈ D (E) with ρGS ≥ 0,

∫
R3

ρGS (x) dx = N. The problem with this approach

is that the map ϕ → ρ is not injective. They proposed using an approximation

Ê (ρ) = T̂ (ρ) + V̂ee (ρ) + V̂ne (ρ) ,

corresponding to

〈Hϕ,ϕ〉 = 〈Tϕ, ϕ〉+ 〈Veeϕ, ϕ〉+ 〈Vneϕ, ϕ〉

(see (1.1)-(1.4)). Specifically, they took

Ê (ρ) =
∫
R3

coρ (x)5/3 dx +
c

2

∫
R3

∫
R3

ρ (x) ρ (y)
|x− y|

dxdy +
∫
R3

V (x) ρ (x) dx. (1.6)

The third term V̂ne (ρ) =
∫
R3

V (x) ρ (x) dx equals 〈Vneϕ, ϕ〉 . The second term,

c
2

∫
R3

∫
R3

ρ(x)ρ(y)
|x−y| dxdy, with c = 1, is the classical Coulomb electronic repulsion

energy. It is a good approximation of 〈Vneϕ, ϕ〉 , but it is not exact. For instance,
when N = 1, we have 〈Veeϕ, ϕ〉 = 0 since there is no electron electron repulsion with
only one electron, while V̂ee (ρ) > 0 for every ρ. The Fermi-Amaldi correction is to
take c = 1 − 1

N ; this makes V̂ee (ρ) = 0 when N = 1, but leaves V̂ee (ρ) relatively
unchanged for large N .

The term T̂ (ρ) = co

∫
R3

ρ (x)5/3 dx is the Thomas-Fermi kinetic energy, and the

exponent 5/3 comes from scaling. More precisely, let ϕ be a wave function, let
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λ > 0, and let Ψλ (x) = λ3N/2Ψ(λx) for x ∈ R3N . Then Uλϕ = ϕλ defines a unitary
mapping on H. Since U−1

λ = U1/λ, we easily see that

U−1
λ (−4) Uλ = λ2 (−4) ,

so that ”kinetic energy scales like λ2”. Suppose we consider an approximation for

kinetic energy at the density level to be of the form cp

∫
R3

ρ (x)p dx. The corresponding

scaled electron density for the N electron system is

ρλ (x) = λ3ρ (λx)

for λ > 0 and x ∈ R3. An elementary calculation shows that

cp

∫
R3

ρλ (x)p dx = λ3(p−1)cp

∫
R3

ρ (y) dy.

Thus kinetic energy scales like λ3(p−1), which is λ2 precisely when p = 5/3.
E. Lieb and B. Simon [13], [14] showed that for molecules and c = 1, the Thomas-

Fermi problem

{minimize Ê (ρ) (defined by (1.6), subject to ρ ≥ 0,

∫
R3

ρ (x) dx = N, ρ ∈ D
(
Ê

)
}

has a unique solution provided

0 < N ≤ Z =
N∑

i=1
Zi

(see (1.5)), and there is no solution for N > Z. Ph. Benilan and H. Brezis [1], [4],
[5] extended this in many ways, replacing the kinetic energy density ρ (x)5/3 by
J (ρ (x)) for a large class of convex functions J , replacing V defined by (1.5) by a
very general class of potentials V , and in other ways as well. G. Goldstein (formerly
G. Rieder) and J. Goldstein [16], [11] extended the Nmax = Z result of Lieb-Simon
to Nmax = Z + 1 when c = 1− 1

N .
Goldstein and Goldstein [10] extended the theory to spin polarized systems. Then

Benilan, Goldstein and Goldstein [2], [3] studied the case of spin polarized Thomas-
Fermi theory with the Fermi-Amaldi correction. Consider the energy functional

E (ρ1, ρ2) =
2∑

j=1
cj

∫
R3

ρj (x)p +
∫
R3

V (x) (ρ1 (x) + ρ2 (x))dx

+
1
2

2∑
j=1

(
1− 1

Nj

) ∫
R3

∫
R3

ρj (x) ρj (y)
|x− y|

dxdy +
∫
R3

∫
R3

ρ1 (x) ρ2 (y)
|x− y|

dxdy (1.7)

with domain

D (E) = {(ρ1, ρ2) : ρi ≥ 0,

∫
R3

ρi (x) dx = Ni, each integral in (1.7) is finite},
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where Ni > 1 is given, i = 1, 2. Here ρ1 [resp. ρ2] is the position density of the spin
up [resp. spin down] electrons. Let V be given by (1.5). Then ( see [2], [12], [8]) the
problem

{minimize E (ρ1, ρ2) subject to (ρ1, ρ2) ∈ D (E)}

has a solution for p > 3/2 and N1+N2 ≤ Z +1. But uniqueness was not established.
In the previous problem discussed, the energy functional was strictly convex, but

for the spin polarized case with the Fermi-Amaldi correction, the energy functional
E given by (1.7) (and E2 also) is not convex. In the previous work, uniqueness
followed from strict convexity.

Let Ẽ be the largest convex minorant of E, where E is defined by (1.7). Then it is
easy to see that Ẽ exists, minE = min Ẽ, and Ẽ is convex. If one can show that Ẽ is
strictly convex, then it follows that E has a unique minimum (since each minimum
for E is also minimum of Ẽ).

2 The 2-D Problem in the Calculus of Variations

Let J : D(J) ⊂ X → R be a real functional defined on a convex subset of a Banach
space X. Let J∗ be the largest convex minorant of J , i.e., J∗ = D (J) → R, J∗ is
convex on D (J∗) = D (J) , J∗ (u) ≤ J (u) for all u ∈ D (J) ; and if K = D (J) →
R satisfies all these conditions, then K (u) ≤ J∗ (u) for all u ∈ D (J) .

We wish to find the largest convex minorant of the spin polarized Thomas-Fermi
energy functional E given by (1.7).

Write
E = E1 + E2

where

E2 = Eee =
2∑

i=1

(
1− 1

Ni

) ∫
R3

∫
R3

ρi (x) ρi (y)
|x− y|

dxdy +
∫
R3

∫
R3

ρ1 (x) ρ2 (y)
|x− y|

dxdy (2.1)

and E1 = E − E2. Then E1 is strictly convex but E is not convex; in fact, E (and
E2 also) is strictly concave on some subset of its domain when N1 6= N2 which we
assume (see [3]). Finding the greatest convex minorant of E seems to be an extremely
difficult problem, so we replaced it by an easier problem: Find the largest convex
minorant of E∗

2 of E2.
Solving this problem yields a convex minorant E1 + E∗

2 for E. But this may not
be the greatest convex minorant of E. Here is a simple one dimensional example to
illustrate this. Let

J1 (x) = |x| − 1, x ∈ R,

J2 (x) =
{

1− |x| for |x| ≤ 1
0 for |x| ≥ 1

.

Thus J1 is convex on R but J2 is not. A straightforward calculation shows that the
greatest convex minorant of J2 is J∗

2 ≡ 0. But J1 + J2 is convex, whence the convex
minorant J1 + J∗

2 = J1 is not the greatest convex minorant of J1 + J2.
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A standard way to find the greatest convex minorant of a functional B is to find
its second Legendre dual B∗∗. For functions of two variables, this requires B being
defined on all of R2, rather than just the first quadrant. The Legendre dual B∗ of
B is defined to be

B∗ (y) = sup
x∈R2

{〈x, y〉 −B (x)} ∈ [−∞,∞],

where 〈., .〉 is the given inner product on R2.
We consider

B(x) = ax2
1 + 2x1x2 + bx2

2, (2.2)
A(x) = ax2

1 + 2 |x1x2|+ bx2
2 (2.3)

for x = (x1, x2) ∈ R2, 0 < a, b < 1. We have in mind a = 1− 1
N1

, b = 1− 1
N2

from
the Thomas-Fermi analogue.

Lemma 2.1. Define B, A by (2.2), (2.3) where 0 < a, b < 1.

(i) B is not convex on R2.

(ii) A is not convex on R2.

(iii) B∗ (y) = ∞ for all y ∈ R2.

Proof. Recall that f : R2 → R is convex then for any two points P and Q in the
plane, f (M) ≤ (f (P ) + f (Q)) /2, where M = (P + Q) /2 is the midpoint of the
segment joining P and Q.

(i) Let P = (1, 0) and Q = (0, 1) . Then B (P ) = a1 and B (Q) = a2. Because
a1 + a2 < 2, we have

B (M) = B

(
1
2
,
1
2

)
=

a1 + a2

4
+

1
2

>
a1 + a2

2
=

B (P ) + B (Q)
2

.

It follows that B is not convex.
(ii) Because A (x) and B(x) agree on the first quadrant, the example given in

(i) shows that A is not convex.
(iii) Let x = (t,−t) . Then 2− a1 − a2 > 0 implies that

{〈x, y〉 −B (x)} = t (y1 − y2) + (2− a1 − a2) t2 →∞ as t →∞.

Hence
B∗ (y) := sup

x∈R2

{〈x, y〉 −B (x)} = ∞.

If we replace B (x) by

B1 (x) = max{B(x), T}

for some fixed T ∈ R, then conclusions (i), (iii) hold for B1 as well.
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Lemma 2.2. Let be A be given by (2.3). Then

A∗(y) = sup
x∈R2

{< x, y > −A(x)} ∈ [0,∞)

for each y ∈ R2.

Proof. First
A∗(y) ≥ {< 0, y > −A(0)} = 0 for y ∈ R2

Next, let

Gy(x):= < x, y > −A(x),

= < x, y > −a1x
2
1 − a2x

2
2 − 2 |x1x2| ,

Gy(x) ≤ Hy (x) := < x, y > −a1x
2
1 − a2x

2
2. (2.4)

The critical point x for Hy(x) is determined by

∂Hy(x)
∂x1

= 0 = y1 − 2a1x1 ,which implies that x1 =
y1

2a1
,

∂Hy(x)
∂x2

= 0 = y2 − 2a2x2 ,which implies that x2 =
y2

2a2
.

This critical point is where Hy(x) has its maximum. Plugging this critical point in
(2.4), we get

sup
z

Gy(z) ≤ sup
z

Hy(z) = Hy(x)

= <

(
y1

2a1
,

y2

2a2

)
, (y1, y2) > −a1

(
y1

2a1

)2

− a2

(
y2

2a2

)2

< ∞.

Theorem 2.3. Let A : R2 → R be given by

A(x) = a1x
2
1 + a2x

2
2 + 2 |x1x2| ,

where 0 < a1, a2 < 1. Then A∗∗ is convex and is given by

A∗∗(x) = a1x
2
1 + a2x

2
2 +

√
4a1a2 |x1x2| .

Moreover, A∗∗(x) is the largest convex minorant of A.

Proof. Let A∗ (y) := sup
x∈R2

{< x, y > −A(x)}. To prove Theorem 1, we need two

lemmas.

Lemma 2.4. A∗(y) ≥ max
{

y2
1

4a1
,

y2
2

4a2

}
for all y ∈ R2.
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Proof. First,

A∗(y) ≥ sup
x1∈R

(〈x, y〉 −A (x)) for x = (x1, 0)

= sup
x1∈R

(
x1y1 − a1x

2
1

)
=: Q.

The critical point of x1 → x1y1 − a1x
2
1 is x1 = y1

2a1
. At this critical point, the global

maximum is attained. So

Q =
(

y1

2a1

)
y1 − a1

(
y1

2a1

)2

=
y2
1

4a1
.

Similarly,

A∗(y) ≥ sup
x1∈R

(〈x, y〉 −A (x)) for x = (0, x2)

=
y2
2

4a2

by the same calculation. So

A∗(y) ≥ max
{

y2
1

4a1
,

y2
2

4a2

}
.

Lemma 2.5. If A1 ≥ A2 on R2, then A∗
1 ≤ A∗

2 on R2.

Proof. Obvious.

Let

A1(y) = A∗(y), A2(y) = max{ y2
1

4a1
,

y2
2

4a2
}.

By the previous Lemma, for all z ∈ R2,

A∗∗(z) = A∗
1(z) ≤ A∗

2(z). (2.5)

Now we compute A∗
2(z). For z ∈ R2,

A∗
2(z) = max

i=1,2,3
sup

y∈Ri

(〈z, y〉 −A2 (y)) ,

where

R1 =
{

y ∈ R2 :
y2
1

4a1
<

y2
2

4a2

}
,

R2 =
{

y ∈ R2 :
y2
1

4a1
>

y2
2

4a2

}
,

R3 =
{

y ∈ R2 :
y2
1

4a1
=

y2
2

4a2

}
.
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Clearly R1, R2, R3 are pairwise disjoint and R1 ∪R2 ∪R3 = R2. Let us define

K (y) := 〈z, y〉 −A2 (y)

where y ∈ R1 with y1 fixed, and z is fixed with z2 6= 0. Then

K (y) = 〈z, y〉 −A2(y) = z1y1 + z2y2 −
y2
2

4a2
.

Next we calculate sup
y∈R1

K (y) . Now K (y) is maximized as a function of y2 for fixed

y1 when z2 − y2

2a2
= 0 or y2 = 2a2z2. So, after substituting y2 = 2a2z2 in R1, we get

y2
1

4a1
<

y2
2

4a2
= a2z

2
2 .

Now we see the fixed value of y1 gives y2
1 < 4a1a2z

2
2 . Then

K (y) = 〈z, y〉 −A2(y) = z1y1 + z2(2a2z2)−
(2a2z2)

2

4a2

= z1y1 + a2z
2
2 .

After maximizing over y1, we get
√

4a1a2 |z1z2| + a2z
2
2 as the maximum of K (y)

over R1. Now we can interchange R1 and R2, and using continuity we get

A∗
2(z) ≤ max

{
a1z

2
1 , a2z

2
2

}
+
√

4a1a2 |z1z2|
≤ a1z

2
1 + a2z

2
2 +

√
4a1a2 |z1z2| =: G(z).

Using (2.5) we see that

A∗∗(z) ≤ a1z
2
1 + a2z

2
2 +

√
4a1a2 |z1z2| = G(z).

Here G(z) is convex on R2, and G ≤ A. Since A∗∗ is the largest convex minorant of
A on R2, thus A∗∗ = G.

So to get the largest convex minorant of A, we replace the coefficient 2 of |x1x2| in
A (see (2.3)) by

√
4a1a2 with ai =

(
1− 1

Ni

)
for i = 1, 2.

3 THE SPIN POLARIZED THOMAS-FERMI PROB-
LEM

It follows from Theorem 2.3 and some additional analysis that the largest convex
minorant of E2 defined by (2.1) is E∗

2 given by

E∗
2 (ρ1, ρ2) =

2∑
i=1

(
1− 1

Ni

) ∫
R3

∫
R3

ρi (x) ρi (y)
|x− y|

dxdy

+2
{(

1− 1
N1

) (
1− 1

N2

)}1/2 ∫
R3

∫
R3

ρ1 (x) ρ2 (y)
|x− y|

dxdy
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for (ρ1, ρ2) ∈ D (E) .

The Thomas-Fermi problem with E∗ = E1 + E∗
2 can be solved by adopting the

methods of [2] used to solve the Thomas-Fermi problem for E = E1 + E2. More
accurately, one adapts those methods, but additional nontrivial complications arise
in the proof, especially in the topological degree theory portion of the argument.
This was done in the thesis [15] and a paper in preparation [9]. Besides existence,
we get uniqueness for the minimum of E∗, since E∗ is strictly convex. But this does
not imply uniqueness for the minimum of E, because the convex minorant of E∗ of
E may not be the maximal. The problem of uniqueness for minimum of E remains
open.

More precisely, what is proved in [9], [15] is that the (Thomas-Fermi) minimiza-
tion problem for E∗ has a unique solution for (N1, N2) , such that N1 > 1, N2 >

1, N1 +N2 ≤ Z +1 =
(

M∑
i=1

Zi

)
+1 and |N1 −N2| ≤ ε for a suitable ε > 0. This last

condition says that the number of spin up electrons cannot differ too much from the
number of spin down electrons.
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